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Abstract: Maintenance and diagnosis of complex systems are common activities in the
industrial world. Technological advances have led to a continuously increasing complexity of
industrial systems. This complexity, which is due to an increasing number of components reduces
in turn the reliability of plants. Therefore, fault diagnosis is becoming a growing field of interest.
But fault diagnosis relies on sensors: efficient fault diagnosis procedures require a relevant sensor
placement. This paper presents fundamental results for sensor placement based on diagnosability
criteria. These results contribute to the design of sensor placement algorithms, which satisfies
diagnosability specifications.

Keywords: fault diagnosis, diagnosability, sensor placement

1. INTRODUCTION

Sensor placement decisions depend on expected objectives.
For instance, in control theory, the sensor placement is
used to provide sufficient information for the control of sys-
tems. Criteria deal with observability and controllability of
the variables. Madron and Veverka [1992] has proposed a
sensor placement method which deals with linear system.
This method makes use of the Gauss-Jordan elimination
to find a minimum set of variables to be measured. This
ensures the observability of variables while simultaneously
minimizing the cost of sensors. In this theory, the ob-
servable variables include the measurable variables plus
the unmeasured but deductible variables. Another method
for sensor placement has been proposed in Maquin et al.
[1997]. This method aims at guaranteeing the detectability
and isolability of sensor failures. The proposed method is
based on the concept of redundancy degree in a variable
and the structural analysis of the system model. The
sensor placement can be solved with a matricial analysis of
a cycle matrix or using the technique of mixed linear pro-
gramming. Commault et al. [2006] has proposed a method
of sensor location. In this method, they defined a new set of
separators (Irreducible Input Separators), which generates
sets of system variables in which additional sensors must
be implemented to solve the considered problem.

However, in fault diagnosis, the goal of sensor placement
should be to satisfy detectability and diagnosability prop-
erties. Detectability is the possibility of detecting a fault
on a component and diagnosability is the possibility of
identifying a fault on a component without this creating
ambiguity with any other fault.

Travé-Massuyès et al. [2001] has proposed a method based
on consecutive additions of sensors, which takes into ac-
count diagnosability criteria. The principle of this method

is to analyze the physical model of a system from a
structural point of view. This structural approach is based
on Analytical Redundancy Relations (ARR) Cassar and
Staroswiecki [1997], which can be obtained from combi-
nations of model constraints using bipartite graph Blanke
et al. [2003] or elimination rules Ploix et al. [2005], and
on the corresponding signature table Patton and Chen
[1991]. In a signature table, rows and columns represent
respectively, the set of analytical redundancy relations and
the set of considered faults. However, this method requires
an a priori design of all the ARR for a given set of sensors.

This paper presents results for the design of sensor place-
ment algorithms. Thanks to these results, the sensor place-
ment satisfying diagnosability objectives becomes possible
without designing ARR a priori. It is an important feature
since it is no longer necessary to design all the possible
ARR assuming all the variables are measured.

2. PROBLEM FORMULATION

In the following, the set of variables appearing in a con-
straint k is denoted: var(k) and the set of variables appear-
ing in the set of constraints K: var(K) =

⋃
k∈K var(k). A

system Σ can be described by a tuple (KΣ, CΣ). var(KΣ)
is the set of variables that models phenomena influenced
by Σ. The behavior is represented by constraints KΣ =
{. . . , ki, . . .} that establish relationships between variables
of var(KΣ). It can be represented by a structural ma-
trix MΣ, which is an incidence matrix representing the
application MΣ : var(KΣ) → KΣ. CΣ = {. . . , cj , . . .}
is a set of independent components constituting Σ. Each
constraint in KΣ models one component and, conversely,
a component can be modeled by at most one constraint:
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∀k ∈ KΣ, comp(k) ∈ CΣ
1 where comp(k) refers to the

component corresponding to the constraint k. Let us in-
troduce the concept of testable subsystem (TSS) and its
relationship with the concept of ARR.
Definition 1. Let K be a set of constraints and v a variable
in var(K) characterized by its domain dom(v). K is a
solving constraint set for v if using K, it is possible to
find a value set S for v such that S ⊂ dom(v). A solving
constraint set for v is minimal if there is no subset of K,
which is also a solving constraint set for v. A minimal
solving constraint set K for v is denoted: K ` v.
Definition 2. Let K be a set of constraints. K is testable
if and only if there are two distinct subsets K1 ⊂ K,
K2 ⊂ K such that K1 * K2 and K2 * K1, and a variable
v ∈ var(K) such that K1 ` v and K2 ` v. If this property
is satisfied, it is indeed possible to check if the value set
S1 deduced from K1 is consistent with the value set S2

deduced from K2: S1 ∩ S2 6= ∅.

