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Abstract: The properties of adaptive non-parametric kernel estimators for the multivariate
probability density f(x) (and its derivatives) of identically distributed random vectors εn, n ≥ 1
at a given point are studied. It is supposed that the vectors εn, n ≥ 1 form a martingale-
difference process (εn)n≥1 and the function to be estimated belongs to a class of densities slightly
narrower than the class of densities with the following condition on the highest derivatives of
the order ν :

|f (ν)(y)− f (ν)(x)| ≤ ∆(‖x− y‖), x, y ∈ Rm,

where ∆(t), t ≥ 0, is some positive, bounded from above, monotonously increasing for t, small
enough unknown function.
An asymptotic mean square criterion is proposed. The optimality, in asymptotically minimax
sense of adaptive estimators of density derivatives, is proved for a class of the Bartlett kernel
estimators with a random data-driven bandwidth.
It’s well-known that the optimization of the asymptotic value of the mean squared error for
the Bartlett kernel density estimators leads to the optimal bandwidth depending on unknown
functions. Therefore it is not quite simple to apply these estimators to practice.
The paper proposes an adaptive approach to this problem, which is based on the idea of changing
the unknown functions in optimal bandwidth by a sequence of estimators converging to the
unknown values of these functions. It is shown, that the constructed adaptive kernel estimators
keep all the asymptotic properties of the sharp-optimal non-adaptive Bartlett estimators.
An example of the adaptive estimator, optimal in the sense of the introduced criterion is
considered. This estimator has simple structure and may be easily used in real statistical
problems. The proposed estimators possess the property of uniform asymptotic normality and
almost sure convergence.

1. INTRODUCTION

An important problem in applied and theoretical re-
search is studying the properties of non-parametric estima-
tors of multivariate probability density functions (p.d.f.’s).

Along with the estimation of the p.d.f., the estimation
of partial derivatives of a multivariate p.d.f. is of interest.
These derivatives are needed in many statistical problems,
for example, in estimation of the Fisher information ma-
trix, optimal Bayes estimation of the vector parameter of
an exponential distribution, when the prior distribution is
unknown, see, for example, Singh (1976). Generally, this
problem is important for the construction of stochastic
models, including modelling problems of control systems.

Let us consider in more detail the p.d.f. estimation
problems. There exist many results on this subject, con-
cerning consistency in different senses for the proposed
estimators (see, for example, Delecroix (1996), Devroye
and Györfi (1985), Koshkin and Vasiliev (1998), Politis
(2003), Pracasa Rao (1983), Pracasa Rao (1996), Singh
(1981)). The notion of asymptotic optimality is usually
associated with the optimal convergence rate of the min-
? Research was partly supported by RFBR - DFG 05-01-04004
Grant

imax risk (see, for example, Ibragimov and Khasminskii
(1981) and Stone (1982)). An important question in the
development of the non-parametric estimation is to study
the exact asymptotic behaviour of the minimax risk and to
find an efficient estimator, i.e. an estimator which achieves
this asymptote. By applying the minimax approach, it
is supposed that the function to be estimated belongs
to some class of functions, for example, Hölder, Sobolev,
Besov, and so on (see, for example, Devroye and Györfi
(1985), Ibragimov and Khasminskii (1981), Stone (1982)
among others). If the parameters in the definitions of
these classes are unknown, the estimation problem can be
treated as a problem of adaptation.

The most general approach to the adaptive estimation
problem of a scalar function at a given point in the
minimax sense has been developed by Lepski (1990)–
Lepski (1992) (see Lepski and Spokoiny (1997) as well).

