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Abstract: Six models of antiangiogenic therapy are compared and analyzed from control 
theoretic point of view. All of them consist of a model of tumor growth bounded by the 
capacity of a vascular network developed by the tumor in the process of angiogenesis and 
different model of dynamics of this network and they are based on the idea proposed by 
Hahnfeldt et al. Moreover we analyse optimal control problems resulted from their use to 
treatment protocols design..  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Angiogenesis is a complex process which leads to 
the formation of new vessels and it is stimulated and 
controlled by molecular factors called activators 
(stimulators) and inhibitors (blockers) of 
angiogenesis. During progression of tumor these 
factors are released by tumor itself to develop its 
own vascular network which enables its growth and 
in the next stage determines possibility of cancer 
metastasis. Since this network is necessary for tumor 
development in late sixties of the last century a new 
anticancer therapy was proposed target of which was 
not directly the cancer cells but the new born 
vasculature. This therapy is known as antiangiogenic 
therapy and the idea is to reduce the tumor volume 
reducing its vasculature. It has been first time 
hypothesized by Folkman (1971, 1972) more than 
thirty years ago. The main Folkman’s suggestions are 
as follows: 
 
a) primary solid tumors go through a prolonged 

state of avascular growth (almost quiescent) in 
which maximum attainable size is 1-2 mm in 
diameter, and the necessary oxygen and nutrients 
are supplied by passive diffusion,  

 
b) these microscopic tumors can switch on 

angiogenesis by recruiting surrounding mature 
host blood vessels to start sprouting new blood 
vessel capillaries which grow and infiltrate the 
tumor mass thus setting the potential for 
metastatic spread,  

 
c) the angiogenic switch is triggered by elaboration 

by tumor cells of a growth factor (TAF),  
 
d) blocking tumor angiogenesis factor or simply 

destroying newly formed immature blood vessels 
may be used to affect tumor growth.  

 
The most important obstacle against successful 
chemotherapy is drug resistance acquired by cancer 
cells while the normal tissues retain sensitivity to the 
drugs.  
 
This negative feature of chemotherapy may be used 
as an advantage in the antiangiogenic therapy which 
is directed towards special part of normal tissues and 
only indirectly destroys tumor cells and it is why it 
has been called by Kerbel (1997) a therapy resistant 
to drug resistance. Therapy directed against tumor 
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vasculature does not exploit tumor cell sensitivity, 
relying instead on tumor suppression consequent to 
inhibition of associated vasculature. For more than 
ten years Folkman’s ideas were not followed by 
experimental or clinical investigations but now tumor 
angiogenesis belongs to the most inspiring areas of 
cancer research in oncology. Kerbel (2000) presents 
10 significant reasons for the explosive growth in 
tumor angiogenesis research and development of 
antiangiogenic drugs: 
 
1) The discovery of basic fibroblast growth factor as 

the first pro-angiogenic molecule(Folkman and 
Klagsburn, 1987). 

2) The discovery of vascular endothelial growth 
factor and its receptor tyrosine kinases on 
activated endothelial cells (Klagsburn and Soker, 
1993). 

3) The discovery of angiopoietins and their tyrosine 
kinase receptors (Davis and Yancopoulos, 1999). 

4) The discovery of endogenous inhibitors of 
angiogenesis (Folkman, 1995). 

5) The discovery of additional molecular markers in 
newly formed blood vessels (Bischoff, 1995). 

6) The development of quantitative assays for 
angiogenesis (Folkman and Haudebschild, 1980). 

7) Recognition of the prognostic significance of 
tumor angiogenesis(Weidner, 1995). 

8) Lack of acquired resistance to direct acting 
antiangiogenic drugs (Kerbel, 2000). 

9) The discovery of the impact of angiogenesis on 
liquid hematologic malignancies(D’Amato, et al, 
1994). 

10) The discovery of the accidental antiangiogenic 
effects of various conventional or new anticancer 
drugs (Denekamp, 1993). 

 
The complexity of the process of vascularization as 
well as the way in which inhibitors, stimulators and 
antiangiogenic drugs act results in the complex 
models (see e.g.Mantzaris and Webb, 2004)) 
applicable for simulation of the process but less 
useful in synthesis or even analysis of therapy 
protocols. The exception is a class of models 
proposed by Hahnfeldt et al (1999) who suggested 
that the tumor growth with incorporated 
vascularization mechanism can be described by 
Gompertz type or logistic type equation with variable 
carrying capacity which defines the dynamics of the 
vascular network.. Roughly speaking the main idea 
of this class of models is to incorporate the spatial 
aspects of the diffusion of factors that stimulate and 
inhibit angiogenesis into a non-spatial two-
compartmental model for cancer cells and vascular 
endothelial cells. The models considered here belong 
to this class. 
 