This definition also applies to models containing ordinary
differential equations. Indeed, testable state space repre-
sentations, including state space observers, always have
equivalent parity space representations Staroswiecki et al.
[1991].

Adding any constraint to a testable set leads also to a
testable set of constraints. Only minimal testable sets are
interesting.
Definition 3. A testable set of constraints is minimal if
it is not possible to keep testability when removing a
constraint.

A global testable constraint that can be deduced from a
TSS is called ARR. Let RΣ = {. . . , rk, . . .} be the set
of all the testable subsystems that can be deduced from
KΣ according to Blanke et al. [2003], Ploix et al. [2005],
Staroswiecki and Declerck [1989]. Because of the one-to-
one relationships between constraints and components, no-
tions of detectability and discriminability can be extended
to constraints. Therefore, usual definitions Struss et al.
[2002] related to continuous systems can be extended from
faults to constraints. Let R be a set of TSS coming from
(KΣ, CΣ) 2 .
Definition 4. A constraint k ∈ KΣ is detectable (see
Struss et al. [2002]) in R if ∃ri ∈ R/k ∈ ri. By extension,
the constraints K ⊂ KΣ are detectable in R if ∀ki ∈ K, ki

is detectable in R.
Definition 5. Two constraints (k1, k2) ∈ K2

Σ are discrim-
inable (see Struss et al. [2002]) in R if: ∃ri ∈ R/k1 ∈
ri and k2 /∈ ri or if ∃rj ∈ R/k2 ∈ rj and k1 /∈ rj . By exten-
sion, the constraints of a set K ⊂ KΣ are discriminable in
R if: ∀(ki, kj) ∈ K2, ki and kj are discriminable in R with
ki 6= kj .

Obviously, non detectability of both constraints (k1, k2)
implies non discriminability of (k1, k2).
Definition 6. A constraint k ∈ KΣ is diagnosable (see
Struss et al. [2002]) in R if: it is detectable and if ∀kj ∈
(KΣ \ k), (k, kj) are discriminable in R. By extension, the

1 A component may also be modeled by several constraints but, for
the sake of simplicity, it has not been considered in this paper.
2 CΣ is not used at this stage.

constraints K ∈ KΣ are diagnosable in R if: ∀ki ∈ K, ki

are diagnosable in R.

In order to formulate the sensor placement problem, the
notion of terminal constraint has to be introduced.
Definition 7. A terminal constraint k is a constraint that
satisfies: card(var(k)) = 1. A terminal constraint usually
models a sensor or an actuator: var(k) is generally a mea-
sured or a controlled variable. It may also be a variable for
which the value is assumed (such ambiant temperature).
It is thus a major concept in sensor placement.

In fault diagnosis, sensor placement has to satisfy spec-
ifications dealing with detectability and diagnosability.
Because of the one-to-one relation between components
and constraints, what is true for components is also true
for constraints. Therefore, the components CΣ and the
corresponding constraints KΣ may be decomposed into
several sets:

• the set of components Cdiag / constraints Kdiag that
has to be diagnosable
• the set of subsets of components Cnodis = {. . . , Ci, . . .}

/ constraints Knodis = {. . . ,Ki, . . .} that have to be
non discriminable but detectable for each set Ci or
Ki

• the set of components Cnondet / constraints Knondet

that has to be non detectable

Specifications Cdiag, Cnondis and Cnondet of sensor place-
ment problems are meaningful if the two following prop-
erties are satisfied:

(1) Sets in specifications must not to overlap one each
other to make sense: constraint sets have to satisfy:
Cnondet ∩Cdiag = φ, ∀Ci ∈ Cnondis, Ci ∩Cnondet = φ,
∀Ci ∈ Cnondis, Ci ∩ Cdiag = φ and ∀(Ci, Cj) ∈
C2

nondis, Ci ∩ Cj = φ if Ci 6= Cj (no overlapping
property).

