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Abstract: In the paper finite-dimensional dynamical control systems described by second order semilinear 

stationary ordinary differential state equations are considered. Using a generalized open mapping theorem, 

sufficient conditions for constrained local controllability in a given time interval are formulated and proved. 

These conditions require verification of constrained global controllability of the associated linear first-order 

dynamical control system. It is generally assumed, that the values of admissible controls are in a convex 

and closed cone with vertex at zero. Moreover, several remarks and comments on the existing results for 

controllability of semilinear dynamical control systems are also presented. Finally, simple numerical 

example, which illustrates theoretical considerations is also given. It should be pointed out, that the results 

given in the paper extend for the case of semilinear second-order dynamical systems constrained 

controllability conditions, which were previously known only for linear second-order systems. 

____________________________________________________________________________________ 

 

 1. INTRODUCTION. 

 

Controllability is one of the fundamental concept in 

mathematical control theory (Brammer, 1972, Klamka, 1991, 

Naito, 1987, Seidman, 1987). This is a qualitative property of 

dynamical control systems and is of particular importance in 

control theory. Systematic study of controllability was started 

at the beginning of sixties, when the theory of controllability 

based on the description in the form of state space for both 

time-invariant and time-varying linear control systems was 

worked out. Roughly speaking, controllability generally 

means, that it is possible to steer dynamical control system 

from an arbitrary initial state to an arbitrary final state using 

the set of admissible controls. In the literature there are many 

different definitions of controllability, which strongly depend 

on class of dynamical control systems and on the set of 

admissible controls  (Brammer, 1972, Klamka, 1991, 1993, 

1996, Naito, 1987, Seidman, 1987, Son, 1990, Zhou, 1984).  

 

In recent years various controllability problems for different 

types of nonlinear dynamical systems have been considered in 

many publications and monographs. The extensive list of 

these publications can be found for example in the monograph 

(Klamka, 1991) or in the survey paper (Klamka, 1993). 

However, it should be stressed, that the most literature in this 

direction has been mainly concerned with controllability 

problems for finite-dimensional linear and nonlinear 

dynamical systems with unconstrained controls and without 

delays (Brammer, 1972, Klamka, 1996, Naito, 1987,) or for 

linear infinite-dimensional dynamical systems with 

constrained controls and without delays (Fuji and Sakawa, 

1974, Klamka, 1991, Seidman, 1987). 

 

Let us recall, that semilinear dynamical control systems 

contain both linear and pure nonlinear parts in the differential 

state equations (Klamka, 1993, Naito, 1987, Zhou, 1984). 

More precisely, we shall formulate and prove sufficient 

conditions for constrained local controllability in a prescribed 

time interval for semilinear second-order stationary dynamical 

systems which nonlinear term is continuously differentiable 

near the origin. It is generally assumed that the values of 

admissible controls are in a given convex and closed cone 

with vertex at zero, or in a cone with nonempty interior. Proof 

of the main result is based on the generalized open mapping 

theorem presented in the paper (Robinson, 1976). 

 

Roughly speaking, in the paper it will be proved that under 

suitable assumptions constrained global controllability of a 

linear first-order associated approximated dynamical system 

implies constrained local controllability near the origin of the 

original semilinear second-order dynamical system. This is a 

direct generalization to constrained controllability case some 

well-known previous results concerning controllability of 

linear dynamical control systems with unconstrained controls 

(Chukwu and Lenhart, 1991, Klamka, 1991, 1993, 1996).  

 

Finally, is should be mentioned, that other different 

controllability problems both for linear dynamical control 

systems and nonlinear dynamical control systems have been 

also considered in the papers (Chukwu and Lenhart, 1991, 

Fuju and Sakawa, 1974, Peichl and Schappacher, 1986, Son, 

1990) 
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2. SYSTEM DESCRIPTION 

 

In this paper, we shall consider constrained local 

controllability problems for second-order finite-dimensional 

semilinear stationary dynamical control systems, described by 

ordinary differential state equations. 

