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Abstract: The paper presents the tuning method of digital PID-controllers based on the solution of 
parametric optimization problem under uncertain process model and given power spectrum densities 
(PSD) of stochastic disturbance and set point signals. The new approach for determination of set of 
stabilizing PID values is issued. It was used in the optimization procedure in order to check closed loop 
stability conditions during the search iterations. 

 

1. INTRODUCTION 

The proportional-integral-derivative (PID) controller remains 
as popular control algorithm in industry due to its simplicity 
of realization. There is a great deal of PID-tuning rules 
(Astrom and Hagglund, 1995; Ko and Edgar, 2004) but only 
a few of them takes into account random disturbances. The 
survey of PID-controllers optimization techniques in the 
presence of stochastic signals is given by Huang and Huang 
(2004). They also proposed the algorithm for optimal PID 
parameters calculation based on the LMI-approach and 
covariance criterion. The increase of LMI computational 
complexity should be noted in case of it application for the 
uncertain plant models. Furthermore, the simultaneous 
influence of the disturbance and set point signals having 
stochastic nature was not considered in the analysis of closed 
loop performance whereas this is a wide spread case in 
practice of PID-controller operation in a cascade mode. Also, 
the description of PID-controller is often assumed in a 
continuous form (Toscano, 2005; Hwang and Hsiao, 2002; 
Yaniv and Nagurka, 2004). However, the modern controllers 
are implemented in the Distributed Control System (DCS) 
and must be represented using discrete time models. 

 
In the present work the design of optimal PID-controller is 
considered as parametric optimization problem in the sense 
of minimum variance criterion under uncertain plant model. 
The PSD of both unmeasured disturbance and set point 
signals are incorporated by the design method. This gives 
possibility to take into account the various signals nature 
whether it will be filtered white noise or harmonic process in 
white noise of any order (Hayes, 1996). The proposed 
approach is distinguished by the simple method of stability 
domain determination for closed loop with digital PID-
controller and plant models with delay. It was integrated in 
the framework of optimization procedure. 

 

2. SET OF PROCESS MODEL PARAMETERS 

There are two types of process models covering the control 
problems of many industrial process units (for example, 
flowrate, temperature, pressure and level control): 
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where G(s) – transfer function (TF) of plant model. 

 

The model parameters in (1) are unknown exactly in practice. 
We can only suppose that these values belong to the certain 
interval (i.e. the low (min) and upper (max) bounds are 
known). In that case for model GI(s) we get a set of 
parameters PI and for GII(s) is PII, respectively. In turn, the PI 
or PII contains the vectors of plant model parameters Pi: 
PI

i={τi, Ti, Ki}, i=1,…,23; PII
i={τi, T1i, Ti, Ki}, i=1,…,24. 

Table 1 illustrates the example of parameters set for PI: 

 
Table 1. PI set 

PI
i τi Ti Ki 

PI
1 τmin Tmin Kmin 

PI
2 τmin Tmin Kmax 

PI
3 τmin Tmax Kmin 

PI
4 τmin Tmax Kmax 

PI
5 τmax Tmin Kmin 

PI
6 τmax Tmin Kmax 

PI
7 τmax Tmax Kmin 

PI
8 τmax Tmax Kmax 

 

3. STATEMENT OF PROBLEM OF PARAMETRIC 
OPTIMIZATION FOR PID-CONTROLLER 

Consider the closed loop on the Fig. 1 with TF of PID-
controller 
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H(s) – TF of zero-order hold. Sg(ω), SN(ω) – the PSD of set 
point signal and unmeasured disturbance, respectively. It was 
assumed that g(t) and N(t) are uncorrelated. 
 

 

Fig. 1. Closed loop control system 

 
The PSD of the error signal e(t) (Fig.1) has the following 
form (Appendix 1) 
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F1(jω)=F2(jω)С(jω) )( ωjG′ . The substitution STjez ω=  is 
used (2). TS – sampling interval. )()()( ωωω jHjGjG =′ . 
 
The error variance De based on the (3) will be expressed by 
the equation 
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The integral (4) is calculated numerically and integration 
limits are replaced by the finite numbers +ωc and -ωc 
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practical applications. 
 
The optimization problem of controller for uncertain plant (1) 
is formulated by 
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under constrains 
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4. INPUT SIGNAL PSD FUNCTION IMPACT ON 

VARIANCE VALUE 

In this section we demonstrate the importance of input signal 
(disturbance) PSD function consideration during the design 
of optimal PID-controller. Let us consider the industrial 
process control problem example: flowrate control. The 
several disturbances sources exist (for example, pumping 

fluctuations, pressure variation inside the pipeline and so on) 
in real plant. Fig. 2 shows the flow measurements under fixed 
valve position. 

