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              Abstract:  Operative methods of testing the covariance matrix of the innovation sequence of the Kalman 

filter are proposed. The quadratic form of the random Wishart matrix is used in this process as monitoring 
statistic, and the testing problem is reduced to the classical problem of minimization of a quadratic form on 
the unit sphere. As a result, two algorithms for testing the covariance matrix of the innovation sequence are 
proposed. In the first algorithm, the sum of all the elements of the matrix is used for the scalar measure of 
the Wishart matrix being tested, while in the second algorithm the maximal eigenvalue of this matrix is 
used. In the simulations, the longitudinal and lateral dynamics of the F-16 aircraft model is considered, and 
detection of pitch rate gyro failures, which affect the covariance matrix of the innovation sequence, are 
examined.  Some recommendations for the fastest detection of failure are given. 
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1. INTRODUCTION 
 

The problem of detection, in real time, of faults in systems of 
estimation appears in many problems of navigation and 
control (Golovan and Mironovskii, 1993;   Chen and Patton,  
1999; Hajiyev and Caliskan, 2003). Abnormal 
measurements, sudden shifts appearing in the measuring 
channel, faultiness of measuring devices, changes in 
statistical characteristics of noises of an object or of 
measurements, malfunctions in the computer, and also a 
sharp change in the trajectory of a control process, etc. 
should be enumerated among these faults. 
 
In real situations of exploiting an object, the problem occurs 
of operative detection of such changes in order to 
subsequently correct estimators or to make timely decisions 
on the necessity and character of control actions with respect 
to the process of technical exploitation of the object. Under 
this process, different methods of control and diagnostics are 
used, a brief survey of these methods are given in (Hajiyev 
and  Caliskan, 2003). 
 
In this direction of studies, it is necessary to mention the 
theory of diagnostics of a dynamic system by the innovation 
sequence of the Kalman filter, which has been extensively 
developed in recent years. The advantages of these methods 
are as follows: they provide the supervision of the 
correctness of the result obtained by current working input 
actions, they do not require a priori information on the 
values of changes in the statistical characteristics of the 
innovation sequence in the case of fault; they allow one to 
solve the fault detection problem in real time; they require 
small computational expenditures for their realizations since 

they do not increase, in contrast to the most algorithmic 
methods, the dimension of the initial problem. 
 
As is known (Mehra and  Peschon , 1971) in the case when 
a system is normally operated, the normalized innovation 
sequence in the Kalman filter compatible with the model of 
dynamics is the white Gaussian noise with zero mean and 
identity covariance matrix. The faults appearing in the 
system of estimations lead to the changes in these statistical 
characteristics of the normalized innovation sequence. 
Therefore, in this case, the fault detection problem is 
reduced to the problem of fastest detection of the deviation 
of these characteristics from nominal. 
 
The methods of testing the correspondence between the 
innovation sequence and the white noise and of revealing 
the change of its expectation are based on the classical 
statistical methods and are considered in detail in the 
literature (Willsky, 1976; Himmelblau, 1978) therefore, it 
shall not be concentrated on testing these characteristics. 
 
Testing, in real time, the covariance matrix of the 
innovation sequence of the Kalman filter turns out to be 
very complicated and not well developed, since there are 
difficulties in the determination of the confidence domain 
for a random matrix. Moreover, the existing methods of 
high-dimensional statistical analysis (Kendall and Stuart, 
1976; Anderson, 1984) usually lead to asymptotic 
distributions; this sharply diminishes the operativeness of 
these methods. In practice, therefore, one makes use of  a 
scalar measure of this matrix such as the trace (Mehra and  
Peschon, 1971), the sum of the matrix elements, 
generalized variance (determinant), the maximal eigenvalue 
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of a matrix, etc., each characterizing one or another 
geometrical parameter of the correlation ellipsoid. Although 
the trace of the sample covariance matrix is the easiest to 
check, it might lead to incorrect decisions at detection of 
faults, because it disregards the off-diagonal matrix 
elements. The method of testing the covariance matrix of the 
innovation sequence proposed in (Gadzhiev, 1992) on the 
basis of using the statistics of the ratio of two quadratic 
forms, whose matrices are reversed sample and theoretical 
covariance matrices, is free from the above-mentioned 
shortcoming. Nevertheless, the results obtained in 
(Gadzhiev, 1992) are valid only in the case where the 
reversed matrices which enter the expression of the 
controlled statistics are nonsingular. 
 
In the present paper the sum of all the elements and the 
maximal eigenvalue of the matrix are used for the scalar 
measure of the Wishart matrix being tested. In contrast to 
(Gadzhiev, 1992), the procedure of matrix reversing is 
excluded from the testing algorithm. 
 