(2) The union of all the components appearing in Cdiag,
Cnondis and Cnondet has to correspond to CΣ: CΣ =
Cdiag ∪Cnondet ∪

⋃
Ci∈Cnondis

Ci (completeness prop-
erty).

If these properties are satisfied the specifications are qual-
ified as consistent in CΣ . Replacing components by cor-
responding constraints leads to the same properties for
specifications Kdiag, Knondis and Knondet to be consistent
in KΣ.

Satisfying the specifications requires information delivered
by sensors. Let Σ

′
represent the system Σ with the addi-

tional sensors. Σ
′

can be described by a tuple (KΣ′ , CΣ′)
where CΣ′ represents the components of system Σ plus
the additional sensors and KΣ′ represents the constraints
of system Σ plus the additional terminal constraints which
model the sensors. The sensor placement problem consists
in determining the additional terminal constraints in KΣ′

that lead to the satisfaction of the specification Kdiag,
Knondis and Knondet. Because of the relations between
constraints and components, the results can be extended
to components.

In the next sections, fundamental results are proposed for
the design of sensor placement satisfying diagnosability
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and detectability specifications. Algorithms are not de-
tailed in this paper.

3. PRELIMINARY CONCEPTS

Before deducing diagnosability properties of constraint
sets, some concepts have to be introduced.

3.1 Value propagation as a theoretical tool

According to definition 3, a TSS is a minimal set of
constraints K such that there exists a constraint k ∈ K
for which all the variables of var(k) can be instantiated,
starting from terminal constraints. An ARR corresponding
to a TSS can be seen in different ways. The most common
approach is to consider an ARR as a global constraint.
Another way is to think of an ARR as a complete value
propagation Fron [1994] w.r.t. variables i.e. a propagation
that leads to information about the consistency of a
set of constraints, including terminal constraints that
contain known data. This approach has been adopted as
a theoretical tool to develop proofs. Relationship between
value propagation and ARR is detailed in this section.

Let k1 and k2 be two constraints. The propagation of
a variable v between k1 and k2 is possible only if v ∈
var(k1)∩var(k2). The variable v is qualified as propagable
between k1 and k2. Consider a system, defined by KΣ =
{k1, k2, k3, k4, k5} with var(k1) = {v1, v3}, var(k2) =
{v1, v2}, var(k3) = {v2, v3}, var(k4) = {v2} and var(k5) =
{v3}. Terminal constraints k4 and k5 model sensors or
actuators. Each terminal constraint contains known data.
The set of all TSS that can be tested is represented by the
propagations drawn in figure 1.

Fig. 1. Set of propagations

A propagation starts by a terminal constraint, which
means that “a variable is equal to a known value”. In this
example, propagations start either with k4 or k5. Thanks
to these constraints, a value can be respectively assigned
to v2 and v3. Once values have been assigned to these
variables, new variables can then be instantiated. Prop-
agation continues until no more assignments are possible
because terminal constraints or instantiated variables have
been reached. The set of constraints that appears in a
propagation, corresponds to a testable subsystem. These
constraints can be combined into a unique global con-
straint named ARR. Depending on the constraints chosen
for propagating values, different ARR may be obtained
(see figure 1). In the continuation of this paper, value
propagation is implicitly used and appears in the proofs
of the different lemmas and theorems.

3.2 Some characteristics of constraint sets

The concept of linked constraints is introduced because it
is important regarding sensor placement. Indeed, discrim-
inability depends on this concept.

As mentioned in Blanke et al. [2003], the constraints of
a system Σ may be modeled by a non directed bipartite
graph (KΣ, var(KΣ), EΣ) where EΣ is the set of edges.
Each edge e = (k, v) models that v ∈ var(k) . Let us
introduce new definitions useful for sensor placement.
Definition 8. A set of constraints K ⊂ KΣ is intercon-
nected by a set of variables V ⊂ var(KΣ) iff there is
a tree (K,V,E) ⊂ (KΣ, var(KΣ), EΣ) with constraints
at extremities (see Bollobás [1998] for example), which
satisfies card(V ) = card(K)− 1.
Definition 9. A set of constraints K ⊂ KΣ is linked in KΣ

by a set of variables V ⊆ var(KΣ) iff K is interconnected
by V and iff the other constraints of KΣ (i.e. KΣ\K)
do not contain any variable of V . The variables of V
are called linking variables for K. They are denoted:
varlinking(K,KΣ).

