
An improved algorithm for the design of
testable subsystems

Stéphane Ploix Abed Alrahim Yassine Jean-Marie Flaus

Laboratoire des sciences pour la conception, l’optimisation et la
production, G-SCOP

BP 46, Saint Martin d’Heres 38402, France
Stephane.Ploix@g-scop.inpg.fr,Abed-Alrahim.yassine@g-

scop.inpg.fr,Jean-marie.Flaus@g-scop.inpg.fr

Abstract: In complex industrial plants, there are usually many sensors and the modeling of
plants leads to lots of mathematical relations. Before using classical tools for fault detection,
the first problem to solve is: what sensors and mathematical relations should be selected for the
design of a detection test such as a state observer or a parity space based detection algorithms.
This paper presents a general method for finding all the possible testable subsystems i.e. sets
of relations, than can lead to detection tests, taking into account actuator and sensor locations.
This method, which is based on a structural analysis, provides the constraints that have to be
used for the design of each detection test and manages situations where constraints contain non
deductible variables. Thanks to these results, it becomes possible to select the most interesting
testable subsystems regarding detectability and diagnosability criteria.

Keywords: Automatic test design, Structural approach, Fault diagnosis, Analytical
redundancy relations

1. INTRODUCTION

Generally speaking, diagnostic analyzes of physical sys-
tems rely on detection tests that provide symptoms. In
the scientific literature, there are two main trends for
the design of tests. The first one comes from the Artifi-
cial Intelligence community: ???). It relies on component-
based approaches. The principle is to model the different
components with relations, also named constraints, and
to directly check the consistency between the models and
the data. This approach raises a practical problem: in the
industrial world, even if the constraints can be modeled,
the tests usually do not result from simple consistency
tests between constraints and data, especially in dynamic
systems modelled by differential equations. Usually, con-
straints model only a part of the knowledge: noise and
modeling uncertainties are not a priori taken into account
in the constraints but only a posteriori. Consequently,
consistency tests do not result only from formalized knowl-
edge: an engineer usually only needs to know the sets of
constraints that can lead to tests before designing and
validating test algorithms. The second stream coming from
the Fault Detection and Isolation community, ??), uses a
complete model, usually a state space representation, of
the system to be diagnosed. It is often called a structured
or robust approach because it aims at projecting models
in different subspaces in order to distinguish the different
faults that may occur (and to remove uncertain parts).
These approaches raise another issue: projections do not
trace the components that are involved into tests. It is
therefore difficult to interpret the symptoms, especially
with formal analysis such as in ??).

Complex industrial systems can be depicted by various
kinds of relations, also named constraints, depending on
the modeling approach: differential equations, qualitative
relations, and rules expressed in a natural language may be
encountered. Methods that can manage both complexity
and models of different types are necessary. This fact
necessitates the use of structural approaches and rules
out approaches based on state space representations or
on Grobner bases: ?). In diagnosis, structural modeling
has been introduced in ?). Using a semantic theory of
abstraction, ?) has pointed out that structural modeling is
an abstraction of behavioral modeling. Then, discovering
testable sets of constraints can be achieved thanks to a
procedure based on a structural model such as the bipar-
tite graph approach proposed in ???). Finding testable
sets of constraints may indeed be done thanks to an elim-
ination procedure that combines constraints in order to
eliminate all the unknown physical variables and therefore
getting constraint containing only known data i.e. testable
constraints. However, this approach leads to a high level
of complexity when searching all the testable sets of con-
straints. In ?), an alternative method has been proposed
but the level of complexity is still high. ?) has proposed
an improved algorithm but it does not manage constraints
containing no deductible variables.

This paper presents a general method that provides
testable subsystems. A new algorithm, which improves
?) and is more general than ?), based on a join-operator
coming from relational algebra is proposed. It relies also
on a structural abstraction of the constraints and it traces
all the constraints that are involved in testable subsys-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 7191 10.3182/20080706-5-KR-1001.0069



tems thus making it possible to determine what physical
components are examined by each test.

