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Abstract: For differential-algebraic power systems, saddle-noddle bifurcation and Hopf bifur-
cation are both of universally existent phenomena in power systems. Usually Newton iteration
method could be applied to the Moore-Spence system to compute saddle-noddle and Hopf
bifurcation points directly. But the Moore-Spence system has very high dimension and causes
much complexity in Jacobian matrix factorization. By introducing an auxiliary variable and an
auxiliary equation to form an extended Moore-Spence system, this paper derives an effective
matrix reduction technique. The high dimensionality of Jacobian matrix can thus be reduced
and the complexity involved in matrix factorization can be simplified.

1. INTRODUCTION

The dynamics of a power system can be modeled by
parameter dependent differential-algebraic equations as:{

ẋ = f(x, y, λ) f : Rn+m+1 → Rn

0 = g(x, y, λ) g : Rn+m+1 → Rm
(1)

where x ∈ Rn, y ∈ Rm, λ ∈ R, x is differential state vector
for describing element dynamic behavior of power system,
such as generator angel, rotor speed, voltage and phase of
load node; instantaneous variable y is usually connected
with the network structure and typically including bus
voltage and other load flow variables. The parameter space
is composed of the system parameters (which describe
the system topography, and equipment constants such as
inductances, capacitors, transformer ratios, etc.) and op-
erating parameters (such as loads, generations and voltage
set-points etc.). The dynamics of the generators, load dy-
namics and some other control devices together define the
differential equations, and the constrains g(x, y, λ) = 0 are
defined by the power balance equations of the transmission
system. DAEs (1) has also been used to model the dynam-
ics of many other systems, including robotics biomedicine,
electronic engineering and flight control system, referred
to Craig (1989), Wang and Chen (1998) and Goman and
Khramtsovsky (1998).
For the constrained system (1), define the set E of all
stable equilibrium points and Jacobian matrix J as

E = { (x, y, λ) ∈ Rn+m+1|f(x, y, λ) = 0,

g(x, y, λ) = 0} (2)

J = Dxf −Dyf(Dyg)−1Dxg (3)

? This work was supported by the Natural Science Foundation of
China under Grant No. 60574011 and 60573124.

where Dxf and Dyf denote the matrix of partial deriva-
tives of the components of f with respect to variable x and
y respectively.
It is well known that the qualitative change in the behavior
of system with variations of one or more parameters is due
to bifurcation. The bifurcation theory provides a potential
natural plat for studying the system dynamics, moreover,
it is very favorable as a mathematic tool in studying
nonlinear differential-algebraic system. Since 1970s, many
experts have done a lot of research on bifurcation phenom-
ena about stability, controllability etc., but there are few
works about computing bifurcation points. The bifurcation
refers to the number of equilibrium points, stability or
topological structure of the system change suddenly at cer-
tain parameters, therefore the corresponding parameters
and state variables are named as bifurcation point. The
saddle-noddle and Hopf bifurcation are closely connected
with voltage stability (Claudio (1995); Peng (2005)), and
analysis and calculation of bifurcation points are necessary
for comprehending nonlinear critical dynamics. Lots of
facts have proved that SNB always leaded to voltage col-
lapse, lose stability or low frequency oscillation (Lu (2003);
Kwatny and Pasrija (1986)). Whereas HB is especially
interesting for large power systems because it signals the
birth of periodic orbits, or more complicated features such
as strange attractors and chaos (Yu (1999); Abed and
Varaiya (1989)).
At present, there are two methods for computing bifur-
cation points, i.e. direct method and indirect method.
Indirect method depends on at least one known solution,
employs a continued predictor-corrector scheme to find the
solution path, and decides whether the eigenvalues satisfy
bifurcation conditions. However direct method not only
keeps the sparsity of the data structure in the dynamics
analysis, but also includes the information such as critical
eigenvalues and right eigenvectors (Kwatny et al. (1995)).
The matrix reduction method which we will bring forward
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belongs to direct method.
The aim of this paper is to propose one matrix reduced
new method for factorizing matrix and solving bifurcation
points conveniently. The key of this algorithm is to intro-
duce an auxiliary variable and an auxiliary equation to
form an extended Moore-Spence system and decompose
the high order Jacobian matrix into two low order ma-
trices. Compared with other approaches, firstly, it is more
convenient for decomposion; secondly, it makes calculation
speed much more quicker; thirdly, it is more easily to
realize through programme. All of those are outstanding
advantages of the method.
This paper is organized as follows, in section 2, we present
saddle-node and Hopf bifurcation theorem; in section 3,
we establish the extended Moore-Spence system and de-
scribe the matrix reduced algorithm for computing saddle-
node and Hopf bifurcation points respectively; the Moore-
Spence system of power system is given in section 4; one
simple power system model is studied on the relation of
voltage stability with the static and dynamic bifurcation
in section 5. Detailed procedures and conditions of this
new method will be described below.

