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Abstract: This paper presents the tracking control of a five-degrees-of-freedom nanopositioner. This 
nanopositioner is actuated by piezoelectric actuators. Capacitive gap sensors are used for position feedback. 
Firstly, the modified Prandtl-Ishlinskii (MPI) model is used to model the hysteresis nonlinearity of 
piezoelectric actuator, and then its inverse is used to cancel out the hysteresis nonlinearity. In order to 
design the feedback controller, the linearized open-loop characteristics of this nanopositioner are 
investigated. Based on the results of investigation, each pair of piezoelectric actuator and corresponding 
gap sensor are treated as independent systems and modeled as a uncertain first order linear model. When 
the model is identified, the linear system model with uncertainty is used to design the controller. The 
sliding-mode disturbance (uncertainty) estimation and compensation scheme is used in this study. 
Experimental results are given to show the effectiveness of the proposed method. 

 

1. INTRODUCTION 

Due to the progress in precision engineering, a growing 
number of motion control applications require sub-
micrometer position accuracy. When performing a specific 
manufacturing or inspection task, often multiple axes must 
be controlled in coordination. In the literatures (Gao et al., 
1999, Seugling et al., 2002, Shen et al., 2007a, Chang et al., 
1999a, b, Ku et al., 2000, Jywe et al., 2004), several multi-
degree-of-freedom precision motion stages were reported. 
Both of these precision motion stages are actuated by 
piezoelectric actuators. 

It is well known that the piezoelectric actuator has many 
advantages (Ku et al., 2000, Cruz-Hernamdez et al., 2001) 
such as: 1) there are no moving parts; 2) the actuators can 
produce large forces; 3) they have almost unlimited 
resolution; 4) the efficiency is high; and 5) response is fast. 
However, it also has some bad characteristics such as: 1) 
hysteresyis behaviour; 2) drift in time; 3) temperature 
dependence. Hysteresis characteristics are generally 
nondifferentiable nonlinearities and usually unknown, this 
often limits system performance via, e.g., undesirable 
oscillations or instability. Therefore, it is difficult to obtain 
an accurate trajectory tracking control. 

Recently, several methods have been reported for the 
trajectory tracking control of a piezoelectric-actuated system. 
For a survey, please refer the articles (Shen et al., 2007a, b).  

In this paper, tracking control of a five-degrees-of-freedom 
nanopositioner is presented. Actuation of this nano-stage is 
done with piezoelectric actuators. Capacitance-type gap 
sensors are used for position measurement. Firstly, the 
structure of this nanopositioner is described. Then, the open-
loop system characteristics are experimentally investigated. 
The modified Prandtl-Ishlinskii (MPI) model (Kuhnen et al., 
2002, Kuhnen, 2003) is used to model the hysteresis 
nonlinearity of piezoelectric actuator and then its inverse is 
used to cancel out the hysteresis nonlinearity. Base on the 
results of investigation, each pair of piezoelectric actuator 
and corresponding gap sensor are treated as independent 
systems and modelled as an uncertain first order linear model. 
In this study, the sliding-mode uncertainty (disturbance) 
estimation and compensation scheme (Utkin et al., 1999, 
Shen, 2002, Shen et al., 2007a, b) is used to compensate the 
uncertain system. Finally, the experimental results are 
presented. 

 
2. THE NANOPOSITIONER AND EXPERIMENTAL 

SETUP 

The structure of the nanopositioner is shown in Fig. 1. This 
nanopositioner is a flexure hinge-based stack-type design 
and can provide heavy payload (more than 2 kilogram) 
(Jywe et al., 2004). All the parts are out of medium carbon 
steel. It is composed of six piezoelectric actuators, six 
preload adjusting mechanisms, a rigid base, eight rotational 
flexure hinges; a four-side flexure hinges fixture and six 
capacitance-type gap sensors. The actuators were fastened at 
each end to the rigid base using the preload adjusting 
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mechanisms. These actuators are set up to provide the 
translational motion of the X-axis (X), Y-axis (Y), Z-axis (Z) 
and the uniformly rotational motion along the X-axis ( xθ ) 
and Y-axis ( yθ ). Gap sensors are placed to measure the 
displacement of each sides of the stage platform and the 
displacements of X and Y directions. Moreover, six 
micrometers are provided to adjust the mechanical zero point 
of the gap sensors. 
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Fig. 1. The structure of the nanopositioner. 
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Fig. 2. The relation between 2Z , 4Z  and Z , xθ . 