2. PROBLEM STATEMENT

This section introduces the concepts and the formalism
used in the paper. In order to manage testable subsystem
design, let us introduce a formalism for behavioral model-
ing before considering structural modeling.

2.1 Behavioral modeling

Behavioral knowledge starts with phenomena. A phe-
nomenon is a potentially observable element of information
about the actual state of a system. It is modeled by an
implicitly time-varying variable, which has to be distin-
guished from a parameter that is model-dependent. Gener-
ally speaking, even if a phenomenon is observable, it is not
possible to merge it with data because in fault diagnosis,
data are only known provided that some actuators or sen-
sors behave properly. Phenomena V (t) = {. . . , vi(t), . . . }
are modeled by a phenomenological space F(T, V ) =
{V (t); t ∈ T} where T stands for continuous or discrete
sets of time. At any given time t in T , these phenomena
belong to a domain dom(t, V ) = dom(V (t)) representing
all the possible values that may have phenomena. Conse-
quently, when considering all t ∈ T , {dom(V (t)); t ∈ T}
represents a tube in the phenomenological space F(T, V ).
A data flow models data provided by a source of informa-
tion concerning a phenomenon. A data flow concerning
a phenomenon v is denoted: obs(t, v) with obs(t, v) ∈
dom(v(t)). It corresponds to a trajectory belonging to the
tube {dom(v(t)); t ∈ T}. When information about v is
coming from different sources, the different data flows can
be denoted: obsi(t, v). Formally, a data flow provided by a
component c can be linked to a phenomenon: ok(c)→ ∀t ∈
T, obs(t, v) = v, which means that if the component named
c is in the state ok then the data obs(t, v) corresponds to
the actual value of the phenomenon v at any time t ∈ T .
For testable subsystem design, it should be noted that
all the phenomena have to be considered as unknown.
Therefore, a mapping is testable if it does not contain any
variable standing for phenomena but only data flows.

Let us now define the concept of testable subsystem (TSS)
and its relationship with the concept of ARR. In the
following, the set of variables appearing in a constraint
k is denoted: var(k) and the set of variables appearing in
the set of constraints K: var(K) =

⋃
k∈K var(k).

Definition 1. LetK be a set of constraints and v a variable
in var(K) characterized by its domain dom(v). K is a
solving constraint set for v if using K, it is possible to
find a value set S for v such that S ⊂ dom(v). A solving
constraint set for v is minimal if there is no subset of K,
which is also a solving constraint set for v. A minimal
solving constraint set K for v is denoted: K ` v
Definition 2. Let K be a set of constraints. K is testable
if and only if there are two distinct subsets K1 ⊂ K,
K2 ⊂ K such that K1 * K2 and K2 * K1, and a variable
v ∈ var(K) such that K1 ` v and K2 ` v. If this property
is satisfied, it is indeed possible to check if the value set
S1 deduced from K1 is consistent with the value set S2

deduced from K2: S1 ∩ S2 6= ∅.

This definition also applies to models containing ordinary
differential equations. Indeed, testable state space repre-
sentations, including state space observers, always have
equivalent parity space representations ?). Adding any
constraint to a testable set leads also to a testable set of
constraints. Only minimal testable sets are interesting.
Definition 3. A testable set of constraints is minimal if
it is not possible to keep testability when removing a
constraint.

A global testable constraint that can be deduced from a
TSS is called ARR.

2.2 Structural modeling

Generating testable subsystems means that cause-effect
relationships modelled by mappings, defined from the
domain of a set of variables to another domain of other
variables, must be combined so that no more variables
remain. A general method must abstract mappings away as
they may be of very different types, ranging from automata
to differential equations or qualitative modeling.

This is why structural modeling has to be considered al-
though this advantage is offset by the fact that results may
overestimate the effective testable subsystems because
knowledge about mappings is not fully taken into account.
Overestimation leads to testable subsystems that refer to
many more combined constraints than necessary. The con-
sequence is that, during test implementation, verification
is needed to see whether all the constraints involved in a
testable subsystem are effectively required.

