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Abstract:
Sparse representations techniques have become an active domain of research in signal processing
with numerous applications in compression and coding, for instance. They are mostly based on
a combined `2 − `1 criterion, where the least-squares-part ensures closeness to the observations
and the `1-part sparsity. We replace the least-square-part by a `∞-part and investigate the
recovery conditions of the so-obtained `∞ − `1 criterion. We then propose an algorithm, that
minimizes the criterion, in a finite number of steps.

1. INTRODUCTION

There is currently a huge interest in sparse representations
which is a technique that consists in decomposing a signal
into a small number of components chosen from a user-
designed over-complete set of vectors. It is mostly used to
obtain a simple approximate model for a complex signal
for compression or coding purposes in audio or video sig-
nal processing (Bertalmio [2003], Zibulewsky [2001]), but
theoretical investigations tend to extend its applicability
to a variety of new domains, as for instance, compressed
sensing or compressed sampling, in which one investigates
the possibility to sample a signal at a rate much lower
that the Nyquist rate with a controlled loss in information
(Candes [2006], Donoho [2006], Candes [2006b]).

The current interest has been initiated in (Donoho [2001])
but earlier investigations had been proposed in different
areas, (Mallat [1993], Gorodnitski [1997], Fuchs [1997],
Sacchi [1998]).

In (Donoho [2001]), and later in e.g. (Gribonval [2003],
Fuchs [2004]), the following problem is considered. Given
a n×m matrix A with m � n and a vector b that indeed
admits an exact sparse representation, say b = Axo, with
xo having just a few non-zero components, when is it
possible to recover xo? It is shown that, if the number
of non-zero entries in xo is smaller than a given bound,
then xo is the unique sparsest representation. It is also
established that one can replace the exhaustive search for
the sparsest solution by the easy to solve linear program

min
x
‖x‖1 s.t. Ax = b, (1)

while keeping similar bounds on the number of non-zero
entries in xo. But seeking the sparsest exact representation
may be useless, either because there is none, or there
is one, but observed in additive noise. An approximate
reconstruction is often preferable and it then makes sense
to replace (1) by (Fuchs [2004])

min
x
‖x‖1 s.t. ‖Ax− b‖22 ≤ ρ2, (2)

with ρ2 the tolerance to be defined, or, somehow equiva-
lently, by the following criterion

min
x

1
2
‖Ax− b‖22 + h‖x‖1, h > 0 . (3)

One seeks the representation with smallest `1-norm, that
yields an approximation error smaller than a specified
threshold. This criterion is probably the most often con-
sidered currently and fast dedicated algorithms that are
quite efficient and thus allow to handle problems of large
dimensions, have been developed (Osborne [2000], Efron
[2004], Maria [2006]). In the sequel, we propose to replace
the criterion (2) by (Fuchs [1997])

min
x
‖x‖1 s.t. ‖Ax− b‖∞ ≤ ρ.. (4)

where the least-squares-part is replaced by an `∞-norm,
i.e., a threshold on the maximal reconstruction error It
is a convex criterion that can be transformed into a linear
program, but we will handle it in a different way, to get the
recovery conditions that will tell us under which conditions
is it possible to recover xo from the optimum of (4) and
to develop an optimization algorithm that converges in a
finite number of steps.

2. THE CRITERION

2.1 Preliminary remarks

We consider the following problem:

min
x
‖x‖1 subject to ‖Ax− b‖∞ ≤ ρ.,

where ρ > 0 has to be fixed by the user. If one splits
the components xi of x into x+

i = max(xi, 0), x−i =
max(−xi, 0) and replaces xi by x+

i −x
−
i and |xi| by x+

i +x−i
and further introduces slack variables, one can transform
this problem into a linear program in standard form and
get its dual. Some interesting generic information about
the optimum can be deduced as well as the optimality
conditions, we will however obtain them in a different way
below
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2.2 Optimality conditions

Since both ‖x‖1 and ‖x‖∞ are not continuously differen-
tiable at all points, we introduce the sub-differential of
these functions at x, it is a set of vectors, called the sub-
gradients at x, denoted ∂‖x‖p with p=1 or ∞, one has
Fletcher [1991]

∂‖x‖p = {u|uTx = ‖x‖p, ‖u‖q ≤ 1} (5)

where q is such that 1
p + 1

q = 1. Since for p=1, q=∞ and
vice versa, one says that `1 and `∞ are dual norms. From
(5), it follows that

