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Abstract: Sparse representations is a technique that consists in decomposing a signal into a
small number of components, chosen from a user-designed over-complete set of vectors. While
it is mostly used to obtain an approximate model of a signal or image, for compression or
coding purposes, it can also be applied for identification, estimation or even detection purposes,
when there exists a true exact sparse representation, which is then the object of interest. We
consider the basic problem of the identification of real sinusoids in noise. While, in case of
regular sampling the competition is formidable, for irregular sampling, it is far less exacting.
The approach, we propose, applies to irregular samples without additional difficulty and attains
performances close to the Cramer-Rao bound for quite reasonable computational costs.

1. INTRODUCTION

The estimation of the power spectral density of wide sense
stationary random processes has received considerable
attention (Porat [1994], Stoica [1997]). It has applications
in many different fields. In this general domain, the very
specific case, where the process can be modeled as the
sum of real sinusoids in white noise, occupies a central
position and has certainly caught more attention than
any other. We consider this case and propose to estimate
both the number of sinusoids, that are present and their
characteristics. Even for this quite specific problem, there
does not seem to exist a single approach working well
in all situations. We thus further confine our attention
to configurations where the number of observations is
quite small (around 100) and the Signal to Noise Ratio
(SNR) small also (below 10 dB per sinusoid). This is
an often considered domain in the literature, that covers
many situations in practice. It is also a domain where it
is difficult to outperform the basic periodogram (Fourier
transform), since the SNRs are quite low. Indeed, while so-
called high-resolution methods have the ability to separate
two sinusoids with closely spaced frequencies provided the
SNRs are large enough, and while the periodogram is not
a high resolution method, it is difficult to outperform it, at
low SNRs. A large number of methods have been proposed,
see (Stoica [1997]) and the references therein, and some of
them do indeed separate sinusoids that the periodogram
cannot resolve, for, say, SNR’s above 0 dB.

The method we propose, has this capacity, but more im-
portantly, it works with irregularly sampled data without
any additional difficulty, and methods that can handle
this type of data are extremely scarce. While the peri-
odogram, the maximum likelihood and some model-fitting
type approaches can be applied, in practice performance
and feasibility will be an issue. Since the periodogram
(the Fourier spectrum of the data) is the convolution of
the true spectrum (a few lines) and the spectral window
(the Fourier spectrum of the sampling instants) that can
exhibit any pattern of secondary lobes, the potentiality

of this approach is limited. As for the the maximum
likelihood or model-fitting type approaches, in their usual
implementation, their performance fully depends upon the
quality of their initialization. The major difficulty for these
methods is the availability of a good initial point and we
are back to the initial problem. Not to mention, the nec-
essary preliminary estimation of the number of sinusoids
that are present, that is required by most techniques.

The method, we propose, can indeed be seen as a model-
fitting approach, that performs simultaneously the esti-
mation of the number of components and the identifica-
tion of their characteristics. It furthermore requires no
initialization point, since it relies upon the minimization
of a convex function. It is also completely un-sensitive
to the way the data have been sampled provided, of
course, the sampling instants are known. We proposed
it initially, in a different context, in (Fuchs [1997]) and
(Fuchs [2001]) and it can now be seen as an application of
the “sparse representations” techniques, a topic that has
expanded trough many areas in signal processing in recent
years (Donoho [2001], Gribonval [2003], Fuchs [2004]), and
whose theoretical aspects concentrate more recently on the
so-called compressed-sensing or compressed-sampling area
(Candes [2006], Donoho [2006], Candes [2006b]).

In the control community, besides applications in identifi-
cation (Zhang [1999]), “sparse representations” techniques
can also be of some use in realization theory (Fuchs [2006])
or failure diagnosis (Merrill [1973]). While in most cases,
sparse representations techniques are used to decompose
a signal into a small number of components chosen from
user-defined redundant set of vectors, it can also be ap-
plied, for detection or estimation purposes, when there
exists a true exact sparse representation. It is this last
point of view, that we adopt here and that is mostly
of interest to the control community. But, it can, quite
generally, be adapted as soon as an observation (a set of
data or a set of estimated covariances) can be represented
as the sum of a small number of vectors belonging to a
known family (sinusoids, shifted replicas of a same signal,

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 10225 10.3182/20080706-5-KR-1001.0049



failure signatures, ..) in additive noise (measurement noise,
estimation errors).