The shape of a structural matrix dealing with linked
constraints is drawn in figure 2.

Fig. 2. Structural matrix of a constraint set, which is linked
by path

The concept of linked constraints is strongly connected
with discriminability.
Lemma 10. A set of constraints K ⊂ KΣ linked by a set
of variables V ⊂ VΣ is necessarily non discriminable.

Proof. Indeed,

(1) because variables in V only appear in the constraints
in K, the only way of propagating variables is to use
the constraints in K and the variables in V ,

(2) because there is a tree (K,V,E) ⊂ (KΣ, var(KΣ), EΣ)
with constraints at extremities, instantiating all the
variables in V involves at least the achievement of the
propagations defined by the tree.

Therefore, all the constraints are invariably found together
in TSS: K is non discriminable.

In order to improve the clarity of these explanations, let
us introduce the notion of stump variables.
Definition 11. A set of variables var(K) appearing in a
set of constraints K but not in the other constraints of
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KΣ (i.e. KΣ\K) are named stump variables in KΣ. They
are denoted: varstump(K,KΣ). For instance, the set of
variables V that links a set of constraints K belong to
the stump variables varstump(K,KΣ).

A set of constraints cannot be used to generate a TSS if
they are linked and if there are additional variables that
cannot be propagated. These constraints are qualified as
isolated. Detectability depends on this concept.
Definition 12. A set of several constraints K ⊂ KΣ is
isolated in KΣ by a set of variables V ⊂ var(KΣ) if they
are linked by V and if there is at least one variable in
var(K)\V that does not belong to other constraints of
KΣ (i.e. KΣ\K). If the set contains only one constraint,
the link condition disappears but the other remains.

The shape of a structural matrix dealing with isolated
constraints is drawn in figure 3.

Fig. 3. Structural matrix of a constraint set, which is
isolated by the set of variables V

The concept of isolated constraints is strongly linked with
detectability.
Lemma 13. A set of constraints K ⊂ KΣ isolated in KΣ

by V is necessarily non detectable.

Proof. The constraints K isolated in KΣ by V will
always come together in TSS because, by definition, they
are linked by V . Because of the fact that, in isolated
constraints, there is at least one additional variable in
var(K) which does not appear in other constraints (i.e.
KΣ\K), it is not possible to instantiate this value and,
therefore, this set of constraints cannot be involved into a
TSS: K is non detectable.

4. CONSTRAINT SET AND DIAGNOSABILITY
PROPERTIES

This section aims at setting up a direct link from sets of
constraints to detectability and diagnosability properties.
Firstly, it is obvious that adding additional constraints
connected to all the variables var(k) appearing in a
constraint k, ensures the diagnosability of k.
Lemma 14. Let k ∈ KΣ be a constraint. If additional ter-
minal constraints dealing with all the variables in var(k)
are added, then the constraint k is diagnosable.

Proof. Because there are additional terminal constraints
connected to each variable in V (k), a value can be assigned

for each variable. Consequently, there is one TSS contain-
ing k plus additional terminal constraints connected to
variables in var(k). Therefore, the constraint k ∈ K is
necessarily diagnosable because there is one TSS that does
not contain other constraints of KΣ (i.e. KΣ\{k}).

Lemma 14 can be directly applied to all the constraints of
a constraint set.
Corollary 15. If additional terminal constraints dealing
with all the variables var(K) of a constraint set K ∈ KΣ,
then each constraint k ∈ K is diagnosable.

In lemma 13, a relationship between isolated constraints
and the detectability property has been presented. The
next lemma generalizes the previous results.
Lemma 16. A sufficient condition for a subset of con-
straints K ⊂ KΣ to be non detectable is that there is
a tuple (K1, . . . ,Km) of m sets of constraints making up
a partition P(K) of K such that each Ki is isolated in
KΣ\

⋃
j<iKj (K1 is a limit case: it should be isolated in

KΣ).

Proof. The case of K1 has been discussed in lemma 13:
because the constraints in K1 are isolated in KΣ, they
are non detectable and therefore cannot be included in
TSS. Then, the remaining candidate constraints for TSS
belong to KΣ\K1. Because K2 is isolated in KΣ\K1, they
are non detectable. The reasoning can be extended to
any i. Consequently, the constraints in K =

⋃
iKi are non

detectable.