As an abstraction of a mapping, the notion of structure
of constraint is introduced: basically, the structure of a
constraint K corresponds to the variables var(K). Never-
theless, a given constraint may be modeled by different
mappings.

Firstly, although mappings to multidimensional spaces
could be used, they are difficult to manage in testable
subsystem design. It is better to break them down into
equivalent sets of 1-dimensional mappings. In the follow-
ing, 1-dimensional mappings modeling a constraint K are
named realization of K.
Moreover, several realizations of a constraint may be
equivalent. Let κi be a realization from V \{v} to {v}.
There may be equivalent realizations defined on V that
also model the constraint. Therefore, the notion of struc-
ture of a constraint can be extended to represent all the
equivalent realizations representing a given constraint K.
For instance, consider a realization κ modeling a logical
xor : x3 = x1 ⊗ x2. There is a mapping leading to x3 from
x1 and x2 but also a mapping from x2 and x3 leading to
x1 and another one to x2. In that case, these variables
can be qualified as deductible or, when it is meaningful, as
calculable in reference to ?). This is denoted; var(κ) =
var+(κ) = {x1, x2, x3}. It is different for a realization
κ′ modeling a logical or : x3 = x1 ∨ x2 where only x3 is
deductible. This is denoted: var(κ) = var+(κ′)∪ var−(κ′)
with var+(κ) = {x3} and var−(κ) = {x1, x2}. The set of
equivalent realizations modeling a constraint K is denoted:
K(K). Therefore, the structure of a constraint models at
one and the same time the variables of its phenomenolog-
ical space, and a set of possible equivalent 1-dimensional

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7192



mappings that model this constraint. A structure may rep-
resent either a particular realization or a set of equivalent
realizations.

The variables V = var(K) can be broken down into a set of
deductible variables and a set of non-deductible variables.
A structure s will be written xV −, V +y where V − and V +

satisfy V − ∩ V + = ∅. Therefore, the structure modeling
a constraint K is denoted: s (K) = xV −, V +y. Because
∀v ∈ V +, there is a realization from K(K) leading to v:

∀v ∈ V +,∃x(V − ∪ V +)\{v}, {v}y

For the sake of simplicity, the following notations have
been adopted: x∅, V +y = xV +y and, if S is a set of
structures, var(S) =

⋃
s∈S var(s). Finally, an empty

structure s is a structure satisfying: var(s) = ∅. It is
denoted: s = xy.

For the design of testable subsystem, some structures are
particularly useful because they model what it is known
in a system i.e. the controlled or measured variables: they
are named terminal structure.
Definition 4. A terminal structure s satisfies card(var(s)) =
1. It usually involves a data flow and models the fact that
a trajectory can be assigned to a variable. By extension, a
constraint containing only one variable is also qualified as
terminal.

Because of the possible over-estimations, it is useful to
introduce the following definition.
Definition 5. A structure s1 wraps another structure s2
if var(s1) ⊇ var(s2) and var+(s1) ⊇ var+(s2) . It is
denoted: s1 ⊇ s2.

In order to show that values can be propagated between
mappings, i.e. that the intersection of two constraints can
be projected without loss, a join operator is defined. As a
prerequisite, the notion of propagable variable has to be
introduced.
Definition 6. Let s1 and s2 be two structures related to
κ1 ∈ K(K1) and κ2 ∈ K(K2). The propagation of a
variable v between s1 = s1(κ1) and s2 = s2(κ2) is possible
only if v ∈ var(s1)∩var(s2) and if v is deductible in at least
one structure. If this condition is satisfied, v is qualified as
propagable between s1 and s2. By extension, v is also said
propagable between κ1 and κ2 and also between K(K1)
and K(K2).