In papers by Lepski and Spokoiny (1997) the problem
of an adaptive bandwidth selection in kernel estimation
with a given type of kernel was considered. In particular,
the case when a function (of a scalar argument) to be
estimated belongs to a given Hölder class Σ(β) with the
unknown smoothness parameter β ≤ 2 was investigated.
The p.d.f. from the class Σ(β) at a given point can be
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estimated with the accuracy n−2β/2β+1. At the same time
this accuracy is impossible to attain if the parameter β
is unknown. The optimal adaptive convergence rate of
estimators was calculated in Lepski (1990). It occured to
be (n−1

√
lnn)2β/2β+1 that differs from the non-adaptive

one (when the parameter β is known) by the extra log-
factor, see also Brown and Low (1996). It was proved in
Lepski and Spokoiny (1997) that this estimation procedure
is sharp optimal in the adaptive sense over the class of all
feasible estimators not only of kernel type. It should be
pointed out that for non-adaptive pointwise estimation
linear methods are not sharp optimal (see Lepski and
Spokoiny (1997), Sacks and Strawderman (1982)).

This talk deals with non-parametric estimation of the
multivariate p.d.f. and its derivatives in the case when a
function to be estimated belongs to a given class Σ(ν,∆)
with the following condition on its highest derivative of
the ν-th order

|f (ν)(y)− f (ν)(x)| ≤ ∆(‖x− y‖), x, y ∈ Rm, (1)

where ∆(t), t ≥ 0 is some positive, bounded above,
monotonously increasing for t small enough function (see
Definition 2.1 below). It should be noted, that the condi-
tion (1) can be weaker than, for example, the correspond-
ing Lipshitz condition in the definition of the Hölder class
Σ(β), β > ν.

The order ν ≥ 1 of the highest derivative in the
definition of Σ(ν, ∆) is supposed to be known and the
function ∆(·) is assumed to be unknown. The case of
unknown order ν could be considered in the future.

We shall investigate an adaptive estimation problem
of the partial derivatives of the order α of m-dimensional
p.d.f. in the following sense.

First, we consider so-called estimators with reduced
bias, see Bartlett (1963), or, by the terminology in Devroye
and Györfi (1985), the Bartlett estimators only. It is well-
known (see Bartlett (1963), Devroye and Györfi (1985),
Epanechnikov (1969) among others), that, by making use
of a special class of kernels, we can get the Bartlett
estimators of f ∈ Σ(ν, ∆) with the principal term of
their mean square error (MSE), which do not depends on
the unknown function ∆(·). As follows, such estimators
have the rate of convergence equal to n−

2ν
m+2ν , which may

differ from the optimal one on the class Σ(ν, ∆). At the
same time this convergence rate can be arbitrary close to
the optimal one by appropriate chosen function ∆ in the
definition of Σ(ν, ∆). The optimization of the principal
term of the MSE of Bartlett’s estimators leads to the
dependence of their bandwidth from the function to be
estimated and its partial derivatives of the order ν. There
are different ways to solve the problem of adaptation to
this lack of knowledge (see, for example, Berlinet and
Devroye (1994), Deheuvels and Hominal (1980), Devroye
and Györfi (1985), Donoho (1994), Politis (2003)).

We consider an adaptive approach to this problem,
which assumes the usage of non-parametric estimators for
these unknown functions in the construction of the optimal
bandwidth.

In this talk we propose an asymptotically minimax
criterion for the adaptive Bartlett kernel-type estimators
of the derivative f (α) of the density f ∈ Σ(α + ν, ∆) with
random data-driven bandwidth (see formula (10) below),
which gives the exact lower bound for the MSE over the
class of densities, somewhat narrower than the class Σ(α+
ν,∆). It is shown that the adaptive rate of convergence is
equal to the optimal non-adaptive one, n−

2ν
m+2(α+ν) , of the

Bartlett estimators (when the bandwidth of the Bartlett
estimators is non-random and unknown).

An example of the optimal estimator in the sense of in-
troduced criterion is considered. The properties of uniform
asymptotic normality and almost sure convergence of all
presented estimators are investigated.

2. PROBLEM SETTING

Let {Fn}n≥0 be a filtration in a probability space
(Ω,F ,P) and let ε = (εn)n≥1 is a martingale-difference
process with identically distributed random vectors εn =
(εn1, . . . , εnm)′ having an unknown p.d.f. f(·), adapted to
{Fn}, be given (a prime denotes the transposition).