 

 

w″(t) = Gw(t) + f(w(t),u(t)) + Hu(t)  t∈[0,T] (2.1) 

 

where vector w(t)∈R
n
 = W and the control u(t)∈R

m
 = U, G is 

n×n dimensional constant matrix, H is n×m dimensional 

constant matrix. Moreover, let us assume that the nonlinear 

mapping f: W×U→W is continuously differentiable near the 

origin and such that f(0,0)=0.  

 

For simplicity of considerations we assume zero initial 

conditions, i.e. 

 

w(0) = 0 and w′(0) = 0 

 

Using standard substitutions 
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we may transform second-order dynamical system (2.1) into 

equivalent first-order semilinear stationary 2n-dimensional 

control system described by the following ordinary 

differential state equation 

 

x′(t) = Ax(t) + F(x(t),u(t)) + Bu(t)    

 for t∈[0,T],     T>0   (2.2) 

 

with zero initial conditions: x(0) = 0   

 

where state vector x(t)∈R
2n

 = X and the control u(t)∈R
m
 = U, 

A is 2n×2n dimensional constant matrix, B is 2n×m 

dimensional constant matrix. 
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Moreover, from the previous assumptions concerning 

nonlinear term f(x(t),u(t)) it follows, that the nonlinear 

mapping F: X×U→X is also continuously differentiable near 

the origin and such that F(0,0)=0. 

 

In practice admissible controls are always required to satisfy 

certain additional constraints. Generally, for arbitrary control 

constraints it is rather very difficult to give easily computable 

criteria for constrained controllability even in the linear case. 

However, for some special cases of the constraints it is 

possible to formulate and prove simple algebraic constrained 

controllability conditions. Therefore, we assume that the set 

of values of admissible controls Uc⊂U is a given closed and 

convex cone with nonempty interior and vertex at zero. Then, 

the set of admissible controls for the dynamical control 

systems (2.1) and (2.2) has the following form 

Uad=L∞([0,T],Uc). 

 

Then for a given admissible control u(t) there exists a unique 

solutions w(t;u)∈R
n
 of the second-order differential equation 

(2.1) and similarly, unique solution x(t;u)∈R
2n

 of the first-

order ordinary differential state equation (2.2) and with zero 

initial condition described by the integral formula [6], [11]. 

∫ +−=

t

dssBusususxFstSutx

0

))())()),(;(()(();(  

      (2.3) 

where the matrix semigroup S(t) = exp(At) for t≥0 is 2n×2n 

dimensional exponential transition matrix for the linear part of 

the semilinear first-order control system (2.2). 

 

For the semilinear stationary finite-dimensional second-order 

dynamical system (2.1) or equivalently for first-order 

dynamical system (2.2), it is possible to define many different 

concepts of controllability. However, in the sequel we shall 

focus our attention on the constrained controllability in a 

given time interval [0,T].  

 

In order to do that, first of all let us introduce the notion of the 

so called attainable or reachable set at time T>0 from zero 

initial conditions, denoted shortly by KT(Uc) and defined as 

follows (Klamka, 1991, Seidman, 1987). 

 

KT(Uc) = {x∈X : x = x(T,u),  u(t)∈Uc   for  a.e.  t∈[0,T]}

      (2.4) 

 

where x(t,u), t > 0 is the unique solution of the differential 

first-order state equation (2.2) with zero initial conditions and 

a given admissible control u∈Uad=L∞([0,T],Uc).  

 

Taking into account the form of the semilinear state equation 

(2.2) it should be pointed out that under the assumptions 

stated on the nonlinear term F such solution always exists and 

is unique [6], [11]. 

 

Now, using the concept of the attainable set KT(Uc), let us 

recall the well known (see e.g. Klamka, 1991, 1993, 1996)  

definitions of local and global constrained controllability in 

[0,T] for semilinear second-order dynamical system (2.1). 