The join operator can now be defined.
Definition 7. Let s1 and s2 be two structures, with V +

1 =
var+(s1), V −1 = var−(s1), V +

2 = var+(s2) and V −2 =
var−(s2). The join operator, denoted ./v , where v is a
propagable variable between s1 and s2, is defined only in
the following two situations:

• if v ∈ V +
1 ∩ V

−
2 then

s1 ./v s2 = x
(
V −1 ∪ V

+
1 ∪ V

−
2

)
\
(
V +

2 ∪ {v}
)
, V +

2 y

• if v ∈ V +
1 ∩ V

+
2 , then

s1 ./v s2 = x
(
V −1 ∪ V

−
2

)
\
(
V +

1 ∪ V
+
2

)
,
(
V +

1 ∪ V
+
2

)
\{v}y

If a formula s1 ./v s2 satisfies one of the two previous
points, it is qualified as evaluable.

Using this operator results in a definition of a propagation
method i.e. if the value of a variable can be deduced from
one realization, then this value can be propagated into the
other one. A link is thus created between two constraints:
it corresponds partially to the join operator in relational
algebra.
Theorem 8. Let K1 and K2 be two sets of equivalent
realizations. Then a wrapping structure of the set of
equivalent realizations resulting from the propagation of
a variable v between K1 and K2 can be obtained using ./v

operator on s(K1) and s(K2).

Proof. Let us denote s(K1) = xV −1 , V +
1 y, s(K2) =

xV −2 , V +
2 y and K the set of equivalent realizations result-

ing from the propagation of v between K1 and K2. The set
K depends on the presence of other propagable variables.
If v is the only propagable variable betweenK1 andK2, the
exact structure of K can be deduced, else, only a wrapping
structure can be found.

Consider the situation where there is only one propagable
variable v ∈ V +

1 ∩ V −2 . ∃κ1,v ∈ K1 such as v =
κ1,v

((
V +

1 \{v}
)
∪ V −1

)
and v can be propagated into

K2. If V +
2 6= ∅, ∀w ∈ V +

2 , ∃κ2,w ∈ K2/w =
κ2,w

((
V +

2 \{w}
)
∪ V −2

)
. Because v ∈ V −2 , it yields that

there is κw such that:
w = κw

(((
V +

2 \{w}
)
∪
(
V −2 \{v}

))
∪
((
V +

1 \{v}
)
∪ V −1

))
Because v is the only propagable variable, w /∈

(
V +

1 ∪ V
−
1

)
and therefore, κw is a realization. Because this result
is true ∀w ∈ V +

2 , the structure of the resulting set
of equivalent realizations is: x(V −1 ∪ V

+
1 ∪ V

−
2 )\(V +

2 ∪
{v}), V +

2 y. Moreover, if V +
2 is empty, the previous result

remains true: x(V −1 ∪ V
+
1 ∪ V

−
2 )\{v}, ∅y. It yields: ∀v ∈

V +
1 ∩ V

−
2 , s(K) = s(K1) ./v s(K2).

If the unique propagable variable satisfies v ∈ V +
1 ∪ V

+
2 ,

additional deductible variables can be found. Indeed,

• if V +
2 \{v} 6= ∅, ∃κ1,v ∈ K1 such that

v = κ1,v

((
V +

1 \{v}
)
∪ V −1

)
and v can be propa-

gated into K2: ∀w ∈ V +
2 \{v}, ∃κ2,w ∈ K2/w =

κ2,w

((
V +

2 \{w}
)
∪ V −2

)
. Because v ∈ V +

2 , it yields:
∃κw/w = κw

(((
V +

2 ∪ V
+
1

)
\{v, w}

)
∪ V −1 ∪ V

−
2

)
• if V +

1 \{v} 6= ∅, ∃κ2,v ∈ K2 such that
v = κ2,v

((
V +

2 \{v}
)
∪ V −2

)
and v can be propa-

gated into K1: ∀w ∈ V +
1 \{v}, ∃κ1,w ∈ K1/w =

κ1,w

((
V +

1 \{w}
)
∪ V −1

)
. Because v ∈ V +

1 , it yields:
∃κw/w = κw

(((
V +

1 ∪ V
+
2

)
\{v, w}

)
∪ V −1 ∪ V

−
2

)
Because v is the only propagable variable, it yields κw are
realizations and then that the structure of the resulting
constraint is given by: x(V −1 ∪ V

−
2 )\(V +

1 ∪ V
+
2 ), (V +

1 ∪
V +

2 )\{v}y. Consequently, ∀v ∈ V +
1 ∩ V +

2 , s(K) =
s(K1) ./v s(K2). These results remain true if V +

1 or V +
2

are empty.