Base on the geometric relation (refer to Fig. 2), the relations 
between 2Z  (The displacement measured by sensor 2Z ), 4Z  
and Z (The displacement of the centre of the stage platform 
in Z-axis), xθ  can be obtained as xrZZ θsin2 −=  and 

xrZZ θsin4 +=  respectively. Where r  (25.5mm) is the 
half of the distance between the centre of sensors 2Z  and 2Z . 
Note that xθ  is small (inside 60±  second), therefore, 

xx θθ ≈sin . Similarly, the relations between 1Z , 3Z  and Z, 

yθ  can be obtained. The relations between 1Z , 2Z , 3Z , 4Z  
and Z, xθ , yθ  can be summarized as  
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The piezoelectric actuators (PSt150/7/20 Vs12) that we used 
are manufactured by Piezomechanik GmbH with nominal 
expansion 20 mμ  (at 150V). The range of input voltage to 
the piezoelectric actuators is from 0 to 150V. The gap 
sensors (D-015) are also from Piezomechanik GmbH. The 
measured range of the gap sensors are extended by a factor 
of three. Therefore, total ranges of the gap sensors are 45 mμ  
with a sensitivity of 0.222 mV μ/ . There are six piezoelectric 
actuators and six gap sensors, thus the whole control system 
have six inputs and six outputs. Control of this 
nanopositioner is done with a controller board with a Power 
PC central processing unit (DS1103, dSPACE GmbH). The 
sampling rate of the control algorithm was 10 KHz. The 
resolution of A/D converters is 16-bit.  

 
3. OPEN-LOOP CHARACTERISTICS OF THE 

NANOPOSITIONER 

In order to design the controller properly, it is necessary to 
understand the open-loop characteristics of this 
nanopositioner. Firstly, the maximum moving range and 
hysteresis nonlinearity of piezoelectric actuators are 
investigated by static tests. A low frequency (0.5Hz) triangle 
wave is used to drive the piezoelectric actuators respectively 
and the displacements measured by sensors are recorded. 
From the results, it is found that the moving ranges of X, Y, 

1Z , 2Z , 3Z  and 4Z  are about 13.6 mμ , 11.5 mμ , 15 mμ , 
16 mμ , 14.5 mμ  and 14.5 mμ  respectively. Moreover, the 
coupling effects between X, Y, 1Z , 2Z , 3Z  and 4Z  are less 
than 18%.  

The frequency-response experiments also are conducted. 
When measuring the frequency response, a bias voltage was 
added to one actuator to push one side of the stage platform 
to the centre of the moving range. Then, a random excitation 
signal was sent to this piezoelectric actuator and the 
displacements are measured by the gap sensor. In order to 
reduce the effect of hysteresis nonlinearity, the amplitude of 
the excitation signal is kept small. Fig. 3 shows the test 
results obtained by driving actuator X. As seen in Fig.3, the 
coupling effects are less than 18% in magnitude. This 
coincides with the results of static test. A linear dynamic 
model, represented as a transfer function in the Laplace 
domain, relating the input voltage of actuator X, to the output 
of sensor X, was estimated. The poles of this model are {-
430, -7600 ± j31400}. It is found that the slowest pole is -
430 and the others poles are more than ten times faster this 
pole. Therefore, it is possible to model the sub-system by a 
first-order transfer function. 

4. SYSTEM MODELING AND CONTROLLER 
DESIGN 

In this section, hysteresis model, system dynamic model and 
controller design for the nanopositioner are presented. For 
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simplicity, the whole control system was divided into six 
single-input-single-output sub-systems. Each sub-system 
consisted of a piezoelectric actuator and its corresponding 
gap sensor. Then, the controllers were designed for each sub-
system independently and regarded the coupling effects 
between each sub-system as disturbances. 
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Fig. 3. Frequency response of the nanopositioner (By driving 
actuator X.). 

