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Abstract: Stabilization in multimachine (synchronous generators) power systems is dealt with
through a class of decentralized and nonlinear state feedback laws that can be separately
designed in a generator-wise fashion, based on what we call the improved swing equations.
Stability of the closed-loop power systems is robust with regard to perturbations in electric
torques happening in the synchronous generators. The stabilization algorithm consists of
decentralized control laws, and provides us with many more freedoms for accomodating various
control indices.

1. INTRODUCTION

In the paper, we consider stabilization problems related to
swing dynamics in a class of multimachine power systems.
It is well known in the power system field that swing
dynamics of synchronous generators are closely related
to electric power transmission, and can be described by
swing equations, which are nonlinear and probably nonau-
tonomous. Conventional or simplified swing equations (see
Haque (2005) and Zaborszky (1988)) are usually modeled
by neglecting many seemingly trivial but important factors
of synchronous generators to surmount nonlinearities and
singularities in differential equations (Anderson (2003),
Kimbark (1995), Padiyar (1996), Pavella (1994), and Sac-
comanno (2003)). When multiple synchronous generators
are inter-connected, a complicated multimachine network
is created (see Gupta (2005)). In such a large-scale net-
work, stabilization is one of the key tasks we must be
confronted with, in which most of the classical Lyapunov
methods do not work well generally.

As an answer to the stabilization problem in multimachine
power systems, we introduce the improved swing equations
without significant approximations. Working with the im-
proved swing equations, a class of nonlinear feedback laws
are developed by exploiting some feedback design methods
suggested by Isidori. Stability thus resulted in the closed-
loop multimachine power system is robust against various
perturbations in form of electrical torque variations.

By the best knowledge of the authors, there are numer-
ous efforts to attach stability problems in the literature
about multimachine power systems. For example, sta-
bility analysis and stabilization in both single machine
power systems and multimachine ones through the con-
ventional swing equations (Chiang (1988), Gupta (2005),
Haque (2005), Liu (1994), Mitani (1994), Salam (1986),
Zaborszky (1988)); or improved modelings by Parashar
(2004) and Ueda (2004) suggest that can reflect swing
processes more precisely in multi-machine power systems.

This study also got benefits from the decentralized control
technique (Gupta (2005), Yang (1987), Yang et al. (1994)),
and the partial stability concept (Vorotnikov, 1998).

2. PRELIMINARIES TO MULTIMACHINE POWER
SYSTEMS

In this section, we first quickly review what we call
the improved swing equaions and its approximations for
describing the dynamics of synchronous generators in a
mutlimachine power system. The standing assumptions
include: there are n generators, in each of which the rotor
winding flux is constant and without voltage regulator.

2.1 Improved Swing Equations

Firstly, we recall that the swing equation (Anderson
(2003), Padiyar (1996)) governs the dynamics of a syn-
chronous generator rotor, which can conventionally be
written as follows.

Ji
d2θi

dt2
+ Di

dθi

dt
+ ∆i = Tmi − Tei, (1)

where the subscript i denotes the genertor i, and

θi: mechanical angular displacement of the generator poles
(rad);

Ji: combined inertia moment of the corresponding gener-
ator rotor (kg·m2);

Di: viscous damping constant of the corresponding gener-
ator rotor;

Tmi: equivalent mechanical torque minus the electrical
load torque at the generator i (N·m);

Tei: equivalent electrical swing torque opposing the me-
chanical torque (N·m);

∆i: electrical torques other than Tei (N·m); we assume that
∆i ∈ F , where F is a closed perturbation set. There are
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various electrical torques in synchronous generators, which
are complicatedly dependent on the generator internal
voltage, the machine reactances and so on. Their effect
on the dynamics is approximately reflected by ∆i.

Secondly, we express θi through a so-called center-of-angle
(COA) reference framework that is rotating at the system
angular frequency ω0 (rad/s).