When there are several propagable variables, it is no longer
possible to prove that functions κw are realizations and
hence the previous results become:

• ∀v ∈ V +
1 ∩ V

−
2 , s(K) ⊆ s(K1) ./v s(K2)

• ∀v ∈ V +
1 ∩ V

+
2 , s(K) ⊆ s(K1) ./v s(K2)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7193



Remark 9. According to the definition, the join operator
is not commutative nor associative. Indeed, consider 3
structures s1, s2 and s3 satisfying v2 ∈ var+(s1) ∩
var−(s3), v2 /∈ var(s2), v1 ∈ var+(s1) ∩ var+(s2). Then,
the formula (s1 ./v1 s2) ./v2 s3 can be evaluated whereas
s2 ./v2 s3 cannot. To show that the join-operator is not
associative, (s1 ./v1 s2) ./v2 s3 6= s1 ./v1 (s2 ./v2 s3).

This section introduced the structures of constraints and
a join operator that models value propagations between
structures. These tools can then be used to design testable
subsystems containing many different kinds of mappings.
The way to use these tools is described in the next section.

3. FINDING TESTABLE SUBSYSTEMS

Some basic concepts have first to be introduced before
tackling the design of testable subsystems. Then, some
particular modeling contexts are examined.

3.1 Combining structures into formulae

A test results from consecutive propagations that can
be modeled by a propagation formula: f = (((s1 ./v1

s2) ./v2 s3) ./v3 (s4 ./v4 s2)) . . . where si are structures
and vj are the variables to be propagated. A formula
is composed of subformulae linked to the join operator,
where the elementary formulae are structures. Thanks to
this operator, a propagation formula f can be evaluated
as a structure s(f). The set of all the formulae is denoted
F .
Definition 10. A formula is qualified as evaluable if all its
subformulae are evaluable according definition ??.
Definition 11. The support of a formula f ∈ F , denoted
σ(f), is the set of all the structures involved in the formula.
Definition 12. The degree of a formula f ∈ F , denoted
d(f), is equal to the number of times the join operator
appears in the formula: it represents the number of ele-
mentary propagations.
Definition 13. Two formulae f1 and f2 are comparable if
σ(f1) = σ(f2) and if var(s(f1)) = var(s(f2)) i.e. they
have the same constraints and the same variables. This is
denoted: f1 ∼ f2.

Moreover, during propagations, a given variable can be
instantiated only once. However, in some formulae, a
variable can appear several times and then be instantiated
in different ways. In this situation, there will be a simpler
formula where the variable has been instantiated only
once.
Definition 14. A formula f1 is simpler than a formula f2
if:

• σ(f1) ⊂ σ(f2) and var(s(f1)) ⊂ var(s(f2))
• or if f1 ∼ f2 and d(f1) < d(f2)
• or if f1 ∼ f2 and d(f1) = d(f2) and var+(s(f1)) ⊃
var+(s(f2))

It is denoted: f1 ≺ f2. It is said that f2 overestimates f1.

A testable propagation formula f ∈ F is an evaluable
formula that leads to an empty structure. A testable
propagation formula is minimal over a set of structures

S if there is no simpler formula over S. It is called the
minimal testable propagation formula (MTPF) over S.

According to the definition of the join operator, all the
formulae correspond to wrapping structures of constraints
that can be found by combining elementary constraints K
of a diagnostic problem. Therefore, the formulae may over-
estimate the propagations that lead to a test. Fortunately,
it is easy to check if all the constraints related to the
support σ(f) of an MTPF f have been used during the
design of a test.