2. BIFURCATION OF DIFFERENTIAL-ALGEBRAIC
SYSTEMS

2.1 Saddle-Node Bifurcation

The saddle-node bifurcation is also called fold bifurcation,
which is extensively studied in power systems. SNB occurs
when the system (1) has a non-hyperbolic equilibrium
with a geometrically simple zero eigenvalue at the bifurca-
tion point and additional transversality conditions as pre-
sented in Theorem 1 (Venkatasubramanian and Zaborszky
(1995)) are satisfied. In two-dimension space, one is saddle
point, and the other is node point, therefore it is named as
SNB. The right eigenvector of the zero eigenvalue shows
the direction of system evolvement in the state space, and
the left eigenvector indicates the influence degree to the
state variables by the zero eigenvalue.
Theorem 1. (Saddle-Node Bifurcation Theorem). The de-
terminant Dyg is not singular, therefore, by the implicit
function theorem, there is a suitable unique function fR, so
that the DAEs (1) can be reduced to the differential system
ẋ = fR(X, λ), X = (x, y). If the following transversality
conditions are satisfied,

S1 Jacobian matrix DXfR = Dxf−(Dyf)(Dyg)−1(Dxg)
has a geometrically simple zero eigenvalue with right
eigenvector v and left eigenvector w, and there is no
other eigenvalue on the imaginary axis;

S2 wT (DλfR) = wT [Dλf − (Dyf)(Dyg)−1(Dλg)] 6= 0;
S3 wT [D2

xfR(v, v)] 6= 0;

thus, the system (1) occurs saddle-node bifurcation, the
point which satisfied the conditions is called the saddle-
node bifurcation point.

At the saddle-node bifurcation point, stable and unstable
equilibrium points meet and disappear, resulting in a loss
of equilibrium locally near the bifurcation point.

2.2 Hopf Bifurcation

Hopf bifurcation is one of the typical dynamic bifurcations
and often occurs in power systems. It always leads to oscil-
late periodically and chaos. Hopf bifurcation occurs at the
point where the system has a non-hyperbolic equilibrium
connected with a pair of conjugate imaginary eigenval-
ues, but no zero eigenvalues, and the following additional
transversality conditions are meet (Venkatasubramanian
and Zaborszky (1995)).
Theorem 2. (Hopf Bifurcation Theorem). Suppose the de-
terminant Dyg is not singular, if the following transversal-
ity conditions are satisfied,

H1 the system has an equilibrium point (x0, y0, λ0), i.e.
f(x0, y0, λ0) = 0, g(x0, y0, λ0) = 0;

H2 Jacobian matrix J has a pair of conjugate purely
imaginary eigenvalues µ1,2 = ±iw at the point
(x0, y0, λ0), and there is no other eigenvalue on the
imaginary axis;

H3 c = ∂(Re(µ(λ0)))/∂λ 6= 0;

thus, the system (1) occurs Hopf bifurcation, the point
(x0, y0, λ0) is called Hopf bifurcation point.

Much research proved that if eigenvalues cross the imag-
inary axis from the left half plane to the right half plane
as λ increases, then the system gives birth of limit cy-
cles at the bifurcation point. If the bifurcation stability
coefficients β2 < 0 and c > 0, the bifurcation is called
supercritical Hopf bifurcation, and the cycle orbits are
asymptotically stable; if the bifurcation stability coeffi-
cients β2 > 0 and c > 0, the bifurcation is called sub-
critical Hopf bifurcation, and the cycle orbits are unstable
(Ajjarapu and Lee (1992)).