θi = ω0t + δi, t ≥ t0,

where t0 denotes the initial time, and δi represents the
rotor angular displacement of the generator i with respect
to the COA reference framework. Furthermore, let us
define

ωi =
dδi

dt
,

dωi

dt
=

d2δi

dt2
(2)

Hence, ωi and dωi/dt are the rotor angular displacement
speed and acceleration, respectively, and thus dθi/dt =
ω0 +dδi/dt. In the sequel, we denote the mechanical input
power (minus the output load power) by Pmi and the
electrical swing power by Pei, respectively, and we write

Pmi =: Tmi(ω0 + ωi), Pei =: Tei(ω0 + ωi),

Using the above notations and (2) in (1), we obtain readily
that

Ji(ω0 + ωi)
dωi

dt
+ D(2ω0 + ωi)ωi + ωi∆i

= Pmi − Pei −Diω
2
0 − ω0∆i (3)

Thirdly, we see (Anderson, p. 22–23; Salam) that the
electrical swing power is given by

Pei =
∑n

k=1
bik sin(δi − δk − ψi,k) (4)

where bik is the maximal real power transferred between
the internal nodes of the synchronous generators i and k,
while ψik stands for the complement of transfer admit-
tance phase between the internal nodes i and k. By the
definition, bik = bki. For simplicity, we assume that ψik

are small constants.

Finally, we summarize the above deductions around (2),
(3) and (4). More precisely, under the assumption of ω0 +
ωi 6= 0, Eqs. (2), (3) and (4) can be expressed by





δ̇i = ωi

ω̇i = −
n∑

k=1

bik sin(δi − δk − ψik)
Ji(ω0 + ωi)

−Di(2ω0 + ωi) + ∆i

Ji(ω0 + ωi)
ωi +

Pi(∆i, t)
Ji(ω0 + ωi)

(5)

where Pi(∆i, t) =: Pmi − Diω
2
0 − ω0∆i. Eq. (5) is called

the improved swing equation for the generator i in the
multimachine power system.

In what follows, we are interested in swing behaviour of the
mutlimachine power system when ωi is sufficiently small,
compared with ω0; in less rigorous words, all the generators
involved are swinging slowly. Then the improved swing
equation (5) can be reduced as follows by assuming that
all the mechanical torques are constants.





δ̇i = ωi

ω̇i = −
n∑

k=1

bik sin(δi − δk − ψik)
Mi

−2Diω0 + ∆i

Mi
ωi +

Pi(∆i, t)
Mi

(6)

where Mi = Jiω0 and Pi(∆i, t) = Pmi − Diω
2
0 − ω0∆i.

For simplicity, Eq. (6) is also called the improved swing
equation for the generator i.

2.2 Concise Expression of Multimachine Power Systems

To express the improved swing equation (6) in a form
that is more convenient for our latter discussion, let us
introduce the following variable transformation.




δ̂i1 = δi − δ1 − ψi1

. . . . . . . . .

δ̂ii−1 = δi − δi−1 − ψii−1

δ̂ii+1 = δi − δi+1 − ψii+1

. . . . . . . . .

δ̂in = δi − δn − ψin

which leads that



˙̂
δi1 = δ̇i − δ̇1 = ωi − ω1

. . . . . . . . .
˙̂
δii−1 = δ̇i − δ̇i−1 = ωi − ωi−1

˙̂
δii+1 = δ̇i − δ̇i+1 = ωi − ωi+1

. . . . . . . . .
˙̂
δin = δ̇i − δ̇n = ωi − ωn

Now we are ready to express the improve swing equation
(6) for the generator i in the multimachine power system
as follows.




˙̂
δi = Gωi − ω̂i

ω̇i = Hi(δ̂i)δ̂i + Ki(∆i)ωi + BiPi(∆i, t)
(7)

where

δ̂i =:




δ̂i1

...
δ̂ii−1

δ̂ii+1

...
δ̂in




, ω̂i =:




ω1

...
ωi−1

ωi+1

...
ωn




, G =:




1
...
1
1
...
1




Hi(δ̂i) =−
[

bi1 sin(δ̂i1)

Miδ̂i1

, . . . ,
bin sin(δ̂ii−1)

Miδ̂ii−1

∣∣∣∣∣
∣∣∣∣∣
bii+1 sin(δ̂ii+1)

Miδ̂ii+1

, . . . ,
bin sin(δ̂in)

Miδ̂in

]

Ki(∆i) =−2Diω0 + ∆i

Mi
, Bi =

1
Mi

Clearly, Hi(δ̂i) and Ki(∆i) are smooth functions with
respect to their arguments. Namely, these functions are
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continuously differentiable with respect to δ̂i and ∆i. Our
problem of this study is to find possible feedback control
laws to stabilize the improved swing equation (7).