 

 
Fig. 4. The backlash operator. 

4.1 Modified Prandtl-Ishlinskii hysteresis model 

There are two elementary operators in the MPI hysteresis 
model. One is the backlash operator (see Fig. 4) that is 
defined by 

]),([)( 0ykTxHkTy srs =                                            (2) 
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ss

ssr
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where x  is the control input, sT  is the sampling interval, k  
indicates the sampling point ( snk ≤≤1 , sn  is the quantity of 
sampled data), y  is the output of the operator, and r  is the 
magnitude of the backlash. The initial condition of (2) is 
given by 

}},)0(min{,)0(max{)0( 0yrxrxy +−=                (4) 

where the initial state Ry ∈0 , and is usually but not 
necessarily initialized to 0. The other operator is the one-sided 
dead-zone operator (see Fig. 5) that is defined by 
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where Rd ∈  is the threshold of the operator. 

Hysteretic nonlinearities can be modelled by a linearly-
weighted superposition of many backlash operators with 
different magnitudes and weight values in series with a 
linearly-weighted superposition of many one-sided dead-zone 
operators with different thresholds and weight values given by 
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where hiw  and sjw  are the weightings of the backlash 
operators and dead-zone operators, ir  are the magnitude of 
backlashes sorted so that nrrr <<<= ...0 10 , jd  are the 
threshold values sorted so that  

mm ddddd <<<=<<< −− ...0... 101 , 

and iy0  are the initial states. The values of ir  and jd  are 
usually chosen to be equally spaced in the admissible value 
ranges. 
 

 
 

Fig. 5. The one-sided dead-zone operator. 

4.2 Inverse model of hysteretic nonlinearities 

When the weights of the backlash operators and dead-zone 
operators satisfy some constraints, the inverse model of ][xΗ  
exists and is given by (Kuhnen, 2003) 
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The parameters of the inverse model can be found by 

0
0

1
h
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Fig. 6 shows the hysteresis nonlinearity and its MPI model 
( 15=n , 4=m ) of actuator 2Z . It can be seen that the model 
can match the hysteresis nonlinearity very well. 

4.3 System Dynamic Model 

Based on the test results described in last section, each sub-
system can be modelled by a first order uncertain linear 
system as shown in Fig. 7. Where u  is the input of the 
inverse hysteresis model, H is the hysteresis nonlinearity of 
the piezoelectric actuator, d  represents the disturbance and 
the first order differential equation  

vxxtT =+Δ+ &))(1( ,                              (18) 

describes the dynamic behaviour of the sub-system. Where 
x  is the displacement, T is the nominal time constant and 

)(tΔ  represents the uncertainty. Parameter T and the bound 
of )(tΔ  can be determined by doing step response tests at 
various working points. 
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Fig. 6. Hysteresis nonlinearity and its MPI model of actuator 

2Z . 
 

From Fig. 7, v  can be represented as 

)()(Ku tdtNv ++= ,                              (19) 

where K is the linearized gain (Equal to 1 after the inverse 
model compensation.) and )(tN  represents the remained 
nonlinear uncertain part of the hysteresis. From (18) and (19), 
the following dynamic equation can be obtained:  

)(t
T
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T
xx φ++−=&                               (20) 

where  

)1(
)()(

Δ+
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T
dNKuxtφ  

represents the disturbance and uncertainties. 
 

 
Fig. 7. Model of the sub-system. 

 
4.4 Sliding-mode Controller Design 

This subsection describes how to design the sliding mode 
controller. In this study, the sliding mode disturbance 
(uncertainty) estimation and compensation scheme is applied 
to design the closed-loop controller for the sub-system. 