2.3 Equilibrium Solution Manifold

By bifurcation theorem, suppose that Jacobian matrix J
has a simple zero eigenvalue µ0 = 0 at SNB point and
has a pair of purely imaginary eigenvalues µ1,2 = ±iw at
HB point, the reference (Moore and Spence (1980)) had
established Moore-Spence equations as follows,





f(x, y, λ) = 0
g(x, y, λ) = 0

A

[
vn

vm

]
− µj

[
vn

0

]
= 0

vT v − 1 = 0

(4)

where, j = 0, 1, 2, A =
[

fx fy

gx gy

]
is generalized Jacobian

matrix of (1), v =
[

vn

vm

]
∈ Rn+m, vn is right eigenvector

of eigenvalues µ0 = 0 or µ1,2 = ±iw.
The meaning of (4) is clear: the first two equations are
equilibrium solution manifold of (1); the third equations
indicate that A has a zero eigenvalue when j = 0 and has
a pair of purely imaginary eigenvalues when j = 1, 2; v is
standardization through the last equation.
Although the Moore-Spence system provides a good
method to calculate bifurcation points directly, it has
very high dimension and causes much difficulty in Jaco-
bian matrix factorization when Newton iteration method
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is used for solving Moore-Spence equations, because the
linearization equations (5) need be solved,




fx fy fλ 0 0
gx gy gλ 0 0

Axv Ayv Aλv

[
fx − µj

gx

] [
fy

gy

]

0 0 0 vT
n vT

m







∆x
∆y

∆λ
∆vn

∆vm




= −




f(x, y, λ)
g(x, y, λ)

Av − µj

[
vn

0

]

vT v − 1




(5)

There are (2n + 2m + 1) equations in (5). For a large
power system which has N load nodes, the dimension of
coefficient matrix would be (4N +2m+1)×(4N +2m+1),
therefore it is very complicated to solve (5). For this, we
need reduce the high dimensionality.

3. MATRIX REDUCED ALGORITHM

3.1 Establish Extended Moore-Spence System

By introducing an auxiliary variable α and an auxiliary
equation vT

n x− vT
my − α = 0, and inserting in system (4),

we establish the extended Moore-Spence equations




f(x, y, λ) = 0
g(x, y, λ) = 0
vT

n x− vT
my − α = 0

Av − µj

[
vn

0

]
= 0

vT v − 1 = 0

(6)

Obviously, (6) and (5) have the same solution (x, y, λ, v).
In order to make the calculation of SNB points and HB
points simple and convenient, it is necessary to describe
Jacobian matrix reduced method concretely.

3.2 Matrix Reduced Algorithm for Computing SNB Points

When µ0 = 0, we make use of Newton iteration method
to solve the equations (6), thus the linear equations are




fx fy fλ 0 0
gx gy gλ 0 0
vT

n vT
m 0 0 −1

Axv Ayv Aλv A 0
0 0 0 vT 0







∆x

∆y

∆λ

∆v

∆α




= −




f(x, y, λ)
g(x, y, λ)

vT
n x− vT

my − α

Av
vT v − 1




(7)

Equations (7) can be further transformed as follows




fx fy fλ 0 0
gx gy gλ 0 0
vT

n vT
m 0 0 0

Axv Ayv Aλv A [ fλ gλ ]T

0 0 0 vT 0







∆x
∆y

∆λ
∆v

∆α



−




0
0
1

[ fλ gλ ]T

0




∆α = −




f(x, y, λ)
g(x, y, λ)

vT
n x− vT

my − α
Av

vT v − 1




(8)

For convenience, let

M =




fx fy fλ

gx gy gλ

vT
n vT

m 0


 =

[
A [ fλ gλ ]T

vT 0

]
(9)

N =
[

Axv Ayv Aλv

0 0 0

]
(10)

then, (8) can be easily decomposed into two equations as
follows

M

[ ∆x
∆y
∆λ

]
+

[ 0
0
−1

]
∆α = −




f(x, y, λ)
g(x, y, λ)

vT
n x− vT

my − α


 (11)