3. STABILIZING MULTIMACHINE POWER
SYSTEMS

To understand the suggested design algorithm for the
nonlinear feedback laws for stabilizing the multimachine
power system, we first construct some auxiliary swing
equations, for which we descibe the desired feedback
control laws. After that, we apply the resulted feedback
control laws to the real multimachine power systems.

3.1 Stabilizing an Auxiliary Multimachine Model

Let us begin with the following auxiliary swing equation.
{

˙̂
δi = F

(·)
i δ̂i + Gωi − ω̂i

ω̇i = Hi(δ̂i)δ̂i + Ki(∆i)ωi + BiPi(∆i, t)
(8)

where F
(·)
i is a (n − 1) × (n − 1) real matrix with all its

eigenvalues having negative real parts (we simply say such
F

(·)
i is Hurwitz) that will be determined sequentially. The

superscript (·) indicates the sequential step. To include
F

(·)
i δ̂i in (8) guarantees that the stabilization design pro-

cedure by Isidori applies on (8) as well. Eq. (8) is termed
the F

(·)
i -auxiliary swing equation.

Now we are ready to show the main results.
Theorem 1. Consider the auxiliary multimachine power
system represented by the F

(·)
i -auxiliary swing equations

(8), i = 1, 2, . . . , n. For each i, there always exists a
Hurwitz matrix sequence {F (l)

i : l = 0, 1, . . . , } such that
the solution Q(F (l)

i ) to the Lyapunov matrix equation

F
(l)
i

T
Q(F (l)

i ) + Q(F (l)
i )F (l)

i = −I,

satisfies Q(F (l)
i ) > 0 and ||Q(F (l)

i )|| < 1. Accordingly,
there exist n sequences of functions {ui(δ̂i, F

(l)
i ) : l =

0, 1, . . .} and n piecewise continuous function vi(ω̂i, ωi)
such that by applying all the n feedback laws

Pmi = vi(ω̂i, ωi)− ωiui(δ̂i, F
(l)
i ), i = 1, . . . , n (9)

separately to the generator i, the closed-loop auxiliary
system as a whole is uniformly and locally asymptoti-
cally stable as long as ∆i ∈ F and the initial vector
[δ̂i(t0), ωi(t0)]T is an interior point of B for each i. Namely,
δ̂i(t) → 0 and ωi(t) → 0 as t(> t0) → ∞ for each i. Here,
B ⊂ Rn+1 is a closed ball centering at the origin.

Sketched Proof of Theorem 1 Let F
(l)
i be Hurwitz

such that by the Lyapunov theorem (see Theorem 5.3.55
of Vidyasagar(1978)), there exists uniquely a solution
Q(F (l)

i ) = QT (F (l)
i ) satisfying the Lyapunov equation

F
(l)
i

T
Q(F (l)

i ) + Q(F (l)
i )F (l)

i = −I with Q(F (l)
i ) > 0 and

||Q(F (l)
i )|| < 1.

Now construct the Lyapunov function candidate Vi(δ̂i, ωi)
given below, which is a locally positive definite function
(we write l.p.d.f for simplicity) over [δ̂i, ωi]T ∈ B.

Vi(δ̂i, ωi) =: δ̂T Q(F (l)
i )δ̂i + ωT

i ωi.