 

2. STATEMENT OF THE PROBLEM 
 

Let us consider a class of systems described by differential 
equations of the form 
 

)(),1()(),1()1( kwkkGkxkkkx +++Φ=+         
               )()()()( kVkxkHkz += ,                                     (1)   
 
where ( )x k  is the n-dimensional state vector of the system, 

( 1, )k kΦ +  is the transition matrix of order nxn of the 
system, ( )w k  is the random n-dimensional vector of system 
noises, ( 1, )G k k+  is the transition matrix of system noises 
of order nxn, ( )z k  is the s-dimensional measurement vector, 

( )H k  is the measurement matrix of the system of order sxn, 
( )v k  is the random s-dimensional vector of measurement 

noises. It is assumed that the random vectors ( )w k , ( )v k , 
and (0)x  are mutually independent white Gaussian 
processes with zero expectations and covariance matrices 
defined by the relations: [ ( ) ( )] ( ) ( )TE w k w j Q k kjδ= , 

[ ( ) ( )] ( ) ( )TE v k v j R k kjδ= , [ (0) (0)] (0)TE x x P= , where 
( )kjδ  is the Kronecker symbol. 

 
Under the above-mentioned a priori information, the 

estimator 
^
( / )x k k  of the state vector and the covariance 

matrix of errors ( / )P k k  are found with the help of the 
optimal Kalman filter (Sage and Melsa, 1971). Moreover, if 
the optimal filter is normally operating, then the normalized 
innovation sequence 

       
~

1/ 2( ) [ ( ) ( / 1) ( ) ( )]
[ ( ) ( ) ( / 1)]

Tv k H k P k k H k R k
z k H k x k k

−= − +
× − −

            (2) 

is a white Gaussian noise with zero mean and identity 
covariance matrix (Mehra and  Peschon , 1971): 

~
[ ( )] 0E v k = , ~

~ ~
[ ( ) ( )] ( )

T

v
E v k v j P I kjδ= = , 

where 
^
( / 1)x k k −  is the extrapolation value by one step, 

( / 1) ( , 1) ( 1/ 1) ( , 1)

( , 1) ( 1) ( , 1)

T

T

P k k k k P k k k k

G k k Q k G k k

− = Φ − − − Φ −

+ − − −
 

 is the covariance matrix of extrapolation errors, 
( 1/ 1)P k k− −  is the covariance matrix of estimation errors 

in the preceding step, I  is the identity matrix. 
 
The changes in the properties of the system or 
characteristics of perturbations (faults of measuring 
devices, abnormal measurements, changes in statistical 
characteristics of noises of the object or of measurements, 
etc) leading to a change in the covariance matrix of the 
innovation sequence (2) are considered. 
 
It is of interest to develop an operative method of testing 
the covariance matrix of sequence (2).  
 

3. ALGORITHM OF SOLUTION 
 
Let us introduce the following two hypotheses: oγ , the 
estimation system is normally operating; 1γ , there is a fault. 
Let us write the expression for the sample covariance 

matrix of the sequence 
~
( )kν : 

                
^ ~ ~ ~ ~

1

1( ) [ ( ) ( )][ ( ) ( )]
1

k
T

j k M

S k j k j k
M

ν ν ν ν
− −

= − +

= − −
− ∑             (3)

 
where  

                        
~ ~

1

1( ) ( )
k

j k M

k j
M

ν ν
−

= − +

= ∑                             (4)

 
is the sample mean; M  is the number of realizations used 
(the width of the sliding window). 
 
As is known (Anderson, 1984), under the validity of the 
hypotheses oγ , the random matrix  

                             
^

( ) ( 1) ( )A k M S k= −                              (5)
 
has the Wishart distribution with M  degrees of freedom 
and is denoted by    ( , )sW M Pν : 
 

          ~ ( , )sA W M Pν , (6) 
 
where s and Pν  dimension and covariance matrix of the 
normalized innovation sequence ν  respectively. In testing 
statistical hypotheses, the testing of the Wishart statistics 
(6) is complicated and not well developed in view of the 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7198



difficulty of constructing the confidence domain for a 
random matrix. In practice, one of the scalar measures of the 
above-mentioned matrix is usually applied for testing 
random matrices. The choice of one or another scalar 
measure as the monitoring statistic for a particular problem 
being solved depends on the basic indicators of supervision 
(the sensitivity, the inertia, the volume of computational 
expenditures, etc) The experience and intuition of a 
researcher is also of importance. In what follows, the 
construction of confidence intervals for the sum of all 
elements of the matrix ( )A k  and also for the maximal 
eigenvalue of this matrix are considered. Given below are 
new results for distribution (6). 
 