In section 2, we detail the identification problem we
shall consider. We specify the criterion to be minimized
in Section 3 and discuss the implementation issues in
Section 4. In Section 5, we present some simulation results
and after some concluding remarks, we indicate in the
Appendix how to build a quite efficient minimization
algorithm.

2. THE MODEL

We consider the following noise corrupted sinusoidal sig-
nal:

y(tk) =

P
∑

j=1

Aj cos(2πfjtk + ϕj) + e(tk) (1)

where etk
is zero mean white Gaussian noise with variance

σ2 and the initial phases ϕj are assumed independent
random variables uniformly distributed in [0, 2π[. We
address the problem of the estimation of the number P
of sinusoids together with the identification the positive
amplitudes Aj , the initial phases ϕj ∈ [0, 2π[, and the
frequencies fj ∈ [0, .5[, normalized with respect to a
standard unity sampling period, from a set of data {y(tk)}
of length n. We will assume that the irregular sample
instants tk satisfy 0 ≤ t1 < t2 < .. < tn ≤ n − 1, i.e., that
in the average, the irregular samples satisfy the Nyquist
rate (Yen [1956]).

It will appear clearly from the approach we use, that ir-
regular sampling induces strictly no additional complexity
in the implementation. The difference may be a slightly
increased computation time, since the conditioning of the
convex function to be minimized may be affected, and a
change in the statistical performances. Indeed, under the
Gaussian noise assumption, the proposed method may well
attain the Cramer-Rao bounds and these will depend upon
the sampling scheme. These excellent performances of the
proposed approach are difficult to establish theoretically,
but can be observed on the simulation results.

3. THE CRITERION

Using the n data points {y(tk)}, we build a n-dimensional
column vector y and define similarly vectors s(fj , ϕj) and
a noise vector e which are such that (1) can be rewritten

y =
P

∑

j=1

Ajs (fj , ϕj) + e. (2)

The sparse representation technique, we propose, then
simply amounts to search a sparse (the sparsest) decom-
position of y as a linear combination of column vectors
ap,q, of the form:

ap,q = s (
p − 1

2nf

,
2π(q − 1)

nϕ

), (3)

with p ∈ (1, nf ) and q ∈ (1, nϕ). One aims to reconstruct
(the deterministic part of) y as the sum of sinusoids whose
frequencies and initials phases are on a 2-dimensional grid.

There are indeed an infinite number of ways to achieve
it but one expects the sparsest such decomposition to be
close to the true one. One seeks the vector x of dimension
nf ×nϕ having the fewest number of non-zero components,
such that y ≃ Ax where A is the matrix having the ap,q’s
as columns.

In fact, since observation noise e is present in (2), we will
not try to reconstruct y exactly. If the discretization steps
in frequency and initial phase are small, or, equivalently, if
nf and nϕ are large, P vectors ap,q may then be sufficient,
since the allowed reconstruction error may also take care
of the errors between s(fj , ϕj) in (2) and the nearest ap,q-
vector present in the matrix A. Since the noise is assumed
to be Gaussian, we use the Euclidean norm to measure the
reconstruction error Ax − y and propose to solve

min
x

‖x‖1, s.t. ‖Ax − y‖2
2 ≤ ρ (4)

where ‖x‖1 =
∑

|xj | denotes the ℓ1-norm and ‖x‖2
2 =

∑

x2
j is the square of the Euclidean norm. Whatever the

value of the allowed discrepancy ρ, there are an infinite
number of admissible points in (4), and one replaces the
true exhaustive search for the sparsest such point by the
easy minimization of its ℓ1-norm. The quasi-equivalence of
these two point of views is considered in (Donoho [2001],
Gribonval [2003]). Now (4) is equivalent to

min
x

1

2
‖Ax − y‖2

2 + h‖x‖1, h > 0 (5)

where h has to be tuned by the user, just like ρ in
(4). This is the criterion that is mostly used in the
overwhelming literature on “sparse representations’,’ and
already considered, for instance, in (Fuchs [1999]). This
criterion is convex, as the sum of convex functions, it has,
thus, a unique minimum that is generically attained at
a unique point, when y is a noisy data vector. It can
be transformed into a quadratic program, but efficient
algorithm specifically dedicated to solve (5) have been
developed (Osborne [2000], Efron [2004], Maria [2006]).
These algorithms converge in a finite number of steps
and this number is about twice the number of non-
zero components in the optimum of (5). Since in our
context, this number is of the order of P , the number of
sinusoids, this means that one can easily consider situation
where A has a few thousands of columns. We detail in
the Appendix, both for completeness and since, to our
knowledge, it has never been published, the development
of an algorithm of this type, that solves (5) under the
additional constraint x ≥ 0 which can be enforced in our
application.