For a fixed vector of nonnegative integers a =
(α1, . . . , αm), we consider the estimation problem of a
partial derivative

f (α)
a (x) =

∂αf(x)
∂xα1

1 . . . ∂xαm
m

, f
(0)
0 (x) = f(x)

of a p.d.f. f(x) from observations ε at a given point
x ∈ Rm, where α1 + α2 + . . . + αm = α.

Now we give some needed notation and definitions.

Denote by β(k) the set of all vectors b = (β1, . . . , βm)
with nonnegative integer-valued components β1, . . . , βm

such that β1 + . . . + βm = k. Omitting the subscript
b = (β1, . . . , βm) of partial derivatives f

(k)
b (x) will mean

that the set of indices β1, . . . , βm is not specified.

In the sequel, we denote c, ci, C, Ci, i = 1, 2, . . . as
nonnegative constants, possibly different even within the
same index.
Definition 2.1. Let a density f(x), x ∈ Rm be r times
differentiable in Rm. We say that a p.d.f. f(x) belongs to
the class Σ(r, ∆) if all its partial derivatives of order r ≥ 0
satisfy the following condition:

|f (r)(x)− f (r)(y)| ≤ ∆(‖x− y‖), x, y ∈ Rm,

where ∆(t), t ≥ 0 is some positive, possibly unknown,
bounded from above, monotonously increasing of t small
enough function, i.e. exists some t0 > 0, such that ∆(t1) ≤
∆(t2) for all t1 ≤ t2 ≤ t0 and ∆(0) = 0, ‖x‖2 =

∑m
j=1 x2

j .

We shall denote in the sequel by ν a positive integer,
which means the degree of differentiability of the function
f

(α)
a (·).

As an example of the function ∆(·) in the definition of
Σ(r, ∆), we can take

∆γ(t) =
L

(1 + | ln t|)γ
,

where L and γ are some unknown positive constants.
Examples of more slowly decreasing functions ∆(·) can
be considered as well.
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For positive integer ν we define the following quantities:

Tk =
∫
Rm

uα1
1 . . . uαm

m K(u) du,
m∑

j=1

αj = k,

T ν = (T ν
1 , . . . , T ν

s ), T ν
j =

∫
Rm

uν
j K(u) du,

ωf (x) =
(−1)ν

ν!

m∑
i=1

T ν
i f

(α+ν)
a+bi(ν)(x), L =

∫
Rm

(
K(α)

a (u)
)2

du,

where bi(ν) = ν(δi1, . . . , δim),‘ i = 1, . . . ,m; δij is the
Kronecker delta.
Definition 2.2. We say that kernel function K(·) belongs
to class B0 if it is finitely supported, continuously differ-
entiable up to the order α (inclusive), and∫

Rm

K(z) dz = 1, Tj = 0 for j = 1, . . . , ν.

We say that function K(·) belongs to class B if in the
definition of B0 we put T ν 6= 0 and Tj = 0 for j = 1, . . . , ν,
αi < ν, i = 1, . . . ,m.

Definition 2.3. We say that kernel function K(·) belongs
to class B∗ if K(·) ∈ B and∫

Rm

|K(z)| dz ≤ C1, sup
Rm

|K(α)
a (z)| ≤ C2

for some constants C1 and C2.

We say that class B∗ν consists of kernel functions K(·) ∈
B∗, such that T ν is a fixed known vector.

Define for some (possibly unknown) positive constants
c and C the following sets of functions:
Σ̃(α + ν, ∆) = {f ∈ Σ(α + ν, ∆) : max

k=0,α+ν
|f (k)(x)| ≤ C},

Σ∗(α + ν, ∆) = {f ∈ Σ̃(α + ν, ∆) : f(x) ≥ c, ω2
f (x) ≥ c}.

Denote by H the set of monotonously decreasing se-
quences h = (hn)n≥1 of real numbers hn > 0 satisfying
the condition

lim
n→∞

(
hn + (nhm+2α

n )−1
)

= 0.