Theorem 1. Let ~ ( , )sA W M Pν . Then the ratio of the sums 
of all the elements of the matrices A  and Pν  is distributed 

as 2 ( )kχ , that is 

                    1 1 2

1 1

~

s s

ij
i j

Ms s

ij
i j

a

χ
σ

= =

= =

∑∑

∑∑
                       (7)  

 
where ija  and ijσ  are elements of the matrices A  and Pν , 
respectively. 
 
Proof. As is known (Rao, 1965), if a random matrix A  
obeys the Wishart distribution ( , )sW M Pν  and L  is a fixed 
vector, then the quadratic form 

 
                    2 2~T

L ML AL σ χ , (8) 

where  2 T
L L P Lνσ = . 

 
The unit vector (1,1,...1)T

sI =  is used as the vector L . In this 
case expression (8) can be represented in the form 

                  

2~
T
s s

MT
s s

I AI
I P Iν

χ                                   (9) 

 

Allowing for 
1 1

s s
T
s s ij

i j

I AI α
= =

=∑∑  and  
1 1

s s
T
s s ij

i j

I P Iν σ
= =

=∑∑ , 

the sought expression (7) follows from Eq. (9). 
 
Corollary 1. If ~ ( , )sA W M I , where I  is the unit matrix, 
then the sum of all the elements of the matrix A  is 

 

                2

1 1

~
s s

ij M
i j

a sχ
= =
∑∑  (10) 

 
Proof. Substituting the unit matrix I  for Pν  in (9) with 

allowance for T
s sI II s= , the required expression (10) is 

obtained. 

Theorem 2. If a random matrix A  obeys the Wishart 
distribution ( , )sW M Pν  and optL  is the eigenvector 
corresponding to its maximum value, then the maximum 
eigenvalue max ( )Aλ  of this matrix obeys the following 
distribution law: 

              2
max ( ) ~ T

opt opt MA L P Lνλ χ                      (11)  
 

Proof. As is known (Rao, 1965), if  ~ ( , )sA W M Pν  and L  
is a fixed vector, then the following relation holds 

 
                        2~T T

Ml L AL L P Lν χ=      (12)                 
  
The vector L  that maximizes l  subject to the condition 

1TL L =  is sought, that is, we pose the problem of 
maximizing the quadratic form (11) on the unit sphere. The 
solution to this problem is achieved on the eigenvectors of 
the matrix of the quadratic form, that is, in this case the 
optimum vector optL  is the eigenvector of the matrix A  
corresponding to its maximum value. Since matrix A  is 
symmetric, the maximum value of the quadratic form 

TL AL  (on condition that 1TL L = ) is equal to the largest 
eigenvalue of the matrix A  (Horn and Johnson,  1986), that 
is 

              max
1

max ( )
T

T

L L
L AL Aλ

=
=  (13) 

 
Invoking (12) and (13), we see that 

2
max ( ) ~ T

opt opt MA L P Lνλ χ , which was to be proved. 
 
Corollary 2. If ~ ( , )sA W M I , then the maximum 

eigenvalue of the matrix A  obeys the distribution law 2
Mχ , 

that is, 
       2

max ( ) ~ MAλ χ                                    (14) 
 

Proof. Indeed, substituting the unit matrix I  for Pν  in (11) 

and allowing for the normalization condition 1TL L = , we 
obtain the sought expression (14). 
 
By selecting α level of significance as, 
 
                        2 2

,{ }MP αχ χ α> = ;     0 1α< <  

So from the equation above, the threshold value 2
,Mαχ  will 

be determined. Under the validity of the hypotheses 1γ , the 
left hand side of expression (14) tends to exceed the 
threshold value 2

,Mαχ . Then the decision rule on the current 
state of the system of estimation with respect to the 
introduced hypotheses will be written in the form 

2
max ,: ( ) ( )o opt Ml k k αγ λ χ= ≤         fault free                              

1 max: ( )kγ λ > 2
,Mαχ                        with fault     (15) 
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where max ( )kλ  is the maximal eigenvalues of the matrix 
( )A k . Since ( )A k is a positive definite matrix, its maximal 

eigenvalues is equal to the spectral radius ( )A kρ : 

max( ) max{| ( ) |, 1, } ( )A ik k i s kρ λ λ
−

= = =             (16)      
 
Thus, from the computational point of view the supervision 
method of the estimation system considered is reduced to 
comparing the values of the maximal eigenvalues (spectral 
radius) of the above-introduced Wishart matrix (5) 
calculated on the basis of a representative sample and 2

,Mαχ , 
and making a decision on the basis of the decision rule (15). 
 