2. MODELS OF CANCER GROWTH INCLUDING 
VASCULARIZATION AND ANTIANGIOGENIC 

THERAPY 
 

The simplest model of population kinetics for cancer 
tissues is given by Malthusian growth which assumes 
exponential relationship between a size of the 
population and time. The dynamics is described by 
the equation: 
 
 0, (0)N aN N N= =&  (1) 
 
resulting in the following form of the solution: 
 
 0 , ln 2 /atN N e a PDT= =  (2) 
 
with N denoting the size of the  population and a 
Malthusian parameter defined by the inverse of the 
potential doubling time (PDT). The unlimited growth 
in this model can be avoided if we introduce a 
varying coefficient a(t) as in the Gompertz model: 
 

 0( ) , (0) ,
, (0)

N a t N N N
a a aβ α

= =

= − = ⇒

&

&
 (3) 
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0

teN N e
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The growth is bounded by: 
 

 /
0N N eα β

∞ =  (5) 
 
Which is called the carrying capacity in population 
dynamics. The same solution is obtained when we 
use the  non-linear Gompertz equation in the form: 
 
 / ln / 1/N N N N PDTβ ∞= − ≈&  (6) 
 
Hahnfeldt et al (1999) proposed to treat the carrying 
capacity which constraints the tumor growth as a 
varying tumor volume sustainable by the vessels and 
roughly proportional to the vessel volume: 
 
 ,   / ln /N K N N N Kβ∞ = = −&  (7) 
 
Although the equations (6) and (7) appear similar, 
the  carrying capacity is not constant in (7) but varies 
with changes of the volume of the vessels.  
 
Similar behavior may be obtained if the Gompertz 
type growth is substituted by a logistic one (called 
also Pearl-Verhulst growth). Then we have: 
 
 )/1(/ KNNN −= β&  (8) 
 
The dynamics of the growth of the volume K 
represented by its PDT depends on the stimulators of 
angiogenesis (SF), inhibitory factors secreted by 
tumor cells (IF) and natural mortality of the 
endothelial cells (MF): 
 
 ),,( IFSFMFfPDTk =  (9) 
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In (Hahnfeldt, et al, 1999) it has been assumed that 
the inverse of PDT is the sum of these three factors 
i.e. 
 
 IFSFMFPDTk ++=/1  (10) 
 
The spontaneous loss of functional vasculature 
represented by MF (e.g. through natural mortality of 
the endothelial cells) is supposed to be negative 
constant, the stimulatory capacity of the tumor upon 
inducible vasculature represented by SF (e.g. through 
angiogenic factors like vascular endothelial factor) is 
found to grow at rate KbNc slower than the 
endogenous inhibition of previously generated 
vasculature represented by IF (e.g. through 
endothelial cell death or disaggregation) where: 
 
 b + c ~ 2/3 (11) 
 
It results from the assertion that tumor driven 
inhibitors from all sites act more systematically 
whereas tumor-derived stimulators act more locally 
to the individual secreting tumor site. On the other 
hand analyzing a diffusion-consumption equation for 
the concentration of stimulator or inhibitor inside and 
outside the tumor, Hahnfeld et al concluded that the 
inhibitor will influence target endothelial cells in the 
tumor in a way that grows ultimately as the area of 
the active surface between the tumor and the vascular 
network which in turn is propotional to the square of 
the tumor diameter. It leads to the conclusion that IF 
is proportional to the tumor volume in power 2/3 
since volume is proportional to the cube of the 
diameter. The expression for K suggested in 
(Hahnfeldt, et al, 1999) has therefore the following 
form: 
 
 )(// 3/2 μλγ +−= NKNKK&  (12) 
 

μλγ ,,  being constant parameters representing the 
effect of stimulation, inhibition and natural mortality, 
respectively. The modification of this model 
proposed in ( D’Onofrio and Gandolfi, 1999) which 
also satisfies Hahnfeldt’s suggestions given by (11) 
assumes that the effect of SF and MF on the inverse 
of PDT K  is constant while the IF is proportional to 
the active surface of the area of tumor being in 
contact with the vascular network and the same to 
the square of the tumor radius: 
 
 )(/ 3/2 μλγ +−= NKK&  (13) 
 
Combinations of tumor growth models (7), (8) with 
vascular network models (12), (13) result in four 
nonlinear models of tumor angiogenesis. The 
interesting finding is that all these  systems have the 
same  nontrivial equilibrium point (N*,K*): 
 

* * 3/ 2/ / 0 (( ) / )N N K K N K γ μ λ= = ⇒ = = −& &  (14) 