M

[
∆v
∆α

]
+ N

[ ∆x
∆y
∆λ

]
−

[
[ fλ gλ ]T

0

]
∆α

= −
[

Av
vT v − 1

]
(12)

From (11) and (12), if the matrix M is not singular and the
variable ∆α is known, then the variables ∆x, ∆y, ∆λ, ∆v
can be solved through (11) and (12). Therefore, in solving
(7) by reducing the high order equations to the low order
two block matrices M and N , non-singularity of the matrix
M and solvability of the variable ∆α play a key role.

3.3 Matrix Reduced Algorithm for Computing HB Points

When µ1 = iw (µ2 = −iw is as the same as µ1 = iw),
using Newton iteration method to solve the equations (6),
the corresponding linearization equations are




fx fy fλ 0 0 0
gx gy gλ 0 0 0
vT

n vT
m 0 0 0 −1

Axv Ayv Aλv

[
fx − iw

gx

] [
fy

gy

]
0

0 0 0 vT
n vT

m 0







∆x
∆y

∆λ
∆vn

∆vm

∆α




= −




f(x, y, λ)
g(x, y, λ)

vT
n x− vT

my − α

Av − iw

[
vn

0

]

vT v − 1




(13)

Above formula can be further written as

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

487






fx fy fλ 0 0 0
gx gy gλ 0 0 0
vT

n vT
m 0 0 0 0

Axv Ayv Aλv

[
fx

gx

] [
fy

gy

] [
fλ

gλ

]

0 0 0 vT
n vT

m 0




×




∆x
∆y
∆λ
∆vn

∆vm

∆α



−




0
0
1[
fλ

gλ

]

0




∆α−




0
0
0[
iw
0

]

0




∆vn

= −




f(x, y, λ)
g(x, y, λ)

vT
n x− vT

my − α

Av − iw

[
vn

0

]

vT v − 1




(14)

Marked the matrixes M and N as the same as (9) and (10),
therefore, (14) can be decomposed into two equations, one
is as the same as (11), the other is

M

[
∆v

∆α

]
+ N

[ ∆x
∆y
∆λ

]
−

[
[ fλ gλ ]T

0

]
∆α

−
[

[ iw 0 ]T

0

]
∆vn = −


 Av − iw

[
vn

0

]

vT v − 1


 (15)

Similarly, if the matrix M is not singular and the variable
∆α is known, we can obtain variables ∆x, ∆y, ∆λ, ∆vn,
∆vm by solving (11) and (15), therefore, we need prove M
is not singular at bifurcation points.

3.4 Computing the Bifurcation Points

Theorem 3. The matrix M is non-singular at the saddle-
node bifurcation point and Hopf bifurcation point.

Proof. Assume one equations with coefficient matrix M
as follows, 


fx fy fλ

gx gy gλ

vT
n vT

m 0







p
q

r


 =




0
0
0


 (16)

where, p ∈ Rn, q ∈ Rm and r ∈ R, if there is only
zero solution satisfied the equations, then the theorem is
proved. The first two equations are

fxp + fyq + fλr = 0 (17)
gxp + gyq + gλr = 0 (18)

Because gy is invertible, by solving (18), q can be expressed
in terms of p and r as q = −g−1

y (gxp + gλr). Substituting
q into (17) results in

fxp− fyg−1
y gxp− fyg−1

y gλr + fλr = 0 (19)

According to (3) and transversality conditions of theorem
1 and 2, (19) can be also writen as

Jp + (DλfR)r = 0 (20)

If we wish (20) is identical, then p and r must be zero,
moreover q = 0 can be deduced from the last equation of
(16). This completes the proof of theorem.