Define the set Θn(H,B) of kernel estimators with a
bandwidth h :

Θn(H,B) = {f (α)
a,n (x) :=

1
nhm+α

n

n∑
i=1

K(α)
a

(
x− εi

hn

)
,

h = (hn)n≥1 ∈ H, K ∈ B}.

Consider the set of estimators Θ0
n = Θn(H,B0) and

the set Θ∗n = Θn(H,B∗ν) of the Bartlett kernel estimators,
see Bartlett (1963), Devroye and Györfi (1985). Denote
A = sup

z∈Rm

{‖z‖ : K(z) 6= 0} (we shall suppose in the

sequel, for simplification, that A > 1).

As for the functions from the Hölder class Σ(β), β >
α + ν, we can find the principal term of the MSE
u2

f (f (α)
a,n (x)) = Ef (f (α)

a,n (x) − f
(α)
a (x))2 for the kernel-type

estimators f
(α)
a,n (x) from the class Θ0

n for the function
f ∈ Σ(α + ν, ∆), as n →∞ :

u2
f (f (α)

a,n (x)) ∼ 1
nhm+2α

n

+ h2ν
n ·∆2(Ahn), (2)

where the first summand on the right-hand side in (2)
is proportional to the second moment of the stochastic
term in the decomposition of the deviation of the estimator
f

(α)
a,n (x) and the second one - to the upper bound of the

squared bias of f
(α)
a,n (x).

Consider our example f ∈ Σ(α + ν,∆γ) (with the
function ∆γ(·) of known structure). The optimization of
the right-hand side in (2) on the bandwidth h ∈ H gives
the optimal rate of convergence for the MSE:

u2
f (f (α)

a,n (x)) ∼ (nν lnγ(m+2α) n)−
2

m+2(α+ν) (3)

and corresponding bandwidth is proportional to

hn ∼ (n−1 ln2γ n)
1

m+2(α+ν) .

The structure of the function ∆(·) is unknown, in
general, and it is not enough of a’priori information for
its estimation. Thus, the optimal bandwidth can not be
found from (2).

The standard bandwidth choice for kernels of the type
B∗ν and for the mean square loss function is motivated by
the balance relation between the principal term of the bias
and of the second moment of stochastic term in the decom-
position of the MSE for kernel estimators. The principal
term of the bias depends on hν

n and highest derivatives
f (α+ν)(x) of the function f(x) and the second moment

of stochastic term is proportional to
f(x)

nhm+2α
n

. Then the

minimization on the bandwidth of the principal term of the
MSE expansion for the Bartlett kernel estimator f

(α)
a,n (x) ∈

Θ∗n of the derivative f
(α)
a (x), f(x) ∈ Σ(α + ν, ∆) gives

the following expression (see Bartlett (1963), Devroye and
Györfi (1985), Epanechnikov (1969) and Politis (2003) as
well), as n →∞, for the MSE:

u2
f (f (α)

a,n (x)) = n−
2ν

m+2(α+ν) (copt
f + o(1)). (4)

At that copt
f = (m + 2(α + ν)) ·

·
(

Lof(x)
2ν

) 2ν
m+2(α+ν)

·

(
ω2

f (x)
m + 2α

) m+2α
m+2(α+ν)

, (5)

where Lo = inf
K∈B∗ν

L (here the infimum Lo is assumed to

be attained).

The estimator f
(α),o
a,n (x), satisfying (4) is given by the

formula

f (α),o
a,n (x) =

1
n(ho

n)m+α

n∑
i=1

(Ko)(α)
a

(
x− εi

ho
n

)
(6)

and has the bandwidth ho = (ho
n)n≥1, defined as

ho
n = n−

1
m+2(α+ν) sopt(x), (7)

where

sopt(x) =

(
Lo(m + 2α)f(x)

2νω2
f (x)

) 1
m+2(α+ν)

. (8)

Condition T ν 6= 0 in the definition of the Bartlett type
kernel class B∗ν excludes the dependence of the bandwidth
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h0 from the unknown function ∆(·). On the other hand,
estimator (6) from Bartlett class Θ∗n for function f ∈ Σ(α+
ν, ∆) to be estimated has non-optimal rate of convergence,
while estimators from class Θ0

n have optimal rate. At
the same time, in our example ∆(·) = ∆γ(·) it follows
from the comparison of the formulae (3) and (4), that
the optimal convergence rate n−

2ν
m+2(α+ν) of Bartlett’s

estimators differs from the rate (nν lnγ(m+2α) n)−
2

m+2(α+ν)

of (non-adaptive) estimators (6) with K ∈ B0 on the extra

log-factor (ln n)
2γ(m+2α)
m+2(α+ν) only.