 
The model is strongly nonlinear but by logarithmic 
change of variable and some scaling transformation 
we are able to simplify them and find their 
asymptoptic properties using standard Lyapunov type 
analysis of stability (local and global) – see e.g. 
(D’Onofrio and Gandolfi, 1999, Swierniak, et al, 
2006) for analysis of three of these models.  
More precisely by transformation: 
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we are led: 
• for model (7), (13) to the following quasi-linear 

system: 
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• and for model (8), (12) to the slightly more 
complicated system: 

 

 

))1()/1()(1(

,
,1

3/2 −++−=′

=′
−= −

x

yx

ezzz

zx
ez

ϑβγ

 (18) 

 
For other combinations of tumor and vascular 
network growth equations the resulting transformed 
models have similar form. 
 
Application of antiangiogenic therapy can be 
incorporated to the model by a factor increasing 
multiplicatively the mortal loss rate of the vessels. 
For example in the case of the model (13) it leads to 
the following equation: 
 

 2 / 3/ ( ( )),K K N u tγ λ μ η= − + +&  (19) 
 
where ( )u t denotes the dose of the agent scaled to its 
effect on vascular network and η is a constant 
parameter. For the constant dose U, the equilibrium 
points take the form: 
 

 * * 3/ 2(( ) / )N K Uγ μ η λ= = − −  (20) 
 
which according to the conditions of stability given 
in (D’Onofrio and Gandolfi, 1999) leads to the 
conclusion that for: 
 

 * 0U Kη γ μ≈ − ⇒ →  (21) 
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The form of condition (21) results from the 
suggestion that even if the dose is not exactly equal 
to the value found from the equilibrium condition the 
convergence to 0 takes place. In other words the 
vascular network and in turn the tumor can be 
eradicated. This conclusion is crucial for the 
philosophy of the entire analysis. It is enough to 
ensure that population of endothelial cells 
responsible for the angiogenesis behaves in the 
required way because the size of tumor population in 
some sense tracks the same transients. In (D’Onofrio 
and Gandolfi, 1999)  it has been proved that the same 
effect might be reached for periodic therapy with 
mean value satisfying condition (21) or greater. 
Nevertheless this condition is only necessary and not 
sufficient since for model (8), (12) eradication of the 
tumor depends on the shape of pulses in the periodic 
protocol. For the other models this condition is both 
necessary and sufficient. Yet another simplified 
model was proposed by Ergun et al (2003). In this 
case the growth of the vascular network is 
independent on the tumor size. 
 
 3/13/1/ KKKK λγ −= −&  (22) 
 
Or in the case when therapy is included: 
 
 3/13/1/ KuKKK ληγ −−= −&  (23) 
 
Since this equation is independent of the model of 
tumor growth the stability analysis in this case is 
much simpler than before. Nevertheless to have a 
complete model of the tumor growth in the vascular 
stage we should add one of the two proposed 
previously models of growth (Gompertz or logistic 
type) and thus we are led to two additional models. 
Although during simulation all the models lead to  
the similar evolution if uncontrolled their behaviour 
in the presence of  control modeling different 
therapeutic protocols may differ significantly. 
Moreover clinical interpretation of the modelling 
results is also sensitive to the choice of the model. 
 
 

3.OPTIMIZATION OF THERAPY IN FINITE 
HORIZON 

 
Constant or periodic therapies which ensure tumor 
eradication discussed previously have an important 
drawback. They should be applied for long therapy 
horizon. Shortage in the antiangiogenic drugs, their 
costs, and side effects cause that the parameters of 
treatment protocols and cumulated dose of the drugs 
should be bounded. The reasonable solution is to 
formulate optimal control problem for the system 
given by the proposed model and the control 
objective which adequately represents the primary 
goal of the therapy. In (Ergun, et al,2003) and 
(Ledzewicz and Schattler) the optimal control 
problem for  the Ergun’s model and  a free terminal 

time is solved. The authors found that optimal 
strategy consists of bang-bang (i.e. with the control 
switching between maximal and minimal values) and 
singular intervals (with intermediate values of the 
control variable). In (Swierniak, et al, 2006) we have 
proposed, for model (8), (13),  to optimize the 
protocol in the fixed finite time of therapy with the 
primary goal of finding  the control that maximizes 
TCP (tumor cure probability). This approach leads to 
the following equivalent form of an optimal control 
problem: 

 

m
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k

Utu

dttu
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k
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with known constraining constant parameters: .,ΞmU  
Due to isoperimetric form of the problem it could be 
transformed into the problem with the integral part of 
the performance index instead of the integral 
constrain on the control. Moreover we may use the 
transformed variables x and y (or x and z) to 
formulate the modified performance criterion in the 
form: 