Figure 4 indicates the shape of a structural matrix of non
detectable constraints.

Fig. 4. Structural matrix of non detectable constraints

Consider, for example, a system modeled by the following
structural matrix:

v1 v2 v3 v4 v5 v6

k1 1 0 0 1 0 0
k2 0 1 1 0 1 0
k3 0 1 1 0 1 0
k4 0 0 0 1 0 1
k5 0 0 0 1 1 1

Assume that the set K = {k1, k2, k3} is required to
be non detectable. In this example, there exists a tuple
({k1} , {k2, k3}) such that each element Ki satisfies lemma

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5497



16. If there are no additional terminal constraints contain-
ing v1, v2 and v3, the subset K is non detectable.
Lemma 17. A sufficient condition for each set Ki ⊂ K
belonging to a set of m constraint sets K = {K1, . . . ,Km}
such that ∀Ki 6= Kj ,Ki ∩Kj = ∅, to be non discriminable
is that each Ki is linked by a set of variables Vi.

Proof. This lemma is a direct application of lemma 10 to
several sets of constraints.

Consider, for example, a system modeled by the following
structural matrix:

v1 v2 v3 v4 v5

k1 1 0 1 1 1
k2 1 1 1 1 0
k3 1 1 1 0 1
k4 0 1 1 0 0
k5 0 0 0 1 1

Assume that K = {k1, k2, k3, k4} is a constraint subset
that should be non discriminable. Because the constraints
k1, k2, k3 and k4 are linked by V = {v1, v2, v3}, lemma 17 is
satisfied. Therefore, k1, k2, k3 and k4 are non discriminable
provided that no additional terminal constraints contain a
variable of V .

The following theorem groups lemmas 14, 16 and 17.
Theorem 18. Let KΣ be a set of constraints and Knondet,
Knondis and Kdiag be the specifications of a sensor place-
ment problem consistent in KΣ. Sufficient conditions for
the specifications to be fulfilled are:

(1) there exists a tuple (K1, . . . ,Kp) of p sets of con-
straints making up a partition P(Knondet) of Knondet

such that each Ki is isolated in KΣ\
⋃

j<iKj (K1 is
a limit case: it should be isolated in KΣ) see figure 4.

(2) each set Ki belonging to Knondis = {K1, . . . ,Km}
such that ∀Ki 6= Kj ,Ki ∩ Kj = ∅, is linked by a
set of variables Vi in considering only the constraints
KΣ\Knondet

(3) Additional terminal constraints are added on the vari-
ables: Vcandidate = var(KΣ)\(varstump(Knondet,KΣ)
∪⋃

Kj∈Knondis
varlinking(Kj ,KΣ\Knondet)) (see figure

5).

Proof. The proof relies on the resulting structure of the
structural matrix, which directly stems from corollary 15
and lemmas 16 and 17. Note that point 2 could also be
stated for the whole set of constraints KΣ. However, it is
not useful to include non detectable constraints, which will
not appear in resulting TSS: it would be less conservative.

Because of lemma 16 and 17, the variables of var(Kdiag)
cannot contain variables appearing in the variables in-
volved in (1) and (2) i.e. in varstump(Knondet,KΣ) and in⋃

Kj∈Knondis
varlinking(Kj ,KΣ\Knondet). Then, var(Kdiag)

satisfies: var(Kdiag) ⊂ Vcandidate. Because the variables of
Vcandidate can be instantiated with measured values, all the
constraints of Kdiag are diagnosable following corollary 15.

The point that has to be proved is that, in specifications,
Knondis defines non discriminable but detectable sets and
not only non discriminable sets as in lemma 17: the
detectability of sets in Knondis has to be proved.

The variables var(Ki) of a constraint set Ki ∈ Knondis

can be decomposed into two sets: V −i and V +
i where

V −i = varlinking(Ki,KΣ\Knondet) contains the linking
variables and V +

i contains the remaining variables V +
i =

var(Ki)\V −i . Because of lemma 16 and 17, the set V +
i

cannot contain variables in varstump(Knondet,KΣ) and
in

⋃
Kj∈Knondis;Kj 6=Ki

varlinking(Kj ,KΣ). Therefore, V +
i

satisfies: V +
i ⊂ Vcandidate

Because of the third point of the theorem, all the variables
of Vcandidate are known: additional terminal constraints are
indeed added, there is necessarily a TSS dealing with all
the constraints in Ki. It proves that the constraint set Ki

is necessarily detectable. Because this result holds for any
Ki ∈ Knondis, it proves the theorem.