Clearly, Vi(δ̂i, ωi) > 0 for any [δ̂i, ωi]T 6= 0 and Vi(0, 0) =
0. Indeed, Vi(δ̂i, ωi) is a continuously differentiable de-
crescent l.p.d.f by Definition 5.1.52 and Definition 5.1.65
in the book by Vidyasagar (1978). The proof will be
accomplished if it is shown that there exist a function
sequence {ui(δ̂i, F

(l)
i ) : l = 0, 1, . . .} and a function

vi(ω̂i, ωi) such that in the closed-loop auxiliary system
formed by applying the feedback law (9) to (8), it holds
that dVi(δ̂i, ωi)/dt < 0 for any [δ̂i, ωi]T 6= 0 ∈ B over
t ≥ t0.

To this end, we observe by (8) and (9) that

dVi(δ̂i, ωi)
dt

=
∂Vi(δ̂i, ωi)

∂δ̂i

dδ̂i

dt
+

∂Vi(δ̂i, ωi)
∂ωi

dωi

dt

= δ̂T
i [Q(F (l)

i )F (l)
i + F

(l)
i

T
Q(F (l)

i )]δ̂i

+δ̂T
i Q(F (l)

i )Gωi − δ̂T
i Q(F (l)

i )ω̂i

+ωiG
T Q(F (l)

i )δ̂i − ω̂T
i Q(F (l)

i )δ̂i

+2ωiHi(δ̂i)δ̂i + 2Ki(∆i)ω2
i

+2ωiBi

(
vi(ω̂i, ωi)− ωiui(δ̂i, F

(l)
i )

−Diω
2
0 − ω0∆i

)

= −δ̂T
i δ̂i + δ̂T

i

(
Q(F (l)

i )G + HT
i (δ̂i)

)
ωi

−δ̂T
i Q(F (l)

i )ω̂i

+ωi

(
GT Q(F (l)

i ) + Hi(δ̂i)
)
δ̂i − ω̂T

i Q(F (l)
i )δ̂i

+2
(
Ki(∆i)−Biui(δ̂i, F

(l)
i )

)
ω2

i

−ω̂T
i ω̂i + ω̂T

i ω̂i

+2ωiBi

(
vi(ω̂i, ωi)−Diω

2
0 − ω0∆i

)

=:− [
δ̂T
i ω̂T

i ωi

]
Wi(δ̂i,∆i, F

(l)
i )


 δ̂i

ω̂i

ωi


 + ω̂T

i ω̂i

+2ωiBi

(
vi(ω̂i, ωi)−Diω

2
0 − ω0∆i

)
, (10)

where

Wi(δ̂i,∆i, F
(l)
i )

=




I −Q(F (l)
i )

−Q(F (l)
i ) I

−GT Q(F (l)
i )−Hi(δ̂i) 0

−Q(F (l)
i )G−HT

i (δ̂i)
0

2(Biui(δ̂i, F
(l)
i )−Ki(∆i))




=:
[

Wi1 ∗
∗ ∗

]
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where Wi1 has the obvious definition formula, while the
asterisks represent the terms whose exact definitions are
not needed in the arguments.

By the matrix expression of Wi1, if ||Q(F (l)
i )|| < 1,

then Wi1 is strictly positive definite and thus nonsingu-
lar. In particular, all the principal minors in Wi1 must
be positive. Recalling that Wi1 is 2(n − 1) × 2(n − 1)
while Wi(δ̂i,∆i, F

(l)
i ) is (2(n − 1) + 1) × (2(n − 1) + 1),

we can conclude that Wi(δ̂i,∆i, F
(l)
i ) is strictly positive

definite over [δ̂i, ωi]T 6= 0 and ∆i ∈ F if and only if
det(Wi(δ̂i,∆i, F

(l)
i )) > 0 in the same sense, if and only

if

det(Wi(δ̂i,∆i, F
(l)
i ))

= det
(
I −Q2(F (l)

i )
)(

2(Biui(δ̂i, F
(l)
i )−Ki(∆i))

−(GT Q(F (l)
i ) + Hi(δ̂i))(I −Q2(F (l)

i ))−1

·(Q(F (l)
i )G + HT

i (δ̂i))
)