 

Definition 2.1 The dynamical system (2.1) is said to be Uc-

locally controllable in [0,T] if the attainable set KT(Uc) 

contains a neighborhood of zero in the space X. 

 

Definition 2.2 The dynamical system (2.1) is said to be Uc-

globally controllable in [0,T] if KT(Uc) = X. 
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Now, in the last part of this section we shall discuss the 

relationships between controllability of the first-order system 

(2.2) for F(x(t),u(t)) = 0, and associated with second-order 

system (2.1) the first-order system for the case when 

f(w(t),u(t)) = 0. Therefore, we shall consider the following 

two first order linear dynamical systems: 

 

w′(t) = Gw(t) + Hu(t)  t∈[0,T]  (2.5) 

 

x′(t) = Ax(t) + Bu(t)  t∈[0,T]   (2.6) 

 

First of all, taking into account the form and dimensionality of 

the matrices A, B, G and H simple calculations show that the 

following of the equality holds: 
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Hence, we have the following rather well-known in the 

literature corollary (see e.g., monograph (Klamka, 1991) 

concerning different relationships between unconstrained 

controllability of dynamical systems (2.5) and (2.6). 

 

Corollary 2.1 Second-order linear dynamical system (2.1) or 

equivalently first-order 2n-dimensional dynamical system 

(2.6) is controllable in any time interval without control 

constraints if and only if the linear first-order n-dimensional 

dynamical system (2.5) is controllable in any time interval 

without control constraints. 

 

Remark 2.1 However, it should be pointed out, that for the 

case of constrained controllability problem the above 

Corollary 2.1 does not hold and there are no general 

relationships between constrained controllability of first-order 

and second-order linear dynamical systems. 

 

3. PRELIMINARIES 

 

In this section, we shall introduce certain notations and 

present some important facts from the general theory of 

nonlinear operators. 

  

Let U and X be given spaces and g(u):U→X be a mapping 

continuously differentiable near the origin 0 of U. Let us 

suppose for convenience that g(0)=0. It is well known from 

the implicit-function theorem (see e.g., [8]) that, if the 

derivative Dg(0): U→X maps the space U onto the whole 

space X, then the nonlinear map g transforms a neighborhood 

of zero in the space U onto some neighborhood of zero in the 

space X. 

  

Now, let us consider the more general case when the domain 

of the nonlinear operator g is Ω, an open subset of U 

containing 0. Let Uc denote a closed and convex cone in U 

with vertex at 0. 

  

In the sequel, we shall use for controllability investigations 

some property of the nonlinear mapping g which is a 

consequence of a generalized open-mapping theorem 

(Robinson, 1976). This result seems to be widely known, but 

for the sake of completeness we shall present it here, though 

without proof and in a slightly less general form sufficient for 

our purpose. 

 

Lemma 3.1. (Robinson, 1976). Let X, U, Uc, and Ω be as 

described above. Let g:Ω→X be a nonlinear mapping and 

suppose that on Ω nonlinear mapping g has derivative Dg, 

which is continuous at 0. Moreover, suppose that g(0) = 0 and 

assume that linear map Dg(0) maps Uc onto the whole space 

X. Then there exist neighborhoods N0 ⊂ X about 0∈X and 

M0⊂Ω about 0∈U such that the nonlinear equation x=g(u) 

has, for each x∈N0, at least one solution u∈M0∩Uc, where 

M0∩Uc is a so called conical neighborhood of zero in the 

space U. 

 

Lemma 3.2 Let Dux denotes derivative of x with respect to u. 

Moreover, if x(t;u) is continuously differentiable with respect 

to its u argument, we have for v∈L∞([0,T],U) 

 

Dux(t;u)(v)x=0,u=0 = z(t,u,v) 

 

where the mapping t→z(t,u,v) is the solution of the linear 

ordinary equation 

 

z'(t) = Az(t) + DxF(0,0)z(t) + Bv(t) + DuF(0,0)v(t) (3.1) 

 

with zero initial conditions z(0,u,v) = 0. 