On the basis of the results obtained, two fault detection 
algorithms are proposed. The first algorithm is based on the 
calculation of statistic (10) i.e., for the fault detection the 
sum of all elements of the matrix ( )A k  is used. The second 
fault detection algorithm is based on the computation of the 
maximal eigenvalue of the matrix )(kA . 
 

4. EKF  FOR THE  F-16  AIRCRAFT  MODEL  
ESTIMATION 

 
The technique for failure detection is applied to an unstable 
multi-input multi-output model of an AFTI/F-16 fighter. The 
fighter is stabilized by means of a linear quadratic optimal 
controller. The control gain brings all the eigenvalues that are 
outside the unit circle, inside the unit circle. It also keeps the 
mechanical limits on the deflections of control surfaces. The 
model of the fighter is as follows (Lyshevski, 1997): 
 

)())(()()()1( kwkxFkBukAxkx +++=+       (17)                                  

The state variables are: [ ]Trpqvx ψφβθα ,,,,,,,,= , 
where, v is the forward velocity, α is the angle of attack, q is 
the pitch rate, θ  is the pitch angle, β is the side-slip angle, p 
is the roll rate, r is the yaw rate, φ is the roll angle, and ψ is 
the yaw angle, w(k)  is the system noise with zero mean and  
the correlation matrix E[w(k)wT (j)]=Q(k)δ(kj). The fighter 
has six control surfaces and hence six control inputs are: 

[ ]RCFLFRHLHRu δδδδδδ ,,,,,= , where δHR  and δHL  are the 
deflections of the right and left horizontal stabilizers, δFR  
and  δFL  are the deflections of the right and left flaps, δC  
and  δR  are the canard and rudder deflections. A, B, and F(x) 
are calculated for the sampling period of 0.03 s.  
 
Let us define the estimated vector as: 
 

[ ])(),(),(),(),(),(),(),(),()( kkkrkpkkkqkkkxT ψφβθαν=  

 
and apply the Kalman filter to estimate this vector. The 
measurement equations can be written as:  
 

z(k)=Hx(k)+v(k),                            (18)                                      
 

where H is the measurement matrix, which is 9× 9 unit 
matrix, v(k)-measurement noise with zero mean and the 

correlation matrix E[v(k)vT(j)]=R(k)δ(kj). By using quasi-
linearization method let us linearize the equation (17): 

                
ˆ ˆ ˆ ˆ( ) ( 1) ( 1) ( ( 1)) ( 1) ( 1)

ˆ ˆ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)x

x k Ax k Bu k F x k A x k x k

F k x k x k B u k u k w k

= − + − + − + − − − +⎡ ⎤⎣ ⎦
− − − − + − − − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

                

(19) 

where  
)1(ˆ −

⎥⎦
⎤

⎢⎣
⎡
∂
∂

=
kx

x x
FF . 

The following recursive EKF algorithm for the state vector 
estimation of the F-16 fighter motion is obtained in 
(Caliskan and Hajiyev, 2003):  
 

)()()())1(ˆ(

)1(ˆ)1(ˆ)(ˆ
1 kkRHkPkxF

kuBkxAkx
T ν×+−

+−+−=
−

                                

 [ ]))1(ˆ()1(ˆ)1(ˆ)()( −+−+−−= kxFkuBkxAHkzkν                             

[ ] )()()()()()(
1

kHMHkHMkRHkMkMkP TT −
+−=  

TT
xx

T
u

T

GkGQkFkPkF

BkBDAkAPkM

)1()1()1()1(

)1()1()(

−+−−−

+−+−=
                     (20)            

        
where M(k) is the covariance matrix of the extrapolation 
error, Du is the covariance matrix of the control input error.  
 

5. SENSOR FAULT DETECTION 
SIMULATION RESULTS 

 
Let us show that, on the basis of the algorithms for testing 
the covariance matrix of the innovation sequence proposed 
in this paper, one can in a timely manner detect the faults 
appearing in the measuring channel. Measurements were 
processed using the Extended Kalman filter (20). The 
expressions for the innovation sequence and the normalized 
innovation sequence of EKF respectively are: 
 

( )ˆ ˆ ˆ( ) ( ) ( 1) ( 1) ( 1)k z k H Ax k Bu k F x kν ⎡ ⎤= − − + − + −⎣ ⎦      (21)                