> 0,

over [δ̂i, ωi]T 6= 0 and ∆i ∈ F . Clearly, one can assert read-
ily that det(I −Q2(F (l)

i )) > 0 since Q2(F (l)
i ) is symmetric

and ||Q2(F (l)
i )|| < 1. Hence, det(Wi(δ̂i,∆i, F

(l)
i )) > 0 if

and only if

2(Biui(δ̂i, F
(l)
i )−Ki(∆i))

−(GT Q(Fi) + Hi(δ̂i))(I −Q2(F (l)
i ))−1

·(Q(F (l)
i )G + HT

i (δ̂i)) > 0

Thus, if ui(δ̂i, F
(l)
i ) and vi(ω̂i, ωi) can be chosen such that




Biui(δ̂i, F
(l)
i ) > Ki(∆i)

+
1
2
(GT Q(F (l)

i ) + Hi(δ̂i))

·(I −Q2(F (l)
i ))−1(Q(F (l)

i )G + HT
i (δ̂i))

ωiBi(vi(ω̂i, ωi)−Diω
2
0 − ω0∆i)

+ω̂T
i ω̂i ≤ 0

(11)

then dV (δ̂i, ωi)/dt < 0 for any [δ̂i, ωi]T 6= 0 and t ≥ 0.
Therefore, Theorem 5.2.45 of Vidyasagar implies imme-
diately that the closed-loop auxiliary system, which is
formed by applying each feedback law Pmi = vi(ω̂i, ωi) −
ωiui(δ̂i, F

(l)
i ) to a corresponding generator described by

(8), is uniformly and locally asymptotically stable for any
initial vector [δ̂i(t0), ωi(t0)]T ∈ B and ∆i ∈ F , as long as
[δ̂i, ωi]T = 0 for all i is an equilibrium of the closed-loop
auxiliary system as a whole.

In what follows, we show such ui(δ̂i, F
(l)
i ) and vi(ω̂i, ωi) do

exist, according to ωi.

On the one hand, the first inequality in (11) holds true if
ui(δ̂i, F

(l)
i ) is chosen under the prescribed matrix F

(l)
i such

that

ui(δ̂i, F
(l)
i ) > 2Diω0 + ∆i

+
Mi

2
(GT Q(F (l)

i ) + Hi(δ̂i))(I −Q2(F (l)
i ))−1

·(Q(F (l)
i )G + HT

i (δ̂i))

Note that sup∆i∈F |∆i| ≥ ∆i. We choose ui(δ̂i, F
(l)
i ) to

satisfy

ui(δ̂i, F
(l)
i ) > −2Diω0 + sup

∆i∈F
|∆i|

+
Mi

2
(GT Q(F (l)

i ) + Hi(δ̂i))(I −Q2(F (l)
i ))−1

·(Q(F (l)
i )G + HT

i (δ̂i)) (12)

On the other hand, it is straightforward to see that the
second inequality of (11) will hold true for all ωi 6= 0 if
vi(ω̂i, ωi) is chosen to satisfy




vi(ω̂i, ωi) < −Mi

ωi
ω̂T

i ω̂i + Diω
2
0 + ω0∆i, ωi > 0

Vi(ω̂i, ωi) can be arbitrary ωi = 0

vi(ω̂i, ωi) > −Mi

ωi
ω̂T

i ω̂i + Diω
2
0 + ω0∆i, ωi < 0

It is easy to see that when ωi = 0, the second inequality
of (11) may not be true no matter how vi(ω̂i, ωi) is taken
(this is why we assume that vi(ω̂i, ωi) can be arbitrary at
ωi = 0). If this is really the case, dVi(δ̂i, ωi)/dt|ωi=0,δ̂i 6=0 <

0 may not be true by taking vi(ω̂i, ωi). To solve such a
problem, we need to alter the auxiliary matrix F

(l)
i , say to

F
(l+1)
i , to guarantee that dVi(δ̂i, ωi)/dt < 0 when ωi = 0

but δ̂i 6= 0. We need to show that such F
(l+1)
i really exists.

In fact, we can choose F
(l+1)
i according to the last equation

of (10) when ωi = 0 but δ̂i 6= 0. That is,

−δ̂T
i δ̂i − 2ω̂T

i Q(F (l+1)
i )δ̂i < 0 (13)

It is not hard to see by Theorem 2.3 of Gajic that such
F

(l+1)
i exists and is not unique.