Let dx  be the desired displacement, which may be time 
varying. Define 

xxe d −=                                      (21) 

as the tracking error. From (19) and (20), the error dynamics 
can be obtained as 

)(tu
T
K

T
xxxxe dd φ−−+=−= &&&& .              (22) 

Let the control law be 

 dd uxe
K
T

K
xu +++= )( &λ                      (23) 
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where λ  is the feedback gain to be designed so that the error 
dynamic will have the desired response while the system is 
free of disturbance and uncertainty, and du  is the uncertainty 
and the disturbance compensation component yet to be 
determined by the sliding mode estimator. 

Defining the switching function as 

ezS −=                                           (24) 
with 

)0()0(   , ezu
T
Kez d =+−−= ψλ&                     (25) 

where z  is the state variable of this auxiliary process, ψ  is 
the switching action assigned as  
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and the positive constant η  satisfies 

)(tφη >                                         (27) 

Ensuring a sliding regime 0=S  requires consideration of 
the Lyapunov candidate 25.0 SV = . Differentiating V with 
respect to time and substituting (22-25) to obtain 

( )[ ])()(sign)( tSSezSV φη +−=−= &&&                (28) 

From (27) and (28), it is seen that  

0 if0 ≠< SV&                              (29) 

Thus the sliding condition is satisfied. Note that )0()0( ez = , 
therefore 

0=S   for  0=t                                  (30) 

From (29) and (30), it can be concluded that the sliding mode 
exists at all times, i.e., 

0=S&   for all 0≥t                           (31) 

Denote the equivalent value of ψ  as eqψ . Since 0=S& , eqψ  
can be determined from (22), (24) and (25): 

φψ −=eq                                    (32) 

This means that the equivalent value of ψ  equals the 
uncertainties and disturbances. By selecting KTu eqd /ψ= , 
the uncertainties and disturbances can be compensated. It 
was shown in (Utkin et al., 1999) that the equivalent eqψ  is 
equal to the average value measured by a first-order linear 
filter with the switched action as its input. Therefore, du  can 
be written as 

eqavd K
T

K
Tu ψψ ==                          (33) 

with 
ψψψτ =+ avav& .                             (34) 

The time constant τ  should be made small enough that the 
plant and disturbance dynamics are allowed to pass through 
the filter without significant phase delay. Substituting (34) 
and (23) into (22) yields 

φψλ −−=+ eqee& , 

which is equivalent to 0=+ ee λ& . This equation represents 
the desired error dynamics. This controller is almost as 
simple as PID controller. 

When designing the controllers, the nominal time 
constant T  and the bound of uncertainty Δ  can be obtained 
by step response tests. It was found that the nominal time 
constants of sub-systems X, Y, 1Z , 2Z , 3Z  and 4Z  are 
3.5ms, 3ms, 3ms, 3.5ms, 3.5ms and 4ms respectively. In 
order to obtain wider bandwidth, λ  for each sub-system are 
chosen as large as possible. Finally, the controller parameters 
for all sub-system are chosen to be the same as 550=λ , 

15=η  and 0036.0=τ . 
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Fig. 7. Control results of tracking a circle on X-Y plane. 

 

 
Fig. 8. Result of error analysis. 

 
 

5. CONTROL RESULTS AND FUTURE WORKS 

In order to evaluate the performance of the controller, some 
experiments were conducted. Due to limited space, only one 
experimental result is shown here. Fig. 7 depicts the control 
results of tracking a circle with diameter 8 mμ  in X-Y plane, 

0=xθ , 0=yθ  and Z fixed at 9 mμ . Fig. 8 shows the result 
of error analysis. It can be seen that the maximum deviation is 
about 0.0312 mμ  (0.78%). The errors in positions 1Z  and 2Z  
are inside nm15±  while the errors in positions 3Z  and 4Z  
are inside nm40± . The errors in positions 3Z  and 4Z  are 
larger than those in positions 1Z  and 2Z . The reason is that 
the actuators of X-axis and Y-axis act in positions 3Z  and 4Z . 
This makes the coupling effects obvious.  

In this study, the whole control system was divided into six 
single input single output subsystems and treated the coupling 
effects as disturbances. In the future, we will take the coupling 
effects between X, Y, 3Z  and 4Z  into consideration to 
improve the performance of tracking control. 
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