4. IMPLEMENTATION ISSUES

4.1 Recovery of the estimates

Let us indicate how we deduce the estimates of the
parameters in (1) from the optimum of (5).

If x0 denotes the optimum, we first transform this column
vector into a matrix, say, X0 of dimension (nf , nϕ). In
case, a given sinusoid in (1, gives rise to several non-zero
components in x0, one expects these to form a (compact)
cluster in the 2-dimensional matrix X0. From such a
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cluster, we will deduce the estimates of the frequency
and the initial phase of the given sinusoid by linear
interpolation. Since the rows in X0 are associated with
the frequencies, in case there are several columns in the
considered cluster, we sum over the columns to get the
weights to be used in the linear interpolation to yield
the frequency estimate. We proceed similarly to get the
initial phase estimate. The number of (significant) clusters
in X0 then determines the estimate of P the number of
sinusoids present in the observations. In general and in the
simulations given below, a sinusoid gives rise to between
1 and 3 non-zero components and if some additional
components are present they are always isolated and of
very small magnitude.

4.2 Choice of the discretization steps

With the notations introduced in Section 3 and below
relation (3), the discretization step is δf = 1/(2nf ) in
frequency and δϕ = 2π/nϕ in initial phase. We choose
these steps so that they do not prevent the approach to
attain its best performances, i.e., the Cramer-Rao bounds,
For equispaced sampling, one has a fairly good idea of
these bounds (in resolution), and for the SNRs we consider
and with n denoting the number of data points, we propose
to take nf = 4n, in order to always have potentially
a few non-zero components even between closely spaced
sinusoids. As far as δφ is concerned, we will in general
take δϕ = π/6 or π/8 and sample the domain [0, 2π[ if we
minimize (A.1) with positive weights in x, or sample the
domain [0, π[ if we minimize (A.1) with arbitrary weights
in x.

For n = 60 regularly spaced sample points, this leads
to a A-matrix with 60 rows and about 2000 or 4000
columns, respectively. One can actually prove that the
linear interpolation procedure allows to gain an order of
magnitude in the precision, i.e., it somehow transform the
discretization step δ into δ2. For irregularly sampled data,
the performances are no longer uniform and the above rule
for the choice of δf is no longer justified, we nevertheless
propose to keep it.

4.3 Choice of the threshold h

This is, of course, an important parameter, since, as ex-
plained in the Appendix, the number of non-zero com-
ponents in the optimum of the criterion directly depends
upon h. Roughly speaking, their number increases (but
never exceeds n), as h decreases.

To get a feeling of the meaning of the threshold h, we
introduce, the Lagrangian dual of (5) (Fuchs [2001])

min
x

‖Ax‖2
2 s.t. ‖AT (Ax − y)‖∞ ≤ h. (6)

This problem is strictly equivalent to (5) and its constraint
tells us that, at the optimum, the correlation of the
reconstruction error Ax − y with any column in AT

(column of A) is smaller than h in absolute value. In
the ideal case where at the optimum x0, Ax0 represents
exactly the contribution of the P sinusoids to y, the
reconstruction error Ax0 − y = e and the constraints
reads ‖AT e‖∞ ≤ h. From this observation, one first

deduces that it is essential to normalize the columns in
A to one, say, in Euclidean norm to guarantee they are
all given the same importance. It follows then that the
components in AT e are (dependent) Gaussian random
variables with mean zero and variance σ2, and, to make
this ideal model admissible, we fix h at a value that
guarantees that the probability that the maximum of these
nf ×nϕ random variables be larger than h is close to zero.
Following (Leadbetter [1983], Fuchs [2001]) we suggest to
take h = σ

√

log 2nfnϕ.

4.4 The complete algorithm

We summarize the algorithm we propose and for which
we present simulation results in the next section. Given
n regularly or irregularly sampled data points following
model (1), we form a n-dimensional vector y, we take
nf = 4n and nϕ = 12 and form the nf × nϕ vectors ap,q

defined in (3), we normalize these vectors and build the
matrix A having them as column vectors. We then solve

min
x≥0

1

2
‖Ax − y‖2

2 + h‖x‖1, h > 0

using the algorithm sketched in the Appendix, with h =
σ
√

log 2nfnϕ. We eventually deduce the estimates of
Aj , fj , ϕj from the optimum, as explained in section 4.1.