Letting l = l + 1 and thus F
(l)
i = F

(l+1)
i and returning

to (12), we see that ui(δ̂i, F
(l+1)
i ) can be determined,

and so can vi(ω̂i, ωi). In other words, implementing the
feedback control Pmi = vi(ω̂i, ωi) − ωiui(δ̂i, F

(l)
i ) to the

F
(·)
i -auxiliary improved swing equation (8), we can find a

sequence of l.p.d.f Lyapunov candidates Vi(δ̂i, ωi) > 0 for
any [δ̂i, ωi]T 6= 0 ∈ B such that dVi(δ̂i, ωi)/dt < 0 for any
[δ̂i, ωi]T 6= 0 ∈ B(l) and ∆i ∈ F . Here B(l) is a subset of
B. Clearly, the above arguments can be repeated for each
step l.

From these facts, Theorem 5.2.45 of Vidyasagar (1978)
indicates that the closed-loop auxiliary system as a whole,
which is formed by applying all the n feedback laws
Pmi = vi(ω̂i, ωi)− ωiui(δ̂i, F

(l)
i ), respectively, is uniformly

and locally asymptotically stable for any ∆i ∈ F . 2

3.2 Stabilizing the Real Multimachine Power System

Theorem 1 suggests a group of nonlinear feedback laws
that can stabilize the closed-loop auxiliary system formed
by applying it to the F

(·)
i -auxiliary swing equation (8).

In this section, we construct these feedback laws indepen-
dently of δ̂i; such feedback laws are denoted simply by
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Pmi = vi(ω̂i, ωi) − ωiui(F
(l)
i ). We will see that if such

nonlinear feedback laws are implemented into the real
multimachine power system that is modeled through the
improved swing equation (6), then the system can at least
be partially stabilized.

First, we show that such ui(F
(l)
i ) does exist under the

assumptions of Theorem 1. We notice from the proof of
Theorem 1 and the fact of | sin(δ)/δ| ≤ 1 for any δ that

(GT Q(F (l)
i ) + Hi(δ̂i))(I −Q2(F (l)

i ))−1

·(Q(F (l)
i )G + HT

i (δ̂i))

≤ σmax((I −Q2(F (l)
i ))−1)||Q(F (l)

i )G + HT
i (δ̂i)||2

≤ σ−1
min(I −Q2(F (l)

i ))
(
||Q(F (l)

i )G||+ ||Hi(δ̂i)||
)2

= σ−1
min(I −Q2(F (l)

i ))
(
||Q(F (l)

i )G||

+
[ n∑

k=1; 6=i

(bik sin(δ̂ik)

Miδ̂ik

)2]1/2)2

= σ−1
min(I −Q2(F (l)

i ))(||Q(F (l)
i )G||+ ||Hi(0)||)2

This, together with (12), implies that if ui(F
(l)
i )(=

ui(δ̂i, F
(l)
i )) is chosen such that

ui(F
(l)
i ) > −2Diω0 + sup

∆i∈F
|∆i|

+
Mi(||Q(F (l)

i )G||+ ||Hi(0)||)2
2σmin(I −Q2(F (l)

i ))
, (14)

then the first inequality of (11) is satisfied. Note that the
right-hand side of (14) has nothing to do with δ̂i. It follows
that ui(F

(l)
i ) exists. Needless to say, such ui(F

(l)
i ) is not

unique, either. This implies that the feedback law Pmi =
vi(ω̂i, ωi)−ωiui(F

(l)
i ) can be determined independently of

δ̂i.

With implementing Pmi = vi(ω̂i, ωi) − ωiui(F
(l)
i ) in

the F
(·)
i -auxiliary swing equation (8), the corresponding

closed-loop auxiliary system, denoted by Σ(F (·)
i ), is uni-

formly and locally asymptotically stable by Theorem 1;
namely, δ̂i(t) → 0 and ωi(t) → 0 as t → ∞ as long
as the initial vector [δ̂i(t0), ωi(t0)]T ∈ B and ∆i ∈ F .
Now we examine the differential equation about ω̇i in
Σ(F (·)

i ). Simple manipulations about (8) show that it can
be written as follows.