 
Fig.2. Normalized process variable (industrial data, Ts=2 sec) 
 
This is obvious that the stochastic disturbance has harmonic 
nature and its description using conventional filtered white 
noise model (in term of polynomial C(z)w) is not valid for 
current case. The more suitable model is sum of sinusoids (or 
complex exponents) in white noise of certain order. In order 
to avoid problems with selection disturbance model structure 
the author propose to use a PSD function as more powerful 
approach for accurate handling disturbance or set point 
influence. 

 
Fig.3. Ji values: impulse functions with different amplitudes 
 
For the simplicity of further PSD function analysis assuming 
that disturbance on the Fig.2 is described by equation 
(neglecting white noise) 

)sin()( 0 φω += jAjn . 

φ is uniformly distributed between -π and π. It was estimated 
that ω0=0.36 rad/sec and A≈1. The PSD function of sinusoid 
with random phase has the following form (Hayes, 1996): 
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where δ - impulse function. 
 
The nominal plant model for example on Fig.2 is  
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 + 10% of parametric uncertainty. 

 
The reduced criterion (5) has form 
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Let us investigate influence of K2 on J under fixed K1=2.2 
and K0=0.1. The Ji is depicted on the Fig. 3 and variation of J 
is shown on the Fig 4. It is obviously that parameter of PSD 
function strongly affects on the placement of K2

OPT (three 
different optimal values). It was found for our case (ω0=0.36 
rad/sec) that introduction of differential term D into control 
law does not provide performance improvement. 

 
Fig.4. Variance as function from K2 
 

5. DETERMINATION OF PID-CONTROLLER 
STABILIZING PARAMETERS DOMAIN FOR CLOSED 

LOOP SYSTEM 

The structure of design algorithm is depicted on the Fig.5. 
The SQP optimization technique is accompanied by the 
calculation blocks for checking closed loop stability for set of 
plant models. Therefore, in the present section we consider 
details required for obtaining low and upper bounds of 
inequalities (6)-(8). 
 
The closest work in this area is the paper of Silva et. al., 
2001. It was analyzed continuous time PI-controller with the 
help of Hermit-Biehler Theorem. However, to extent such 
results on the digital PID-controller is extremely difficult 
because of the substitution z=ejω will not allow to issue the 
analytical constrains on the K1. Here we are offering a more 

simple solution with extension on the digital PID-controller 
for delayed systems whereas the work of Xu et. al., 2001 did 
not point how to handle transport delay. 

 

 
Fig.5. Design algorithm 
 
For the convenient presentation of the proposed approach 
consider the following plant model example 
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where b0=0.0165; a0=0.9835; d=10. Ts=1 sec. Gd(z) includes 
the extrapolator TF. 

5.1 Obtaining the frequencies of closed loop undamped 
oscillations separately for P-, I- and D-controllers. 

Consider the three independent control systems with P-, I- 
and controllers, respectively. The critical values of crK1 , 

crK0  and crK2  are existing and corresponding to stability 

boundaries of each closed loop having own frequencies cr
1ω , 

cr
0ω  and cr

2ω  of undamped oscillations. 
For each loop the stability criterion is holding 
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The subsequent solutions of (10) can be performed using the 
following technique. The closed loop equation 

0)()(1 =′′+ ωω jGjC  

is rewriting in the form 
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The crω  is calculated from the phase equation 
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0)()( =+ ′ ωϕωϕ GC . 

Because of the expression of )( ωjC ′  by the constant term, 
then 

0)( =+ ′ ωϕπ G . (11) 

It can be shown that the root of (11) belongs to the interval 
];0[ πω ∈  for (1). The values of crK1 , crK0  and crK2  are 

derived from the amplitude equation 

)(/1)( ωω GC AA ′′ = , (12) 

where )(ωCA ′  is crK1 , crK0  or crK2 . 

The critical frequencies for example (9) are presented in the 
Table 2. 
 

Table 2. Calculated P, I and D critical 
gains and frequencies 

  K*
cr ωcr,rad/sec 

K1   9.6113 0.1595 
K0   0.1027 0.0397 
K2 60.0985 0.2908 

5.2 Stabilizing gains of PD-part. 

Consider the stability condition of closed loop system with 
PID-controller 
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Introduce the following notations 
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The condition (13) is transformed into the system of 
equations 
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Fig. 6. Stability domain of PD-controller 
 

If 0K =0 in (18)-(19) then it is possible to find stability 
domain for PD-controller. Figure 6 shows it for example (9) 
in the frequency range of ];[ D

cr
P
cr ωωω ∈ . In order to check 

inequality (7) under given K2 it needs to calculate the root 
crωω =  for (19). The substitution of crω  in (18) gives 

)( 21
max
1 KfK = . 