The functions sopt(x) and ho depend on the unknown
functions f(x) and f (α+ν)(x). As follows, the function
f

(α),o
a,n (x) is unobservable and can not be used as an

estimator.

Then for solving the problem of adaptation to unknown
parameter ho in the formula (6), it’s enough to estimate,
similarly to Devroye and Györfi (1985) among others,
the unknown function f and its derivatives f (α+ν) in the
definition (8) of the function sopt by the non-parametric or
by the cross-validation method, see Berlinet and Devroye
(1994).

To describe the class of adaptive estimators of density
derivatives we need the following notation. Define sets H
and S of deterministic and respectively random sequences.
Specify the set of random bandwidths in the form:
H̃ = H̃(H, S) = {h̃ = (hi−1,n)i=1,n,n≥1 : hi−1,n = vnsi−1,

i = 1, n, n ≥ 1, s̃ = (si)i≥0 ∈ S(ṽ), ṽ = (vn)n≥1 ∈ H}.

For investigating of the optimality properties of adap-
tive estimators, we consider, instead of the class of esti-
mators Θn(H,B), the class Θ̃n(H̃,B) of kernel estimators
with a random data-driven bandwidth h̃ ∈ H̃ :

Θ̃n(H̃,B) = {f (α)
a,n (x) :

f (α)
a,n (x) =

1
n

n∑
i=1

1
hm+α

i−1,n

K(α)
a

(
x− εi

hi−1,n

)
, h̃ ∈ H̃,K ∈ B}.

From the definition of the kernel estimators set Θ̃n

follows, that their bandwidth h̃ has the structure (7) with
a random sequence s̃ (for example, with a sequence of
estimators for sopt) instead of the unknown parameter sopt.
Section 4 gives an example of such estimators for sopt.

We shall define the set S in a different way according
to the aims of investigation (see Definition 2.4 below).

Let δ̃ = (δn)n≥1 and r̃ = (rn)n≥1 be a sequences of
positive numbers, decreasing to zero and monotonously
increasing to infinity respectively.

For n ≥ 1 we put dn = n
1

m+2(α+ν) vn and ∆̃ = (∆n)n≥1 :
∆n = ∆(Ar−1

n ), n ≥ 1. Note, that in our example
∆ = ∆γ : ∆n ∼ (ln rn)−γ .

Let us suppose, that sequences δ̃ and r̃ satisfy, as
n →∞, the following conditions:

δn · n
1

m+2(α+ν) →∞, δn/∆2
n →∞, rn · n

1
m+2(α+ν) → 0.

Denote a ∧ b = min(a, b), a ∨ b = max(a, b).

Definition 2.4. We say that a sequence s̃ = (si)i≥0 of
positive {Fi}-adapted random variables si, i ≥ 0,

i) belongs to set S(Σ, ṽ) if for f ∈ Σ(α + ν, ∆) it has
some non-random limit s ∈ (0,∞) in the following sense:

1
n

n∑
i=1

|Ef [s−(m+2α)
i−1 − s−(m+2α)]| = o(1),

1
n

n∑
i=1

Ef (sν
i−1 − sν)2 = o(1) as n →∞

and, besides,

1
n

n∑
i=1

Ef [s2ν
i−1 + s

1−(m+2α)
i−1 ] = o(v−1

n ), n →∞,

sup
i<n

si ≤ (rnvn)−1, n ≥ 1; (9)

ii) belongs to set S∗(Σ̃, ṽ) if for some s ∈ (0,∞) for all
n ≥ 1
1
n

n∑
i=1

sup
f∈Σ̃(α+ν,∆)

|Ef [s−(m+2α)
i−1 − s−(m+2α)]| ≤ Cδndm+2α

n ,

1
n

n∑
i=1

sup
f∈Σ̃(α+ν,∆)