Fig. 5. Shape of a structural matrix Satisfying theorem 18

Satisfying theorem 18 guarantees that the specifications
are satisfied. However, because the theorem provides only
a sufficient condition for diagnosability, the number of
additional terminal constraints is not necessarily minimal.
It has to be checked afterwards.

The sensor placement problem has been studied without
considering components. Let us now take components
into account. Components of a system may be divided
into three sets: the components on which faults need to
be isolated, the components on which faults need to be
detected but not necessarily localized and the components
on which faults need to be non detectable. Because it
has been assumed that each component is modeled by
only one constraint, the results obtained for constraints
can be extended to components using the application
ΦΣ : KΣ → CΣ.

5. APPLICATION TO DAMADICS BENCHMARK

Several methods for fault isolation have been bench-
marked on a pneumatic servo-motor actuated valve named
DAMADICS (Development and Application of Methods
for Actuator diagnosis in Industrial Control Systems).
Spanache and Escobet [2004] has designed a sensor place-
ment method for this problem that optimize the diagnos-
ability level of the system. In this section, the method
proposed in this paper, is applied on this benchmark. The
system is defined by the following equations:
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k1 :X = r1(Ps,4P )

k2 : FV = r2(X,4P )

k3 :CV I = r3(SP, PV )

k4 : Ps = r4(X,CV I, Pz)

k5 : PV = r5(X)

The corresponding structural matrix is given in table 1.

Table 1. structural matrix of DAMADICS

X Ps CV I PV FV Pz SP 4P

k1 1 1 0 0 0 0 0 1

k2 1 0 0 0 1 0 0 1

k3 0 0 1 1 0 0 1 0

k4 1 1 1 0 0 1 0 0

k5 1 0 0 1 0 0 0 0

Let’s fix these specifications:Knondet = {k1, k2}, Knondis =
{{k3, k4}} and Kdiag = {k5}.
The set of constraints Knondet = {k1, k2} is linked by
the path {k1,4P, k2}. Because of variable FV , Knondet

is isolated by the path {k1,4P, k2}.
The set of constraints K = {k3, k4} ∈ Knondis is linked
by the path {k3, CV I, k5}. Then, according to theorem
18, no terminal constraints containing a variable from
{4P, FV , CV I} have to be added i.e. these variables have
not to be measured.

In order to satisfy the last item of theorem 18, all the
variables of the system except {4P, FV , CV I} have to be
measured.

The method proposed in Ploix et al. [2005] has been used
to design all the ARR. It has led to the fault signature
matrix drawn in table 2.

Table 2. Fault Signature Matrix of
DAMADICS

TSS k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

TSS1 0 0 1 1 1 1 1 0 1 1

TSS2 0 0 1 1 1 0 1 1 1 1

TSS3 0 0 0 0 1 1 0 1 0 0

TSS4 0 0 1 1 0 1 1 1 1 0

According to these results, the constraints that cannot be
discriminated are: {k3, k4}, the constraints that cannot be
detected are: {k1, k2} and the diagnosable constraint is:
{k5}. Applying the function Φ : KΣ −→ CΣ, it is obvious
that the components, which cannot be discriminated are:
{c3, c4} and the components, which cannot be detected is:
{c1, c2}. The diagnosable component is: {c5}.
The results presented in this paper demonstrate that
it is possible to design sensor placements which satisfy
diagnosability criteria without designing ARR a priori.

6. CONCLUSION

New results for the design of sensor placement algorithms
has been proposed. It manages, the specifications dealing
with sets of constraints that have to be diagnosable, non
discriminable or non detectable. These results apply to

any system depicted by constraints, which may only be
described by the variables appearing in them. Thanks to
these results, sensor placements satisfying diagnosability
specifications become possible without designing ARR
a priori. It is a very important feature since it is no
longer necessary to design all the possible ARR assuming
that some variables are measured. An algorithm providing
solutions to the sensor placement problem that contains a
minimum number of sensors will be provided in the near
future.
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