3.2 Algorithms for finding testable subsystems

For the design of testable subsystems (TSS), all the possi-
ble MTPF have to be found because TSS are given by the
support of MTPF. The principle is to iteratively propagate
values until MTPF are found. But, unlike value propa-
gation, a propagation can be envisaged even if related
variables have not been instantiated. In order to reduce
the computations, the propagations related to a variable
that involve the fewest structures are achieved first.

Sets of formulae are represented by the letter F and
the corresponding structures by s(F ) = {s(f); f ∈ F}.
Consider a set of constraints characterizing a diagnostic
problem and F0, the corresponding structures, which are
also elementary formulae. s(F0) denotes the structures
corresponding to F0. The number of structures from a set
s(F ) where a variable v appears, is named the order of v
in σ(F ). It is denoted: oF (v)

Firstly, a propagation cannot be achieved when a variable
appears only once in the structures s(F0). Therefore, struc-
tures containing these variables, and its corresponding
formula, should be removed because they have no use-
fulness in an MTPF. Nevertheless, when some structures
are removed, it is possible to find new variables that only
appear once. The procedure is then repeated until no more
single-occurrence variables remain. This step is a clearing
step. It is summarized by algorithm ??.

Algorithm 1 Remove useless structures
Require: F0, a set of formulae
F ← F0

repeat
V ← {v ∈ var(s(F )); oF (v) = 1}
F ← {f ∈ F ; var(s(f)) ∩ V = ∅}

until V = ∅
return F

The resulting cleared set is named F1. The propagations
can now be achieved according to the orders of variables.
The variables of lowest order are selected first. Let v be
one of these variables. All the formulae where v appears
are selected and, using the join operator, new evaluable
formulae are then deduced and added to the current set of
formulae. Formulae that overestimate others are removed
as well as formulae that contain v. This procedure is
repeated until all the variables have been considered. Re-
maining structures are then empty structures and thus all
the MTPF have been found. The procedure is summarized
by the following algorithm.

Sometimes, because the number of testable propagation
formulae is very high, it is quicker to find only a subset of

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7194



Algorithm 2 Compute MTPF
Require: F1, a set of formulae
F ← F1

while var(s(F )) 6= ∅ do
select v ∈ var(s(F )) such that oF (v) ≤
oF (vi),∀vi ∈ var(s(F ))
F ′ ← {f/v ∈ var(s(f))}
F ′′ ← {fi ./v fj ; (fi, fj) ∈ F ′2, i 6= j, fi ./v

fj evaluable}
F ← (F\F ′) ∪ F ′′
F ← F\{f ∈ F ;∃fi ∈ F, fi 6= f, f � fi}

end while
return F

all the MTPF. In order to reduce to number of propaga-
tions but also to check all the constraints, propagations of
variables that are known because they have been measured
or controlled, can be reduced: propagations may indeed
be stopped when a known variable is found. The resulting
MTPF are called basic MTPF. They are evaluable because
basic MTPF are a small subset of all the MTPF that covers
all the exploitable structures present in all the MTPF.
Algorithm ?? can still be used but when a variable v
is involved in a terminal structure, the join operator ./v

is only applied, on the one hand, between the terminal
structures and the other structures involving v, and on the
other hand, between the terminal structures themselves if
many of them include the variable v: it corresponds to the
so-called material redundancy.

3.3 Particular modeling contexts

In this section, two particular contexts are examined: the
dynamical systems and the systems with branchings.

Dynamical systems Generally speaking, a model is said
to be dynamic if either:

• a variable appears several times in a system but at
different timestamps
• or a variable and some of its derivatives or summa-
tions (whatever the order is) appear in the system.

The first case mainly concerns time-delays and discrete
time recurrent systems. According to section ??, each
variable stands for a tube in a phenomenological space.
Therefore a time delay, modelled by y(t + ∆) = x(t), is
a constraint that establishes a link between two tubes:
{dom(y(t+ ∆)); ∀t} and {dom(x(t));∀t}. Therefore, even
if the two variables models the same phenomenon, in the
structural model, they cannot be merged. Consider now
the following discrete-time recurrent model:

x((k + 1)Te) = Ax(kTe) +Buk(kTe)
y(kTe) = Cx(kTe) ; k ∈ N

where Te stands for the sampling period.