∂ ‖x‖1 = {u|ui = sign(xi) if xi 6= 0 and |ui| ≤ 1 else}

∂ ‖x‖∞ = {u| |xi| = ‖x‖∞ ⇒ xiui ≥ 0, |xi| < ‖x‖∞

⇒ ui = 0; ‖u‖1 = 1 if x 6= 0, ‖u‖1 ≤ 1 else}

Note that if f is differentiable at x then ∂f(x) reduces to
the gradient. It is now possible to get optimality conditions
for (4), by simply writing the first order necessary optimal-
ity conditions, that are also sufficient, since the criterion is
convex. We will rather write the dual of (4) to obtain the
optimality conditions in a form that is more convenient for
latter use.
Lemma 1. The dual of (4) is

max
d

bT d− ρ‖d‖1 s.t. ‖AT d‖∞ ≤ 1 2 (6)

Proof: We first rewrite (4) as
min
x, c

‖x‖1 s.t. ‖c‖∞ ≤ ρ and Ax− b = c.

Introducing Lagrange multipliers λ ∈ R+ and d ∈ Rn, the
Lagrangian of this problem is

`(..) = ‖x‖1 + λ(‖c‖∞ − ρ)− dT (Ax− b− c),

and defining φ(λ, d) = minx, c `(x, c, λ, d), the dual
problem is maxλ≥0, d φ(λ, d).

In order to evaluate φ(λ, d), we first take the minimum of
`( . ) with respect to x

min
x
‖x‖1 − dTAx+ ... = min

x
xTu− xTAT d+ ......

This minimum may not be finite for all d, but, since we
latter take the maximum in d, theses cases can be ignored.
The minimum is finite if and only if AT d = u for some
u ∈ ∂‖x‖1. From (5), it follows that such a point exists
only if ‖AT d‖∞≤1 and the contribution of the terms in x
to φ( . ) is then zero.

Similarly, the minimum in c may not be finite for all d. It
is finite if and only if λv+d = 0 for some v ∈ ∂‖c‖∞. Such
a point exists only if ‖d‖1 ≤ λ and the contribution of the
terms in c to φ is then zero. The dual problem is thus

max
λ≥0, d

dT b− λρ s.t. ‖AT d‖∞ ≤ 1, ‖d‖1 ≤ λ

and taking the maximum with respect to λ ≥ 0 leads to
the announced result. 2

Using the primal and the dual, which are both convex
programs, one has the following result.
Theorem 2. The optima of (4) and (6) are respectively x
and d, if and only

Ax− b = −ρv and AT d = u (7)

for some u ∈ ∂‖x‖1 and v ∈ ∂‖d‖1 2

Proof: The proof is immediate. Both points x and d are
feasible and lead to equal costs. 2

We will use the two relations in (7) to both obtain recovery
conditions and develop the announced iterative algorithm.

2.3 Some specific notations

Partitioning will play an important role in the sequel and
we now introduce the, somehow awkward, notations that
we will use. We will split or partition the optimum x, of
dimension m, into its non-zero components, we denote
x̄, and its zero components ¯̄x, and partition accordingly
(the columns in) A into Ā and ¯̄A. It then follows that,
for instance, Ax = Āx̄ or from (5), that the sub-gradient
u ∈ ∂‖x‖1 is such that ū =sign(x̄) and ‖¯̄u‖∞ ≤ 1.

We will also need d-induced partitions of the rows of A.
We partition (the optimal) d into its non-zero components
d and d = 0, and accordingly the rows of A into A and
A. Similar d-induced partitions apply to v, Ā and ¯̄A, for
instance. Again since v ∈ ∂‖d‖1, one has v =sign(d) and
‖v‖∞ ≤ 1.

We may thus partition A, either in block-columns Ā and
¯̄A, or in block-rows A and A, or, combining the two, into
four blocks.

3. RECOVERY CONDITIONS

We now establish the following recovery conditions

Theorem 3. The solution xo of Ax = b, with b = Axo =
Āox̄o, and Āo a full-rank matrix, can be recovered from
the unique optimum point x of (4), for ρ sufficiently small,
if there exists a

d = arg min
d
‖d‖1 s.t. ĀTo d = sign(x̄o),

that satisfies ‖ ¯̄A
T

o d‖∞ < 1. 2 (8)

Comment: The optimum x of (4) will not be equal to xo for
ρ > 0. What one asks for, is that the sub-gradient u of ‖x‖1
at the optimum of (4) satisfies ū =sign(x̄o) and ‖¯̄u‖∞<1.
We will prove, that for ρ sufficiently small, the optimum x
of (4) is of the form x = xo − ρz with x̄(ρ) = x̄o − ρz̄ and
¯̄z = 0, for some vector z to be defined below.