 

where  DxF(0,0) = DxF(x(t;u),u)x=0,u=0 

 

DuF(0,0) = Du(F(x(t;u),u)x=0,u=0 

 

Proof. Using formula (2.3) and the standard well known 

differentiability results for composite function we have 
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      (3.2) 
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Differentiating equality (3.2) with respect to the variable t, we 

have 

∫

∫

+−+

+−+

+++

+=

t

u

t

ux

u

uxu

dsBsususxFDstSdtd

dssusxDsususxFDstSdtd

BuutxFD

utxDuutxFDutxDdtd

0

0

)))()),(;(()(()/(

))(;())()),(;(()(()/(

)),;((

);()),;(();()/(

      (3.3) 

Therefore, since S(t) is for t>0 a differentiable semigroup of 

n×n dimensional matrices then (d/dt)S(t-s) = AS(t-s) and we 

have 
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Hence, 

 

∫
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On the other hand it is well known, that the solution of the 

linear ordinary differential equation (3.1) with constant 

coefficients and zero initial condition has the following 

integral form 

 

∫ ++−=

t
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Hence, substituting (3.6) into (3.5) multiplying both sides by 

v(t) and denoting  

)();()( 0,0 tvutxDtz uxu ===   

 

we have 
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Therefore, differential equation (3.6) can be expressed as 

follows 

 

)()0,0()()()0,0()()( tvFDtBvtzFDtAztz ux +++=&

     (3.8) 

 

Hence Lemma 3.2 follows. 

 

 

4. CONTROLLABILITY CONDITIONS. 

 

In this section we shall study constrained local relative 

controllability in [0,T] for semilinear dynamical system (2.1) 

using the associated linear 2n-dimensional control dynamical 

system 

 

z'(t) = Cz(t) + Du(t)   t∈[0,T]  (4.1) 

 

with zero initial condition z(0)=0, where 

 

C = A + DxF(0,0)  D = B + DuF(0,0)  (4.2) 

 

The main result is the following sufficient condition for 

constrained local controllability of the semilinear second 

order dynamical system (2.1). 

 

Theorem 4.1 Suppose that 

(i) f(0,0) = 0, 

(ii) Uc⊂U is a closed and convex cone with vertex at zero, 

(iii) The associated linear control system (4.1) is Uc-globally 

controllable in [0,T]. 

 

Then the semilinear second order stationary dynamical control 

system (2.1) is Uc-locally controllable in [0,T]. 

 

Proof. Let us define for the nonlinear dynamical system (3.1) 

a nonlinear map g:L∞([0,T],Uc)→X by g(u) = x(T,u). 

 

Similarly, for the associated linear dynamical system (4.1), we 

define a linear map H:L∞([0,T],Uc)→X by Hv = z(T,v). 

 

By the assumption (iii) the linear dynamical system (4.1) is 

Uc-globally relative controllable in [0,T]. Therefore, by the 

Definition 2.2 the linear operator H is surjective i.e., it maps 

the cone Uad onto the whole space X. Furthermore, by Lemma 

3.2 we have that Dg(0)=H. 

 

Since Uc is a closed and convex cone, then the set of 

admissible controls Uad=L∞([0,T],Uc) is also a closed and 

convex cone in the function space L∞([0,T],U). Therefore, the 

nonlinear map g satisfies all the assumptions of the 
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generalized open mapping theorem stated in the Lemma 3.1. 

Hence, the nonlinear map g transforms a conical 

neighborhood of zero in the set of admissible controls Uad 

onto some neighborhood of zero in the state space X. This is 

by Definition 2.1 equivalent to the Uc-local relative 

controllability in [0,T] of the semilinear dynamical control 

system (2.1). Hence, our theorem follows. 

 

In practical applications of the Theorem 4.1, the most difficult 

problem is to verify the assumption (iii) about constrained 

global controllability of the linear stationary dynamical 

system (4.1) (Klamka, 1991, 1996, Son, 1990). In order to 

avoid this disadvantage, we may use the following Theorem. 