Ef (sν
i−1 − sν)2 ≤ Cδnd−2ν

n

and, besides, the relations (9) hold true and for some
β ∈ (0, 1]

1
n

n∑
i=1

sup
f∈Σ̃(α+ν,∆)

Ef [s2ν
i−1 + s

−(m+2α)
i−1 ]

≤ Cδn[(dm+2α
n v−1

n ) ∧ (d−2ν
n ∆−2

n )] ∧ (δβ−1
n dm+2α

n ).

This definition allows the dependence of the limits
s ∈ (0,∞) on the unknown function f.

We introduce the sets Θ̃(n) = Θ̃n(H̃(Σ),B),
Θ̃∗ν(n) = Θ̃n(H̃∗(Σ∗),B∗ν), Θ̃∗(n) = Θ̃n(H̃∗(Σ̃),B∗),
where H̃(Σ) = H̃(H, S(Σ)), H̃∗(Σ) = H̃(H, S∗(Σ)).

Define for all kernels K(·) ∈ B∗ν the following set

Σ∗∗(α+ν,∆) = {f ∈ Σ(α+ν,∆) : f(x) 6= 0, ω̃2
f (x) 6= 0}.

It will be observed that the optimal bandwidth ho

belongs to all the sets H̃(Σ∗), H̃(Σ∗∗), H̃∗(Σ∗), H̃∗(Σ∗∗).
We prove that the proposed estimation procedure is

sharp optimal in the adaptive sense over the class Θ̃∗ν(n)
of the Bartlett kernel type estimators with random data-
driven bandwidth. Namely, in Section 4 (Theorem 4.1) the
following assertion for the normalized MSE u2

f,n(f (α)
a,n ) =

n
2ν

m+2(α+ν) u2
f (f (α)

a,n (x)) will be established:

lim
n→∞

inf
f
(α)
a,n∈Θ̃∗

ν(n)

sup
f∈Σ∗(α+ν,∆)

(copt
f )−1u2

f,n(f (α)
a,n ) = 1, (10)

where copt
f is the constant, defined in (5).

3. CONVERGENCE IN THE MEAN SQUARE

In this section we find the principal term of the MSE
u2

f (f (α)
a,n ) and of the bias bf (f (α)

a,n ) = Eff (α)
a,n − f (α)

a of
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estimators f
(α)
a,n ∈ Θ̃(n) and the sharp lower bound for the

MSE of estimators f
(α)
a,n ∈ Θ̃∗ν(n) in the sense of criterion

(10). The quantity copt
f in (10) is defined in (5).

Put bf,n(f (α)
a,n ) = n

ν
m+2(α+ν) bf (f (α)

a,n ), L1 = f(x)L,

L̃1 = s−(m+2α)L1, L̃2 = sνωf (x).

Theorem 3.1. Assume that f ∈ Σ(α+ν, ∆) for some ν ≥ 1
and f (α)

a,n ∈ Θ̃(n), n ≥ 1. Then we have, as n →∞ :

1◦. for the MSE u2
f (f (α)

a,n ) of estimator f
(α)

a,n the relations

u2
f (f (α)

a,n ) =
L̃1

nvm+2α
n

+ v2ν
n L̃2

2 + o

(
v2ν

n +
1

nvm+2α
n

)
and

sup
f∈Σ̃(α+ν,∆)

sup
f
(α)
a,n∈Θ̃∗(n)

|u2
f,n(f (α)

a,n )− d−(m+2α)
n L̃1

−d2ν
n L̃2

2| = o(1)
hold true;