Proof. If d satisfies (8), it is also the optimum of

min
d
‖d‖1, s.t. ĀTo d = sign(x̄o), ‖ ¯̄A

T

o d‖∞ ≤ 1. (9)

The dual of this optimization problem is

max
z

sign(x̄o)z̄ − ‖¯̄z‖1, s.t. ‖Āoz̄ + ¯̄Ao¯̄z‖∞ ≤ 1 (10)

where we have imposed on z the xo-induced partition.
But, since the optimum z of (10) is equal to the optimal
Lagrange multipliers of (9), it follows (see the strict
inequality in the condition of (8)), that indeed ¯̄z = 0, which
validates this partition a posteriori.
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Using the optimum d of (9, 8) and the associated optimum
z of (10 for which ¯̄z = 0, we define u = AT d, v = Az and
x = xo − ρz and check that the so-obtained quadruple x,
u, d, and v satisfies (7), this permits to complete the proof.

Indeed, we have already seen that xo and z have the
same partition, which is thus also valid for x. One gets
Ax = Axo − ρAz = b − ρv. From v = Az, it follows
v = Az = Āoz̄ and this vector has all the properties
required to belong to ∂‖d‖1. The same holds for u = AT d
which has all the required properties for a vector in ∂‖x‖1
2

To summarize, we have shown that if Theorem 2. is
satisfied, the optimum x of (4) can be written x = xo− ρz
with z the optimum of (10) that admits the same partition
as xo. It follows that xo can be recovered from x, for ρ
sufficiently small.

As opposed to the recovery conditions one gets for the
`2-norm (2,3), for which the equivalent of (8), admits
a explicit solution (Fuchs [2004]), that can be further
transformed into explicit conditions on the sparsity of
xo, no such miracle happens for the `∞-norm, since the
optimum of (8) has no explicit analytical expression.

Anyway, these conditions are purely theoretical, quite con-
servative, though sharp and in practice they are essentially
un-usable.

4. OPTIMIZATION ALGORITHM

4.1 Introduction

The solution of (4) can be obtained, for instance, applying
the simplex algorithm to (4), rewritten as a linear pro-
gram. One can also use the linear programming theory to
establish that if, for the ρ of interest, the optimum d of
the dual has p ≤ n non zero components then the same
holds generically for the optimal x of the primal which is
thus sparse.

We will not use the linear programming approach but the
two relations in (7) to develop an algorithm that solves
(4) in a finite number of steps and should thus be more
efficient than the standard linear program solvers.

Due to the presence of u and v, which belong to sets, the
two relations in (7) are far from defining the optimal x
and d. They nevertheless carry a lot of information, that
is helpful if one is interested in the way the optima x and
d vary with ρ.

The idea of the algorithm is to deduce from the two
relations in (7) how the optimal x and d vary with ρ, to
observe that this is indeed feasible as long as ρ belongs to
an interval whose boundaries are easy to obtain from (7)
and that indeed one can also propagate the optima to the
neighboring interval. One then, simply, starts with ρ large,
(ρ > ρ0 = ‖b‖∞), for which the optimum x is at zero and
follow the optimum x(ρ) for diminishing ρ. The number of
nonzero components in x(ρ) essentially increases and never
exceeds n. Though we are only interested in the optimum
for a given value of ρ, we will build it, for decreasing ρ,
and stop when we attain the ρ of interest.

More precisely, as ρ decreases, there is a first interval
] ρ1, ρ0], in which the optimum has just one non-zero
component, then a second interval for which it has two
non-zero components, and so on. The conditions in (7)
tell us how to get the boundaries of the intervals, how to
propagate the optima within the intervals, and, it remains
to find out how to cross the boundaries.

4.2 Development

Assume we have the quadruple x, u, d, v, that satisfies the
optimality conditions (7) for a given ρ, we will extend it
within an interval in ρ. We partition the four vectors, using
the notations introduced in Section 2.3. The boundaries of
the intervals are precisely the values of ρ for which these
partitions change. We have already indicated, that x and d
have generically the same number, we denote p, of nonzero
components. It is the dimension of x̄ and d

From the second condition in (7), AT d = u, one essentially
deduces that ĀT d = ū, with Ā a square order-p matrix,
we assume invertible. Since ū =sign(x̄) is a constant vector
within the current interval, this tells us that d, and thus d
is invariant, within the interval.

The other condition Ax−b = −ρv, first becomes Āx̄ = b−
ρv, and, further, yields

Āx̄ = b− ρv and Āx̄ = b− ρv
Solving the first relation for x̄, and substituting in the
second, one gets

x̄(ρ) = Ā
−1
b− ρĀ−1

v (11)

and v(ρ) =
1
ρ
b− 1

ρ
Ā Ā

−1
b+ Ā Ā

−1
v. (12)

It follows that, as ρ varies, within the current interval, only
x̄ and v are varying, the remaining (six) parts in optimal
quadruple are invariant.