To simplify the exposition, we assume the variance σ2 to be
known and do not detail how the detection of the number
P of sinusoids could be performed. We will however
indicate, for the 2 sets of simulations, the value of the
maximal non-zero component remaining in the optimum
once the components associated with the sinusoids that
are present, have been removed.

5. SIMULATION RESULTS

We consider two closely spaced sinusoids.

5.1 The regular samples case

We take n = 60 samples that are uniformly sampled with
a period equal to one, We consider a frequency separation
of 1/2n and identical initial phases, to fix ideas. The signal
to noise ratio (SNR) defined to be equal to A2

j/2σ2 is taken

equal to 10. We assume to know σ2 which we take equal
to one. We apply the algorithm described in Section 4.4
with nf = 4n and nϕ = 16, this leads to a matrix A of
dimension (60, 3840).

Taking identical initial phases is a favorable situations, but
the frequency separation 1/2n is quite small and only so-
called high resolution methods can separate the two sinu-
soids. We present in Table 1, the mean and the variance of
the estimates obtained over 10000 independent realizations
as well as the Cramer Rao bounds (CRB). The proposed
approach separates the two sinusoids and almost achieves
the CRB for the frequency estimates. The amplitude esti-
mates are biased but this is a side effect of the criterion and
can be corrected.To further improve the performance, one
could initialize any optimization algorithm maximizing the
likelihood, it would converge to the maximum likelihood
estimates in a few steps. To complete the picture, let us
indicate that, the amplitude of the maximal additional
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non-zero component (if any) of the optimal x was 0.72 in
the average over the 10000 realizations. This means that in
case one does not known the number of sinusoids that are
present, then, if our approach detects an additional one,
its amplitude is generally quite small (seven times smaller
that the two true ones) and it may potentially be declared
to weak and discarded.

Table 1: Estimates of the means and variances averaged over 10000
independent realizations

Mean Variance CRB

A1 = 4.47 3.93 0.376 0.165

A1 = 4.47 3.88 0.358 0.167

f1 = 0.2502 0.2498 1.31.10−6 0.82.10−6

f2 = 0.2586 0.2591 1.26.10−6 0.84.10−6

ϕ1 = 1.57 1.89 0.010 0.044

ϕ1 = 1.57 1.24 0.011 0.045

Two equipowered sinusoids in white noise. The frequency separation
is 1/2 of the Raylegh limit. SNR=10 dB, n=60 data points, ∆f =
1/120, identical initial phases.

5.2 The irregular samples case

We now turn to irregular sampling, the modification to be
made to the proposed is quite simple, one applies the same
irregular sampling scheme when building the columns of
the A matrix. We consider a similar scenario and keep
the same characteristics for the two sinusoids except for
the frequency separation taken equal to 2/3n, i.e., slightly
larger but still below the Raylegh limit, 1/n, valid for
equispaced samples. The same irregular sampling scheme
is kept for all the realizations. In place of the regular
samples between 1 and 60, we consider three clusters of 20
points each, randomly distributed around the values 10,
30 and 50. A typical realization of the irregularly sampled
data points is presented in Figure 1. In Figure 2, we present
the spectral window associated with the specific sample-
point-set we used in our simulations. In case of regular
samples this spectral window is the so-called Fejer kernel
(Porat [1994], Stoica [1997]). In Figure 3, we present the
interesting part of the periodogram obtained for a typical
data realization together with the locations of the two
true spectral lines and those of the average estimates we
get. Looking at the periodogram in Figure 3, it is indeed
difficult to guess that there are two spectral lines, slightly
shifted to the right, in the central main lobe with no other
spectral lines elsewhere.

The frequency estimates, we get, present a slight outward
bias but the the mean square error is quite close to the CR
bounds. To complete the picture, let us indicate that, the
amplitudes of the maximal additional non-zero component
(if any) of the optimal x was 0.64 in the average over the
10000 realizations.

6. CONCLUDING REMARKS

We have presented an algorithm for estimating the param-
eters of sinusoidal signals in noise. It can also be applied to
others identification problems. Its performance are quite
good and close to the Cramer Rao bounds. It has at
least two advantages over other approaches, it requires
no initialization point and can handle irregularly samples

Table 2: Estimates averaged over 10000 independent realizations in
the irregular sampling case, see Figure 1.