ω̇i =−
n∑

k=1; 6=i

bik sin(δ̂ik)
Mi

− 2Diω0 + ∆i

Mi

+
1

Mi

(
vi(ω̂i, ωi)− ωiui(F

(l)
i )

−Diω
2
0 − ω0∆i

)
, (15)

where δ̂ik, (k = 1, 2, . . . , n; k 6= i) are determined by the
first n−1 differential equations in (8). Since [δ̂i(t0), ωi(t0)]
is arbitrary in B and δ̂ik is continuous to [δ̂i(t0), ωi(t0)],
sin(δ̂ik) must be continuous trajectories that overlap-

ping the whole interval [−1, 1]. That is, any trajec-
tory of sin(δ̂ik) must lay in [−1, 1] for an initial vector
[δ̂i(t0), ωi(t0)]. Then, the asymptotic stability assertion in
Σ(F (·)

i ), together with the fact that vi(ω̂i, ωi) and ui(F
(l)
i )

have nothing to do with δ̂i, can be interpreted as that
for any initial ωi(t0) as appropriately, the solution ωi to
(15) converges to zero as t → ∞ uniformly in t0 for any
trajectory of sin(δ̂ik) in [−1, 1] and ∆i ∈ F .

Now let us introduce the same nonlinear feedback law
Pmi = vi(ω̂i, ωi)− ωiui(F

(l)
i ) to the improved swing equa-

tion (6). In the corresponding closed-loop system, denoted
by Σ, the differential equation about ω̇i is completely the
same as (15) in form, except that δ̂ik are determined by
the first n − 1 differential equations in (6). Apparently,
any trajectory of sin(δ̂ik) also lays in [−1, 1] even if δ̂ik are
determined by the first n− 1 differential equations in (6).

Combining the observation with the arguments around
(15), we are led that in the closed-loop system Σ, it holds
at least that ωi(t) → 0 as t →∞ uniformly for any initial
vector [δ̂i(t0), ωi(t0)]T ∈ B and ∆i ∈ F . This in particular
says that the rotor displacement δi must come to a halt
in the closed-loop system Σ, since ωi = δ̇i by the first
relationship in (5).
Theorem 2. Consider the multimachine power system rep-
resented by the improved swing equation (6). For each i,
there always exists a Hurwitz matrix sequence {F (l)

i : l =
0, 1, . . . , } such that the solution Q(F (l)

i ) to the Lyapunov
equation

F
(l)
i

T
Q(F (l)

i ) + Q(F (l)
i )F (l)

i = −I,

with Q(F (l)
i ) > 0 and ||Q(F (l)

i )|| < 1. Accordingly, there
exist n sequences of functions {ui(δ̂i, F

(l)
i ) : l = 0, 1, . . .}

and n piecewise continuous function vi(ω̂i, ωi) such that
by applying the feedback laws

Pmi = vi(ω̂i, ωi)− ωiui(F
(l)
i ), i = 1, . . . , n (16)

separately to all the generators, the dynamical behav-
ior of ωi in the generator i is uniformly and locally
asymptotically stable for any ∆i ∈ F and initial vector
[δ̂i(t0), ωi(t0)]T ∈ B; that is, ωi(t) → 0 as t →∞; and thus
δi(t) → const as t →∞.

4. CONCLUSIONS

Based on what we call the improved swing equations,
stabilization feedback design problems in a class of mul-
timachine power systems are attacked through decentral-
ized and nonlinear state feedback laws in the paper. It is
revealed that stability of the closed-loop power systems
is robust with regard to perturbations of electrical torques
in the synchronous generators. The suggested stabilization
technique consists of a group of decentralized algorithms
in a generator-wise fashion and the resulted feedback laws
possess more freedoms available for accommendating var-
ious control performance requirements. To illustrate their
efficacy in practical multimachine power systems is one of
our subsequent research topics.
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