2◦. for the bias bf (f (α)
a,n ) the following relations

bf (f (α)
a,n ) = vν

nL̃2 + o(vν
n)

and
sup

f∈Σ̃(α+ν,∆)

sup
f
(α)
a,n∈Θ̃∗(n)

|bf,n(f (α)
a,n )− dν

nL̃2| = o(1)

hold;

3◦. the equality

sup
f∈Σ∗

1(α+ν,∆)

| inf
f
(α)
a,n∈Θ̃∗

ν(n)

u2
f,n(f (α)

a,n )− copt
f | = o(1) (11)

is fulfilled;

4◦. the following inequality

lim
n→∞

inf
f
(α)
a,n∈Θ̃∗

ν(n)

sup
f∈Σ∗(α+ν,∆)

(copt
f )−1n

2ν
m+2(α+ν) u2

f (f (α)
a,n ) ≥ 1

is valid.

It follows from Theorem 3.1 that the bandwidth struc-
ture h̃ ∈ H̃(Σ) yields the best possible rate of con-
vergence of the MSE for the Bartlett kernel estimators
for f ∈ Σ(α + ν, ∆) (see Bartlett (1963), Devroye and
Györfi (1985), Epanechnikov (1969) and Politis (2003)).
The proper choice of the bandwidth h̃ ∈ H̃∗(Σ∗) gives the
minimal asymptotic value copt

f , defined by (5) for the MSE
in the sense of the equality (11), which can be considered
as an criterion as well. Assertion 4◦ of Theorem 3.1 gives
the lower bound for the risk function in criterion (10).

4. CONSTRUCTION OF OPTIMAL KERNEL
ESTIMATORS

In this section we construct an adaptive variant of
the optimal bandwidth (7) and the corresponding kernel
estimator of unknown derivative f

(α)
a (x). We show, that

the proposed estimator is optimal in the sense of criteria
(10) and (11) (see (14) and (15) below).

In order to obtain these optimal kernel estimators, first
we construct an estimator for the function s = sopt(x),

defined in (8). To this end, we will use non-parametric
kernel estimators for the functions f(x) and f (α+ν)(x).

4.1 Pilot estimators of f(x) and f (α+ν)(x)

Define f̂i(x) and f̂
(α+ν)
i (x) the estimators of the type

(6) with a kernel K(·) ∈ B0 and a known non-random
bandwidth hn = (n−1∆−2

∗ (n))
1

m+2(α+ν) , where ∆∗(n) is
a known positive function, satisfying the following condi-
tions:

lim
n→∞

∆∗(n) = 0, lim
n→∞

∆2
∗(n) · n

1
m+2(α+ν) > 0.

Then for f ∈ Σ(α + ν,∆)

Ef |f̂i(x)− f(x)|2 = o
(
∆̃2

i

)
as i →∞, where ∆̃2

i = ∆2
∗(i) + ∆2(Ahi) and for all i ≥ 1

sup
f∈Σ̃(α+ν,∆)

Ef |f̂i(x)− f(x)|2 ≤ C∆̃2
i ;

Ef |f̂ (α+ν)
i,a+bk(ν)(x)− f

(α+ν)
a+bk(ν)(x)|2 = O

(
∆̃2

i

)
, k = 1,m

as i →∞, and for all i ≥ 1, k = 1,m

sup
f∈Σ̃(α+ν,∆)

Ef |f̂ (α+ν)
i,a+bk(ν)(x)− f

(α+ν)
a+bk(ν)(x)|2 ≤ C∆̃2

i .

The estimators f̂i(x) are assumed to be constructed by
nonnegative kernels and are positive for all i ≥ 1.

Define projections f̃i(x) and ω̃f,i(x) of f̂i(x) and
ω̂f,i(x), where

ω̂f,i(x) =
(−1)ν

ν!

m∑
k=1

T ν
k f̂

(α+ν)
i,a+bk(ν)(x),

on the interval [γi,Γi] by the formulae

f̃i(x) = (f̂i(x) ∧ Γi) ∨ γi,

ω̃f,i(x) = sign(ω̂f,i(x)) · [(|ω̂f,i(x)| ∧ Γi) ∨ γi].
Here (γi)i≥1 and (Γi)i≥1 are known monotonic sequences
of positive numbers, decreasing to zero and unboundedly
increasing respectively, which satisfy, as i → ∞, the
following conditions:

Γi = O(ln ∆̃−1
i ), γ−1

i = O(ln ∆̃−1
i ).