 

 
Fig. 7. Hodograph of K0 
 
It is easy to spread (17) on the PI-controller case expressing 
K1 and K0 by analogy with (18)-(19) and assuming that K2=0. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9353



 
 

     

 

5.3 Obtaining the upper bound of inequality (8). 

Express the K0 from (13) as 
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The hodograph (20) is valid in the frequency range 
];[ D

cr
I
cr ωωω ∈ . The required value of K0 is located on the 

right real axis (Im{K0}=0, Re{K0}≥0) as shown on the Fig. 7. 
The set of stabilizing gains of PD-controller (Fig.3) 
corresponds to the set of maximum K0 values depicted on the 
Fig.8. For the values of K2<20 and K1>9.6 it was found that 
there is no stabilizing K0 gain (i.e. the PD-controller only 
exists for that parameters range). 

 

Fig. 8. Stability domain for max
0K  

 
The stability domain plots are not standard (fig.6-8). The total 
PID stabilizing gains domain was shown (3D plot was 
presented as two 2D graphs) and demonstrates that adding 
integrator term to digital PD-controller will cause instability 
(dashed line in fig.6) under certain PD gains. 
 

6. TUNING EXAMPLE 

The optimization criterion (5) involves the external signals 
spectrums. Assume that g(t) and N(t) are having the 
following PSD 
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The expressions (21) are reflecting the square pulse signals 
with amplitudes ag, aN and duration Tg and TN in the random 
time instances. 

 
The true parameters of (9) are unknown and by assumption 
lies in the 10% range from the nominal values. It was also 
accepted that ag=1; Tg=2(mean(T)+mean(τ)); aN=ag/2; 
TN=Tg/40. The results of optimization problem are depicted 
on the Fig.9-12.  

 
Fig. 9. The set of K2, K1 and optimal solution 

 
Fig. 10. The set of K0, K1 and optimal solution 
 

7. CONCLUSION 

The tuning of PID-controller was considered as optimization 
problem and solved in case of stochastic disturbance and set 
point signals under uncertain parameters of plant model. The 
simple numerical method is proposed for the determination 
and checking of closed loop stability. The author presents 
statements which may be considered as new results or 
contribution for PID tuning methods: 
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a) Proposed frequency domain minimum variance 
convolution criterion (5) is more valid for practice; 
b) New method for robust stabilizing PID gains domain 
calculation during optimization trials by criterion (5) is 
derived. In general, there is no limitation for plant transfer 
function form for SISO case. 
 
The application of SQP or GA (or another optimization 
technique) is not involved as novelty in the paper. The 
present paper also demonstrates that we can find easily global 
optimum without LMI (BMI and etc) solving. Moreover, the 
existing LMI applications for PID tuning rules are not 
handling stochastic disturbance model as sum of complex 
exponents in the white noise for discrete time systems. 
 

 
Fig.11. Criterion values and K2/K1 

 
Fig.12. Criterion values and K0/K1 
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Appendix A.  

Assume that the random signals x(t), y(t), v(t) and f(t) are 
interconnected by the following equations  

( ) ( ) ( ) ( ) ( ) ( )1 2; .Y j W j X j V j W j F jω ω ω ω ω ω= =  (A.1) 

The realizations of each signal are known on the interval 2T 
and denoted by xT(t), yT(t), vT(t) and fT(t) or XT(t), YT(t), VT(t) 
and FT(t), respectively. W1 and W2 are certain linear 
transformations. The cross PSD of y(t) and v(t) within the 
interval 2T can be expressed via correlation function Ryv 
(Jaffe, 1999) 
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where E{.} – expectation. 
The transformation of (A.2) gives 

)}.()({
2
1)}(

)()({
2
1)(

)( ωωτ

τω

τω

ω

jVjYE
T

tde

tvdtetyE
T

jS

TT
tj

T

T

T

tj
Tyv

−=+×

×+=

+−

∞

∞−−
∫∫

 (A.3) 

Taking into account (A.1) for YT(-jω) and VT(jω) in (A.3) the 
following equation can be obtained 
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Finally, (A.4) may be written in the form 

).()( 2 ωω xy SWS =  (A.5) 
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