 

Theorem 4.2. (Klamka, 1991, 1993, 1996, Son, 1990). 

Suppose, that the set Uc is a given convex cone with vertex at 

zero and a nonempty interior in the space of control values 

R
m
.  

 

Then the associated linear dynamical control system (4.1) is 

Uc-globally controllable in [0,T] if and only if 

 

(1) it is controllable without any constraints, i.e.  

 

rank[D,CD,C
2
D,...,C

n-1
D] = 2n, 

 

(2) there is no real eigenvector v∈R
n
 of the matrix C

tr
 

satisfying inequalities 

 

v
tr
Du≤0, for all u∈Uc. 

 

It should be pointed out that for the single input semilinear 

second order dynamical systems (2.1), associated linear 

dynamical control system (4.1), i.e. for the case of scalar 

controls and m=1, Theorem 4.2 reduces to the following 

Corollary. 

 

Corollary 4.1 (Brammer, 1978, Klamka, 1991, Son, 1990). 

Suppose, that the dynamical system (2.1) has single input, i.e. 

m=1 and Uc=R
+
.  

Then the associated linear dynamical control system (4.1) is 

Uc-globally controllable in [0,T] if and only if it is 

controllable without any constraints, i.e.  

 

rank[D,CD,C
2
D,...,C

n-1
D]=2n,  

 

and matrix C has only complex eigenvalues. 

 

Remark 4.1 It should be stressed that the important advantage 

of the Corollary 4.1 is that instead rather difficult condition 2 

given in Theorem 4.2 it is enough to verify only eigenvalues 

of the matrix C. 

 

5. EXAMPLE 

 

Finally, let us consider constrained controllability of the 

simple illustrative example. Let the semilinear second-order 

finite-dimensional dynamical control system defined on a 

given time interval [0,T], has the following form 
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Therefore, n=2, m=1, w(t)=(w1(t),w2(t))
tr
∈R

2
=W, 

u(t)∈Uc=R
+
, and using the notations given in the previous 

sections matrices G and H and the nonlinear mapping f have 

the following form 
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Moreover, let the cone of values of controls be a cone of 

positive numbers i.e., Uc=R
+
, and therefore, the set of 

admissible controls has the following form Uad=L∞([0,T],R
+
). 

Hence, we have 
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Therefore, the characteristic equation of the matrix C det(sI-

C)=s
4
+1=0 and hence, the matrix C has only complex 

eigenvalues. Moreover, we have 
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Hence, both assumptions of the Theorem 4.2 are satisfied and 

therefore, the associated linear 2n-dimensional dynamical 

control system (4.1) with above matrices C and D is R
+
-

globally controllable in a given time interval [0,T]. Moreover, 

all the assumptions stated in the Theorem 4.1 are also 

satisfied and thus the second-order semilinear dynamical 

control systems (5.1) is R
+
-locally controllable in [0,T].  

 

6. CONCLUSIONS 

 

In the paper sufficient conditions for constrained local 

controllability near the origin for semilinear second-order 

stationary finite-dimensional dynamical control systems have 

been formulated and proved. It was generally assumed, that 

control values are in a given convex cone with vertex at zero 

and nonempty interior. In the proof of the main result 

generalized open mapping theorem (Robinson) has been used. 

These conditions extend to the case of constrained 

controllability of second-order finite-dimensional semilinear 

dynamical control systems the results published in (Klamka, 

1991, 1993, 1996) for unconstrained nonlinear systems. 

 

The method presented in the paper is quite general and covers 

wide class of semilinear dynamical control systems. 

Therefore, similar constrained controllability results may be 

derived for more general class of semilinear dynamical 

control systems. For example, it seams, that it is possible to 

extend sufficient constrained controllability conditions given 

in the previous sections for more general class of semilinear 

dynamical control systems with single point delay in the 

control or with multiple point delays in the controls or in the 

state variables and for the discrete-time semilinear control 

systems. 
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