And then, since M is non-singular, we can get the solutions
∆x, ∆y, ∆λ of (11),

[ ∆x
∆y
∆λ

]
=

[
ux

uy

uλ

]
+

[
wx

wy

wλ

]
∆α (21)

where, ux, wx ∈ Rn, uy, wy ∈ Rm, uλ, wλ ∈ R, and the
following equations (22) and (23) are satisfied.


ux

uy

uλ


 = −M−1




f(x, y, λ)
g(x, y, λ)

vT
n x− vT

my − α


 (22)

[
wx

wy

wλ

]
= M−1

[ 0
0
1

]
(23)

If calculating saddle-node bifurcation point, we substitutie
(21) into (12), then[

∆v
∆α

]
=

[
uv

uα

]
+

[
wv

wα

]
∆α (24)

where uv, wv ∈ Rn+m, uα, wα ∈ R satisfing the following
equations (25) and (26).

[
uv

uα

]
= −M−1N

[
ux

uy

uλ

]
−M−1

[
Av

vT v − 1

]
(25)

[
wv

wα

]
= M−1

[
[ fλ gλ ]T

0

]
−M−1N

[
wx

wy

wλ

]
(26)

Therefore, we can obtain the variable ∆α by solving (24),

∆α =
uα

1− wα
(27)

then, substituting (27) into (21) and (24), we can get
solutions of ∆x, ∆y, ∆λ.
When calculating Hopf bifurcation points, similarly, sub-
stituting (21) into (15), we can get

[ ∆vn

∆vm

∆α

]
=

[
uvn

uvm

uα

]
+

[
wvn

wvm

wα

]
∆α

+M−1

[
[ iw 0 ]T

0

]
∆vn (28)

where uvn , wvn ∈ Rn, uvm , wvm ∈ Rm, and uλ, wλ ∈ R are
solutions of (29) and (30)


uvn

uvm

uα


 = −M−1N




ux

uy

uλ


−M−1


 Av − iw

[
vn

0

]

vT v − 1


 (29)




wvn

wvm

wα


 = M−1

[
[ fλ gλ ]T

0

]
−M−1N




wx

wy

wλ


 (30)

Thereby, the variable ∆α can be solved through (28),

∆α =
uα + (∗)∆vn

1− wα
(31)
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then, substituting (31) into (21) and (28), we can get
solutions of ∆x, ∆y, ∆λ, ∆vn, ∆vm.
From above detailed analysis, we just need to solve the
invertible matrix M−1 and the equations of which the
dimension is (n+m+1), therefore it is much more feasible
than computation (2n + m + 1) order Jacobian matrix of
large power systems.

4. COMPUTING THE BIFURCATION POINTS OF
POWER SYSTEM

When studying the bifurcation of large power systems,
several procedures for obersvation the bifurcation behavior
would involved, the first step is to solve and trace the
equilibrium curve; the second step is to indetify bifurcation
points. For the power system has N nodes, the equilibrium
manifold can be modeled by{

P (V, θ, λ) = 0

Q(V, θ, λ) = 0
(32)

where, V ∈ RN and θ ∈ RN are voltage and angle
respectively, λ ∈ R is parameter; P = 0 and Q = 0 are
equilibrium manifolds of active power and reactive power
respectively. The right eigenvector U of Jacobian matrix at
saddle-node bifurcation points or Hopf bifurcation points
satisfies [

PV Pθ

QV Qθ

] [
UP

UQ

]
− µj

[
UP

0

]
= 0 (33)

for one and only eigenvector, U =
[

UP

UQ

]
is standardiza-

tion by
UT

P UP + UT
QUQ = 1 (34)

Equations (32)∼(34) together constitute the Moore-Spence
equations of power systems, according to section 3, it is
very easy to calculate bifurcation points by using of matrix
reduced algorithm.

5. ILLUSTRATIVE EXAMPLE

We consider one simple power system model (3 bus sys-
tem) shown in Fig.1. It consists of two generators feeding
a load, which is represented by an induction motor in par-
allel with a capacitor and a constant impedance PQ load.
One generator is an infinite bus and the other generator
has a constant voltage magnitude Em. The equations that
govern the power system model are





δ̇m = ω

ω̇ = [−dmω + Pm + EMYmV sin(δ − δm − θm)