 
β
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where state variables are defined by the equations 
depending on the model which is chosen from the six 
models mentioned. For the d’Onofrio-Gandolfi 
model with Gompertz type model for the cancer 
growth we have: 
 

 
βην

νϑ
/

)1('

,
3/2

−=
+−=

−=′

uey

xyx
x   (26) 

 
The weight coefficients h, g, r may change in broad 
ranges depending on the type of therapy used and the 
strength of the integral constrain. The additional term 
related to the volume of vascular network may be 
regarded as yet another constrain imposed on the 
possible dynamics of the system. On the other hand 
by the choice of the weighting coefficients we obtain 
a new possibility of analysis of the mutual 
dependence between the tumor growth and the 
volume of the vascular network. Thus it is reasonable 
to provide an extensive analysis of their effect on the 
solution of the optimal control problem. Necessary 
conditions of optimality can be found using 
Pontryagin maximum principle (Pontryagin, et al, 
1964) for Hamiltonian and adjoint variables p, q 
defined as 
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 2 / 3( ) (1 )xH ru qu p y x q eν ϑ= + + − + −  (27) 
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It leads to the following switching function and 
bang-bang control law: 
 

 
Hu

rq

min
0
1

0/

⇐
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=

>−= ν
 (29) 

 
In other words we should apply only maximal 
admissible dose of the drug or use no drug depending 
on the value of the co-state variable.  
Rewriting the adjoint equation in the form of scalar 
second order ODE we have: 
 

 
gTq

eqqq

f

x

−=′
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)(
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The solution differs from those obtained in (Ergun, et 
al, 2003) and (Ledzewicz and Schattler, 2005). The 
important finding is that singular arcs (e.g. Krener, 
1977) are not feasible since there are no finite 
intervals of constant solutions to the adjoint equation. 
This leads to the conclusion that intermediate doses 
of the drug are not optimal and that the optimal 
protocol contains only switches between maximal 
dose and no drug intervals. It allows to find 
recurrently the solution of the TPBVP composed of 
the state and co-state equations with bang-bang 
control found from the switching condition by using 
for example shooting algorithm. The same result is 
obtained by us in (Swierniak, et al, 2006) for 
combined radio- and antiangiogenic therapy. 
Ledzewicz and Schattler (2005) solved  the optimal 
control problem for standard Hahnfeldt model in the 
similar way as for Ergun’s model and once more 
suggested that in the optimal strategy some parts are 
singular.  
 
We are able to prove that reasonable reformulation of  
optimization problem for five from the six models 
enables avoidance of singular arcs and leads to pure 
bang-bang solutions. The only exception is the 
Hahnfeldt original model with the Gompertz type 
growth of the tumor where optimal solution may 
contain a singular control as a middle part of the 
control strategy. 
 
For example in the case of the Hahnfeldt model with 
logistic type growth of the tumor we may define: 
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It leads to the following state equations: 
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For simplicity we may assume h = 0 in the 
performance index. Thus the Hamiltonian has the 
following form: 

 

 )()1( 3/2)1( xzx eqepquruH εϑν θ −+−++= −+  
 

And co state variables are given by the following 
equations: 
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Thus the necessary conditions of optimality have the 
form (formally identical to (29)): 
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 (34) 

 
Once more the singular arcs are not feasible since 
there are no finite intervals of constant solutions to 
the adjoint equation. For the d’Onofrio-Gandolfi 
model with the logistic type tumor growth the 
analysis is similar. 
 
For the Ergun model the problem is even simpler. If 
we choose g = 0 then since the equation defining y is 
independent of x we are led to the first order 
optimization problem which has no singular 
solutions.  
 
The problem is defined by the state equation: 
 

 ueey yy ηλγ −−= − 3/13/1&  (35) 
 
And the Hamiltonian and the adjoint variable is given 
by: 
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It leads to the following form of the bang –bang 
candidate for optimality: 
 

 { Hu

rp

min
0
1

0/

⇐=

>= η
 (37) 

and singular controls cannot be optimal for the same 
reasons as in the two previously analyzed problems. 
 

4.CONCLUSION 
 
In this study we have compared different 
modifications of Hahnfeldt model of vascular tumor 
growth and their application to rationales of 
antiangiogenic therapy.  We consider advantages and 
drawbacks of six such models in context of  their 
possible application and difficulties of mathematical 
analysis. We also discuss results of some other 
authors and discuss possible approaches to 
optimization problems arising from therapy protocols 
design. All considerations are however based on the 
assumption that the complex phenomena leading to 
vessel collapse and regression could be described by 
such simplified models. It should be interesting to 
check how robust are they by testing them on the 
much more complex models recently published (e.g. 
Bartha and Rieger, 2006). 
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