For the function ∆ = ∆γ and some known γ∗ > 0 we
can put

∆∗(i) =
1

lnγ∗ i
, ∆̃2

i =
1

ln2γ∗ i
+

1
ln2γ i

and Γi = γ−1
i = ln ln(i + 1), i ≥ 1.

4.2 Estimators of sopt(x)

We specify the estimators s∗i for the function s =
sopt(x) in the definition (7) of the optimal bandwidth ho

in the form:

s∗i = c∗

(
f̃i(x)

ω̃2
f,i(x)

) 1
m+2(α+ν)

,

where

c∗ =
(

Lo(m + 2α)
2ν

) 1
m+2(α+ν)

.
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The following lemma concerns the basic properties of the
estimator s∗i .

Denote Γi = (γ−1
i Γi)3, ∆i = ∆̃i ·Γi, i ≥ 1. It should be

noted, that for ∆ = ∆γ we can put Γi = ln6 ln(i+1), i ≥ 1.

Lemma 4.1. The estimator s∗i of the function sopt(x) has
the properties:

1◦. for all i ≥ 1
c∗γ∗i ≤ s∗i ≤ c∗Γ∗i ,

γ∗i = (γiΓ−2
i )

1
m+2(α+ν) , Γ∗i = (γ−2

i Γi)
1

m+2(α+ν) ;

2◦. if f ∈ Σ∗∗(α + ν, ∆) for some ν ≥ 1, then

– for all integer k = −(m + 2(α + ν)),m + 2(α + ν)

Ef [(s∗i )
k − sk

opt]
2 = O

(
∆

2

i

)
as i →∞,

– for all i ≥ 1

sup
f∈Σ∗(α+ν,∆)

Ef [(s∗i )
k − sk

opt]
2 ≤ C∆

2

i .

4.3 Optimal adaptive bandwidth and density estimators

Now we define the sequence h∗ = (h∗i−1,n)i,n≥1 as
follows

h∗i−1,n = n−
1

m+2(α+ν) s∗i−1, s∗0 = 1 (12)

and the corresponding kernel estimator f
(α),∗
a,n (x) of f

(α)
a (x)

as

f (α),∗
a,n (x) =

1
n

n∑
i=1

1
(h∗i−1,n)m+α

(Ko)(α)
a

(
x− εi

h∗i−1,n

)
. (13)

Theorem 4.1 claim the asymptotic optimality of the
bandwidth selector (12) and the estimator (13) in the sense
of criteria (10) and (11).

Theorem 4.1.
1◦. The estimator f

(α),∗
a,n is optimal:

— in the sense of criterion (11)

lim
n→∞

sup
f∈Σ∗(α+ν,∆)

|u2
f,n(f (α)

a,n )− copt
f | = 0, (14)

where the quantity copt
f is defined by formula (5) and for

the bias bf (f (α),∗
a,n ) we have

lim
n→∞

sup
f∈Σ∗(α+ν,∆)

|bf,n(f (α),∗
a,n )− sν

optωf (x)| = 0;

— in the sense of criterion (10)

lim
n→∞

sup
f∈Σ∗(α+ν,∆)

(copt
f )−1u2

f,n(f (α)
a,n ) = 1; (15)

2◦. the equality (10) holds true:

lim
n→∞

inf
f
(α)
a,n∈Θ̃∗

ν(n)

sup
f∈Σ∗(α+ν,∆)

(copt
f )−1u2

f,n(f (α)
a,n ) = 1.

Remark 4.1. We have proved also the properties of uniform
asymptotic normality and almost sure convergency for the
optimal estimators (13) and for the adaptive estimators
f

(α)
a,n (x) from some classes of estimators, defined similarly

to introduced above.
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