The phenomenon modelled by x appears twice. Therefore,
the constraint must be implicitly completed by a time de-
lay between variables x((k+1)Te) and x(kTe). Structurally
speaking, these constraints are modelled by the following
structures:

x{x(kTe), x((k + 1)Te), u(kTe)}y
x{x(kTe), x((k + 1)Te)}y
x{x(kTe), y(kTe)}y

Moreover, if the tube corresponding to x((k+1)Te) appears
only in this constraints, the join operator ./x((k+1)Te) can
be applied between x{x(kTe), x((k + 1)Te), u(kTe)}y and
x{x(kTe), x((k + 1)Te)}y and it results:

x{x(kTe), u(kTe)}y
x{x(kTe), y(kTe)}y

The second case mainly concerns integrations and differen-
tial equations. Consider for instance the following model:
dx
dt = u. dx

dt corresponds to a tube, which can be connected
to x in adding the implicit constraint: x =

∫
dx
dt dt. The

initial condition could also be taken into account by con-
sidering x =

∫ tf

0
dx
dt dt + x0. In this case, the structures

become: x{dx
dt , u}y and x{x, dx

dt , x0}y. In the same way
as time-delays, the join operator ./ dx

dt
can be applied to

obtain the following structure: x{u, x}y or, if the initial
condition is considered, x{u, x, x0}y. This result remains
true for summations and derivatives of any order. Let us
now consider an ordinary differential equation:

dx

dt
= Ax+Bu

y = Cx

Here also, an implicit constraint has to be added: x =∫
dx
dt dt. The following structures arise:

x{x, dx
dt
, u}y

x{x, dx
dt

)}y

x{x, y}y
Using the join operator ./ dx

dt
, it yields:

x{x, u}y
x{x, y}y

Systems with branchings Using a structural approach for
the design of testable subsystems leads to a general method
that may potentially be applied to any kind of systems.
The case of dynamical systems have been examined but
another context requires also a special attention: the
systems with branchings. These systems can be managed
by the method presented in section ?? but the amount of
computations can be drastically reduced. Indeed, consider
for instance the roads in figure ??. Denoting RXY a road
section linking X to Y , a structural model of the road
network is given by:

s(RAB1) = xA,B1y
s(RB2C) = xB2, Cy
s(RB3D) = xB3, Dy
s(crossroad) = xB1, B2y
s(crossroad) = xB1, B3y
s(crossroad) = xB2, B3y

Generally speaking, if a car goes from A to C, it is improb-
able that its route could also pass by B3. Then, a testable
subsystem gathering all the constraints of the crossroad
would not make sense. If it is not taken into account, the
number of generated TSS will be very high. In that simple
case, unrealistic routes would appear: (A,B1, B2, B3, D),
(A,B1, B3, B2, C), (C,B2, B1, B3, D),... Imagine now a
complete network with many crossroads. Unrealistic com-
binations of constraints will be recombined and it will pro-

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7195



vide new unrealistic constraints and so on until a possibly
huge number of unrealistic TSS is obtained. In order to
avoid this phenomena, junctions have to be taken into
account during the generation of formulae.

Fig. 1. A road network is a system with branchings

In order to avoid unrealistic TSS, a set of exclusions can be
defined. In order to model that only two constraints of the
crossroad can be gathered in one formula, the following ex-
clusion set can be defined: {xB1, B2y, xB1, B3yxB2, B3y}.
It means that all these structures cannot appear in the
same formula. Generally speaking, a set of exclusion sets,
denoted X, can be defined. Thus, during the computations
of formulae (section ??), each time a new formula is found,
it is examined in order to determined if it does not gather
all the structures belonging to an exclusion set of X. In that
case, the new formula is removed from F ′′ in algorithm ??.

Systems with branchings are not rare: they can be encoun-
tered in Discrete Event Systems with conveyors, trans-
portation networks but also in diagnosis of cognitive
skills ?) where different alternatives in reasoning may be
adopted.