Mean Variance CRB

A1 = 4.47 3.36 0.069 0.197

A1 = 4.47 3.49 0.081 0.177

f1 = 0.2502 0.2485 0.87.10−6 0.86.10−6

f2 = 0.2614 0.2627 0.92.10−6 1.27.10−6

ϕ1 = 1.57 2.01 0.007 0.059

ϕ1 = 1.57 1.13 0.011 0.071

Two equipowered sinusoids in white noise. The frequency separation
is 2/3 of the Raylegh limit. SNR=10 dB, n=60 data points, ∆f =
1/90, identical initial phases.
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Fig. 1. The irregularly sampled sum of two sinusoids, there
are 3 clusters of 20 samples each, around the samplings
instants 10, 30 and 50.
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Fig. 3. Zoom on the periodogram of a typical data set, the
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data without any additional difficulty. Its major drawback
is probably its computational cost but we present in the
Appendix, the ingredients that allow to build a highly
efficient algorithm able to solve the required optimization
problem in a few tenth of seconds on a laptop, though this
problem has several thousands of unknowns.
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Appendix A. A SKETCH OF THE ALGORITHM

We explain how to build an iterative algorithm that solves

min
x≥0

1

2
‖Ax − y‖2 + h‖x‖1, h > 0 (A.1)

with A is n × m matrix of rank n, b and x are real vectors
of adequate dimension and h is a positive real. Note that
since x ≥ 0, one has ‖x‖1 =

∑

xk = 1T x.

Since the criterion is convex, it is well known that (Luen-
berger [1974])

Lemma 1. x is a minimum of (A.1) if and only if

∃ µ ≥ 0 ∋ AT (Ax − y) + h1 − µ = 0, (A.2)

with xT µ = 0. 2

We denote x the optimum of (A.1) that thus also satisfies
(A.2) and split it into its strictly positive components

we denote x̄, and its zero components we denote
=
x. We

partition, similarly and accordingly, A and µ. From xT µ =

0, it then follows that µ̄ = 0 and
=
µ≥ 0. Using these

notations, we decompose (A.2) into

ĀT (y − Āx̄) = h1 and
=

A
T

(y − Āx̄) = h1−
=
µ

One can now draw x̄ from the first relation and replace it
in the second to get

x̄ = Ā+y − h(ĀT Ā)−11 (A.3)

=
µ = −

=

A
T

y⊥ − h
=

A
T

(Ā+T 1̄−
=

1) (A.4)

with Ā+ = (ĀT Ā)−1Ā∗, where we assume the inverse to
exist, and y⊥ = (I − ĀĀ+)y.

One can now observe that, if one knows the optimum x for
a given h, then using (A.3) and (A.4), one can extend it
to a interval around the current h, the interval for which

both x̄ and
=
µ remain ≥ 0. But it is also possible extend

the optimum to the neighboring intervals, and, thus, to
all h > 0. It only remains to get a starting value, i.e. the
optimum for a given value of h, and this is easy, since for h
large, the optimum is at zero. The idea is the same as the
one used in (Osborne [2000],Efron [2004],Maria [2006]).

More precisely, from (A.2) it follows that for h ≥ h0 =
max(AT y) the optimum is at x = 0. For h in an interval
[h1, h0[ with h1 < h0 yet to be defined, the optimum of
(A.1) has then just one nonzero component with index
j1 = arg maxk aT

k y. For h in this interval, Ā = [aj1 ] and
=

A contains all the remaining columns of A. From (A.3), it
follows that x̄ = xj1 = (aT

j1
y − h)/(aT

j1
aj1). As h decreases

within this interval, and, more generally, as h decreases

from, say, hk, the values in x̄(h) (A.3) and
=
µ (h) (A.4) vary

linearly and the next boundary value hk+1 is the value for

which either a component in x̄(h) or
=
µ (h) becomes zero

(first), one then modifies the partitions, moving a column

from Ā to
=

A or vice versa, and proceeds.

In summary to solve (A.1), though one is only interested
in the optimum for a given value of h, it happens to be
cheaper to solve the problem for decreasing h, i.e., to
decompose the positive real axis into intervals ]hk+1, hk]
within which the number of nonzero components of the
optimum remains constant and to stop the procedure
when the h of interest is within the current interval. The
algorithm one gets is highly efficient and especially so
when the number of non-zero components in the sought
optimum is small. Since a component of x, which is non-
zero for a given h, may become zero again later, the
number of steps (intervals) required to solve (A.1), is
greater than the number of non-zero components in the
optimal x and generally about twice this number.
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