As ρ varies, two remarkable events can happen: a com-
ponent in v(ρ) becomes equal to ±1 or a component in
x̄(ρ) becomes zero. The upper bound ρu (lower bound ρl)
of the current interval is the ρ associated with the event
that happens first when ρ is increased (decreased). We will
only consider decreasing values of ρ but both events can
happen.

� If component ip+1 in v(ρ) becomes, say, +1 as ρ=ρl, this
means that the corresponding component in d, which is
zero, will become positive if ρ further decreases and will
thus need to be moved from d to d.

Quite generally, for ρ = ρl, there are two valid expressions
for x̄(ρ) the one above valid locally for ρ ≥ ρl and another
one, of dimension p+1, valid locally for ρ ≤ ρl and where
x̄(ρl) has a zero component. It is this last expression with
its associated new partitions that we need to find.

We know already that it is row ip+1, that changes in the d-
induced partition. For instance, row ip+1 is removed from
Ā and added to Ā which becomes, say Āt (the −t to notify
that we are in a transition phase), a (p + 1) × p matrix.
It remains then to identify the component jp+1 of ¯̄x that
becomes nonzero as ρ becomes slightly smaller than ρl.
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The index jp+1 cannot be deduced from (7). Indeed, since
d, which represents the Lagrange multipliers of the primal
(4), has p+1 nonzero components, this means that p+1
constraints will be active in the primal, locally for ρ ≤ ρl.
These are precisely those associated with Āt and the
primal (4) for, say, ρ = ρl−ε with small positive ε, reduces
to

min
x
‖x‖1 s.t. Atx = bt − ρvt (13)

By continuity, one knows that the components in x̄(ρl) will
remain nonzero in x̄(ρl−ε), and, one simply has to identify
which component xj ∈ ¯̄x has to be added to x̄ to yield the
optimum of (13). If we denote, locally, αj the j-th column
of ¯̄At and Bj the square order p+1 matrix Bj = [ Āt αj ],
the j-th potential solution of (13) is

x̄j(ρl − ε) = B−1
j (bt − ρlvt + εvt) = x̄j(ρl) + εB−1

j vt

and the sought-for index j is
jp+1 = arg min

j
‖B−1

j vt‖1,

since ‖B−1
j vt‖1 is the marginal additional cost in (13). One

can, indeed, obtain an explicit expression of the additional
marginal cost for each of the m − p potential solutions,
using the explicit expression of the inverse of the block-
columns matrix B.. The computational complexity of the
optimization is thus quite limited, though augmenting
with p.

� If, as ρ decreases, a component in x̄(ρ) becomes zero, for
ρ = ρl, this means that a component in x̄ has to be re-
moved from x̄, all the x-induced partitions wil change and
enter a transition phase. The square order p matrix Ā will
become Āt of dimension p× (p−1). From an optimization
point of view, since the dual has still p nonzero components
for ρ slightly smaller than ρl, a new component xjp selected
in ¯̄x will replace the exiting one. The problem to solve is
the same as above (13).

4.3 Initialization step

We now know how to propagate the optimal quadruple
within an interval (11, 12), how to get the boundaries of
the intervals, how to cross the boundaries, it remains to
indicate how to initialize the procedure. It follows easily
from (4), that the first boundary point is at ρ0 = ‖b‖∞. For
ρ > ρ0, the optimum of (4) is at zero. If i1 = arg maxi |bi|,
as ρ decreases, |bi1 | has to be decreased by introducing a
nonzero component in x. The most efficient, as far as the
`1-norm of x is concerned, component of x, is xj1 with
j1 = arg maxj |ai1,j |. One thus has Ā = ai1,j1 and this
completes the initialization step. The different parts of the
optimal quadruple are straightforward to obtain, (11), for
instance, is

xj1 =
bi1
ai1,j1

− ρ bi1
ai1,j1

,

within the first interval.

5. RELATIONS TO PREVIOUS WORKS

Several recent papers have proposed similar path-following
methods for solving (3) (Osborne [2000], Efron [2004],

Maria [2006]). All these methods are related to continu-
ation techniques, which have also been studied in the op-
timization literature (Allgower [1993]). When the solution
is sparse, i.e. when the (unknown) optimum has just a few
non-zero components, they are indeed very fast but their
computational complexity increases more than linearly in
the number of non zero components in the optimum. To
our knowledge, however, no such algorithms have been
proposed for the criterion (4).

We proposed a preliminary sketch of the algorithm de-
scribed above, in (Fuchs [2005]). It is recognized in image
coding, for instance, that the `∞ norm should be preferred
to the ubiquitous `2-norm that spreads and averages the
errors on the whole image and may thus potentially yield
poor edges coding.
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