1
2( ) ( ) ( ) ( )Tk R k HM k H kν ν

−
⎡ ⎤= +⎣ ⎦                                 (22)                

To detect failures changing the covariance matrix of the 
innovation sequence the above statistics (10) and (14) are 
used. In the simulations, 20M = , s=9, and 0.05α =  are 
taken, and the threshold values 2

,Mαχ  and 2
,Ms αχ  are 

found as 31.41 and 282.69. Obtained results are presented 
in Fig.1-6. Figures 1 and 2 shows respectively admissible 

bounds of the statistics 
1 1

( ) ( )
s s

a ij
i j

k a k
= =

Σ =∑∑  and 

max ( )kλ and the plots of their behaviors in the case of 
normal functioning of the all measurement channels. As is 
expected, at all points, ( )a kΣ <282.69 and max ( )kλ < 31.41. 
The corresponding normalized innovation sequence in the 
third measurement channel (pitch rate gyroscope channel) 

( )q kν  is shown in Fig. 3. The graphs of the normalized 
innovation sequences in the other measurement channels 
are very similar to the ones in Fig.3. 
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Fig.1. Graph of the statistic ( )a kΣ   for normal operating of     

the measurement channels    

 
Fig.2. Graph of the statistic  max ( )kλ  for normal operating 

of the measurement channels   

 
Fig.3. Behaviour of the ( )q kν  in the case of normal 

operating of the measurement channels    

To verify efficiency of proposed algorithms, beginning 
from the step k=30, a fault in the third measurement 
channel (pitch rate gyroscope fault) is simulated (the noise 
variance in the pitch rate gyroscope is changed). The 
simulation results corresponding to this case are presented 
in Fig.4-6. Figure 4 shows that the value of ( )a kΣ  
increases after the 30th step and intersects its threshold at 
the step k=95. As a result, based on the decision rule (16), 
estimation system failure is noted. 
 

 
Fig.4. Behaviour of the statistic ( )a kΣ  in case of changes 

in noise variance in the pitch rate gyroscope 
 

 
Fig.5. Behaviour of the statistic max ( )kλ  in case of changes 

in noise variance in the pitch rate gyroscope 
 
Figure 5 shows behaviour of the statistic max ( )kλ  in case of 
changes at the 30th step in noise variance in the pitch rate 
gyroscope. Plots show that the value of the statistic 

max ( )kλ  in this case after the 30th step grows abruptly, and 
at the step k=44 it exceeds its admissible bound. As a 
result, using the decision rule (15) the fault in the 
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estimation system is detected. The behavior of the 
appropriate normalized innovation sequences ( )q kν is 
presented in the Fig. 6. 

 
    Fig.6. Behavior of the normalized innovation sequence 

( )q kν  in case of changes in noise  variance in the 
pitch rate gyroscope 

 
The analysis of the results obtained shows that the statistic 

max ( )kλ  is more effective in the sense of the fastest 
detection of a fault.  
 
The introduction of developed fault detection algorithms 
does not distort the results of the estimates of the filter and 
has no influence on their accuracy. On the whole, the 
simulation results justify the theoretical calculation obtained 
and show the practical applicability of the proposed fault 
detection algorithms.  
 

6. CONCLUSION 
 
In this paper operative methods of testing the covariance 
matrix of the innovation sequence of the Kalman filter are 
proposed. The approach proposed under this process is based 
on the use of a quadratic form of the random Wishart matrix 
(5), which under the normal operation of the filter has the 

2χ  distribution. The optimization of quality of testing is 
reduced to the classical problem of maximization of a 
quadratic form on the unit sphere. The solution of this 
problem is attained on the eigenvector of the matrix of this 
quadratic form (in this case, the Wishart matrix) 
corresponding to the maximal eigenvalues of this matrix. 
 
An extended Kalman filter has been developed for nonlinear 
flight dynamic estimation of an F-16 fighter. Failures in the 
sensors affect the characteristics of the innovation sequence 
of the EKF. The failures that affect the variance of the 
innovation sequence have been considered. The theoretical 
results are confirmed by the simulations carried out on a 
nonlinear dynamic model of the F-16 aircraft. 
 

A lag (delay time) of fault detection in this case depends on 
the number M  of realizations used; this characteristic 
being deteriorating with its increase. On the other hand, a 
too small value of M  causes often false failures. The value 
of  is specified heuristically, since a theoretically 
substantiated technique for choosing  M  does not exist at 
present. 
 
The algorithms proposed in this paper do not require a 
priori information on the change of the covariance matrices 
of the innovation sequences in the case of a fault and can be 
used in the problems of fault detection and fault diagnosis 
of dynamic systems. 
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