+ (E2
mYm sin θm)]/M

δ̇ = [−Kqv2V
2 −KqvV + Q(δ, V )−Q0

−Q1]/Kqω

V̇ = {KpωKqv2V
2 + (KpωKqv2 −KqωKpv)V

+ Kqω[P (δ, V )− P0 − P1]−Kpω[Q(δ, V )

−Q0 −Q1]}/(TKqωKpv)

(35)

For the meaning of all variables and detailed deduction of

Fig. 1. A sample three bus power system model

the equations, see Dobson and Chiang (1989). There are
four state variables, namely, generator angle δm, generator
angular velocity ω, the angle δ and magnitude V of
load voltage. The load reactive power variable Q1 is
a parameter corresponded to increase the load reactive
power demand, and active power P and reactive power
Q of system are

P (δ, V ) = −E′
0Y

′
0V sin(δ + θ′0)− EmYmV sin(δ −

δm + θm) + (Y ′
0 sin θ′0 + Ym sin θm)V 2

Q(δ, V ) = E′
0Y

′
0V cos(δ + θ′0) + EmYmV cos(δ −

δm + θm)− (Y ′
0 cos θ′0 + Ym cos θm)V 2

the other parameters are also as the same as aforemen-
tioned reference, i.e. Kpω = 0.04, Kpv = 0.3, Kqω = −0.03,
Kqv = −2.8, Kqv2 = 2.1, T = 8.5, P0 = 0.6, Q0 = 1.3,
P1 = 0.0, Y0 = 20.0, θ0 = 5.0, E0 = 1.0, Y ′

0 = 8.0,
θ′0 = −12.0, E′

0 = 2.5, Ym = 5.0, θm = −5.0, Em = 1.0,
Pm = 1.0, dm = 0.05, M = 0.3.
Making use of matrix reduced method, we can di-
rectly calculate Hopf bifurcation point is (δm, ω, δ, V ) =
(0.137, 0.0, 0.155, 0.759), when parameter Q1 = 13.728,
denoted HB1; but when parameter Q1 = 14.258, de-
noted HB2, Hopf bifurcation point is (δm, ω, δ, V ) =
(0.439, 0.0, 0.168, 0.620); simultaneously, when parameter
Q1 = 14.260, marked as SNB, saddle-node bifurcation
point is (δm, ω, δ, V ) = (0.442, 0.0, 0.169, 0.612). We would
verify above computing results through time domain sim-
ulation Fig.2-4.
From Fig.2, we know that an unstable limited loop appears
when Q1 = 13.72 < HB1. At the same time, the volt-
age loses stability and results in periodically oscillation
as shown as Fig.3, therefore power system would occur
subcritical Hopf bifurcation when Q1 = 13.728. But when
the parameter Q1 = 14.259 > HB2, the voltage of load
resumes to stabilize as shown in Fig.4. If Q1 decreases less
than HB2, a small and stable limited loop would appear,
which indicates that the system would occur supercritical
Hopf bifurcation when Q1 = 14.258.
As Q1 increases further to 14.261 > SNB, the Fig.5 illu-
minates that the voltage would drop suddenly to negative
after a spell; clearly, voltage happens reverse and leads
into voltage collapse. All above show that the computing
results and the time domain simulation results are abso-
lutely consistent, therefore it is feasible and effective of
using the matrix reduced method to compute the saddle-
node bifurcation points and Hopf bifurcation points of
large power systems.
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Fig. 2. The projection on ω − V plane of system orbit
(Q1 = 13.72)

Fig. 3. Time domain simulation result of load voltage V
(Q1 = 13.72)

Fig. 4. Time domain simulation result of load voltage V
(Q1 = 14.259)

Fig. 5. Time domain simulation result of load voltage V
(Q1 = 14.261)

6. CONCLUSION

For large power systems, SNB and HB are both of impor-
tant reasons for voltage collapse and osciation. The bifur-
cation theory and nonlinear system theory play a major
role in understanding the nonlinear dynamical behavior of
the power system. The paper has been derived an effective
matrix reduced method through introducing an auxiliary

variable and an auxiliary equation. Finally, we considered
the 3-bus power system model and the time simulation
results verified the validity of the method. Work is under
way to extend the analysis to include larger and more
detailed power system network model.
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