4. CONCLUSION

This paper formalizes structural modeling and shows how
it can support engineers in computing detection tests
for the system to be diagnosed. The proposed methods
provides the constraints to be used to design each test,
but also a way of combining one each other. It then let
the engineer free to choose its preferred detection test (for
instance, parity relations, Luenberger state observers or
Kalman filters in dynamical continuous time systems), the
way of a posteriori tuning the detection tests in order to
take into account modeling uncertainties.

The main advantage of structural modeling is that it
makes it possible to handle any kind of systems e.g.
dynamical continuous-time, discrete event or rule-based
systems. In the paper, it has been shown on a road
network that, even if the behavioral constraints are not
available, it remains possible to compute the composition
of all the possible ARR. The proposed procedure has
been designed in order to reduce as much as possible the
number of computations. It has been compared to two
alternative approaches and significant improvements have
been pointed out.

REFERENCES

M. Blanke, M. Kinnaert, and M. Staroswiecki. Diagnosis
and fault tolerant control. Springer, 2003.

L. Chittaro and R. Ranon. Hierarchical model-based
diagnosis based on structural abstraction. Artificial
Intelligence, 1-2:147–182, 2004.

R. Davis. Diagnostic reasoning based on structure and
behavior. Artificial Intelligence, 24:347–410, 1984.

J. De Kleer and B. C. Williams. Diagnosing multiple
faults. Artificial Intelligence, 32:97–130, 1987.

P. M. Frank. Fault diagnosis in dynamic systems using
analytical and knowledge-based redundancy - a survey
and some new results. Automatica, 26(3):459–471, 1990.

E. Frisk. Residual generator for non-linear polynomial
systems - a grobner basis approach. In IFAC Fault De-
tection, Supervision and Safety for Technical Processes,
2000.

Y. Iwasaki and H. A. Simo. Causality and model abstrac-
tion. Artificial Intelligence, 67:143–194, 1994.

M. Krysander, J. Aslund, and M. Nyberg. An efficient
algorithm for finding over-constrained sub-systems for
construction of diagnostic tests. In 16th International
Workshop on Principles of Diagnosis (DX-05), 2005.

M. Nyberg and M. Krysander. Combining ai, fdi, and sta-
tistical hypothesis-testing in a framework for diagnosis.
In IFAC Safeprocess’03, Washington, U.S.A., 2003.

R. Patton, P. Frank, and R. Clark (Eds). Fault diagnosis
in dynamic systems. International series in systems and
control engineering. Prentice Hall, 1989.

S. Ploix, S. Touaf, and J. M. Flaus. A logical framework
for isolation in fault diagnosis. In SAFEPROCESS’2003,
Washington D.C., U.S.A., 2003.

S. Ploix, M. Désinde, and F. Michau. Assessment and
diagnosis for virtual reality training. In CALLIE2004,
Grenoble, France, 2004.

S. Ploix, M. Desinde, and S. Touaf. Automatic design of
detection tests in complex dynamic systems. In 16th
IFAC World Congress, Prague, Czech republic, 2005.

B. Pulido and C. Alonso. Possible conflicts, arrs, and
conflicts. In 13th International Workshop on Principles
of Diagnosis (DX02), pages 122–128, May 2002.

R. Reiter. A theory of diagnosis from first principles.
Artificial Intelligence, 32:57–95, 1987.

M. Staroswiecki and P. Declerck. Analytical redundancy
in nonlinear interconnected systems by means of struc-
tural analysis. In IFAC AIPAC’89 Symposium, Nantes,
France, 1989.

M. Staroswiecki, V. Cocquempot, and J. P. Cassar. Ob-
server based and parity space approaches for failure
detection and identification. In IMACS-IFAC Interna-
tional Symposium, Lille, France, 1991.

L. Travé-Massuyès, T. Escobet, and X. Olive. Diagnosabil-
ity analysis based on component supported analytical
redundancy relations. IEEE transactions on Systems,
Man, And Cybernetics - Part A: Systems and Humans,
36(6):1146–1160, November 2006.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7196


