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Abstract: In this paper, we investigate the applications of neural sliding-mode control method
to automotive engine control. The scheme of neural sliding-mode control is realized by two
parallel neural networks. The first neural network estimates the equivalent control term and the
other one generates the corrective control term. The goal of the present learning control design
of automotive engines is to track the commanded torque under various operating conditions.
Using the data from a test vehicle with a V8 engine, we have developed a neural network engine
model and neural network controllers based on the idea of sliding-mode control to achieve
optimal torque control. In simulation studies of the neural sliding-mode design method, very
good transient performance and fast speed of convergence have been observed. In this process,
the tedious task of parameter tuning by trial-and-error has been eliminated. Distinct features of
the present technique are the controller’s real-time adaptation capability based on observed real
vehicle data and its rapid convergence which allow the neural network controller to be further
refined and improved in real-time vehicle operation through continuous learning and adaptation.

Keywords: Sliding-Mode Control; Neural Control; Torque Control; Engine Control; Neural
Networks.

1. INTRODUCTION AND BACKGROUND

Sliding-mode control (SLMC) has been widely used due to
its robustness to system parameter uncertainties and ex-
ternal disturbances. The theory has been developed mainly
for continuous-time systems in which the sliding mode
is generated by discontinuous controls on certain sliding
surfaces; see Utkin (1992). Meanwhile, researchers have
been developing discrete sliding mode control (DSMC)
for more than two decades and there are many successful
industrial applications including Koshkouei et al. (2000),
Lee et al. (1999), Li et al. (2000), Matas et al. (2002).
Essentially, SLMC utilizes a high-speed switching control
law to drive state trajectory of nonlinear plant onto a
specified, user-chosen surface in the state space (called the
sliding or switching surface), and to maintain the plant
state trajectory on this surface for all subsequent times.
The plant dynamics restricted to this surface represent
the controlled systems behavior. By proper design of the
sliding surface, SLMC attains the conventional goals of
control such as stabilization, tracking and regulation.

Automotive engines are known to be complex nonlin-
ear dynamical systems. The control problems of automo-
tive engines have been investigated by many researchers
(Alippi et al. (2003), Kovalenko et al. (2004), Moskwa
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et al. (1990), Park et al. (2003), Won et al. (1998) and
references cited therein). The present study considers the
neural sliding-mode control (NSLMC) for automotive en-
gine control. SLMC has been mainly applied to motion
control and robotics. There are also some applications to
engine control reported in the literature, such as Khan
et al. (2003), Yang et al. (1997), Lu et al. (2000), Ouenou-
Gamo et al. (1997).

Although SLMC has advantages over an adaptive ap-
proach regarding its good adaptation to unmodeled dy-
namics and disturbances, and guaranteed transient per-
formance, two drawbacks typically limit the application
of this technique. One is the discontinuity in the control
law when the system crosses the sliding surface and the
other is the lack of a learning capability. The chatter-
ing caused by high frequency switching control activity
may excite unmodeled high-frequency dynamics leading
to the degradation of system performance and potential
instability. It is difficult to learn complex nonlinearities
such as friction, using a conventional linearly parmetrized
adaptive framework. Neural networks which represent a
class of parametrizations with attractive properties includ-
ing learning would solve these two problems. The present
work will use two parallel neural networks to realize the
equivalent control and the corrective control of the SLMC
design. The calculation of equivalent control is realized
by adaptively learning without knowing the plant dynam-
ics. The proposed adaption scheme directly results in a
chatter-free control action for the corrective control.
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Incorporation of some degree of “computational intelli-
gence” into SLMC can be made by the use of neural
networks. The purpose of integration of the computational
intelligence methodologies in SLMC is to deal with uncer-
tainties of the controlled plant, the problem of chattering
and the calculation of equivalent control which are quite
difficult to solve by the conventional SLMC. The basic
idea proposed in Du et al. (1997) and Won et al. (1998)
improves the control performance by the use of neural
network to approximate the plant nonlinearities or uncer-
tainties. Large uncertainty results in large sliding control
parameters which in turn results in inferior performance.
The only way to reduce control parameter values is to
decrease the system uncertainty. A Gaussian network pa-
rameterization is used to capture part of the uncertain
system dynamics and thus to decrease the system uncer-
tainty. In Karakasoglu et al. (1995), a neural network was
used for the adaptation of the SLMC parameters where
the SLMC parameters, such as the slope of the sliding
surface and the controller gain, are progressively updated.
Both in Ertugrul et al. (2000) and Tsai et al. (2004), two
parallel neural networks are used to realize the equiva-
lent control and corrective control of SLMC design. The
difference between these two schemes is that, in Ertugrul
et al. (2000), the error for updating the neural network for
equivalent control is the output of the corrective control
while in Tsai et al. (2004), it is the sliding function S.
However, the speed of either of the algorithms is slower
than the one proposed in this paper.

This paper is organized as follows. In Section 2, a brief
introduction of SLMC will be discussed. In Section 3, neu-
ral sliding-mode controller will be developed. In Section
4, simulation studies of engine torque control using neural
sliding-mode method will be presented. In the final section,
Section 5, conclusions will be drawn.

2. SLIDING-MODE CONTROL

The most salient feature of an SLMC is that the feedback
control is discontinuous on one or more manifolds in the
state space. When the state crosses each discontinuity sur-
face, the structure of the feedback system is altered. Under
certain circumstances, all motions in the neighborhood of
the manifold are directed toward the manifold and, thus, a
sliding motion on a predefined subspace of the state space
is established in which the system state repeatedly crosses
the switching surface. This mode has useful invariance
properties in the face of uncertainties in the plant model
and, therefore, is a good candidate for tracking control
of uncertain nonlinear systems (Kaynak et al. (2001)). In
general, the phase trajectory of the system with SLMC
consists of two parts. The first part is the reaching mode
in which the trajectory starting from anywhere on the
phase plane under certain circumstances moves toward a
switching surface and reaches the surface in finite time.
The second part is the sliding mode in which the trajectory
slides along the surface to the origin of the phase plane.

Consider the following nonlinear, multi-input multi-output
system:

˙X(t) = F (X, U) (1)

where the state space has a dimension of Dim(X) = n
and the control space has Dim(U) = m. The error of the
system is defined as

e = Xd(t) − X(t), (2)

where Xd(t) represent the desired targets and X(t) rep-
resents the actual values. Both are column vector with
dimension n.

The sliding mode control design approach consists of
two steps. The first step is to select a sliding surface
that models the desired closed-loop performance in state
variable space according to design specifications. The
second is concerned with the selection of a control law
which will drive the system state trajectories toward the
sliding surface and stay on it. Sliding surface is defined as:

S(e) = cT e + dT ė (3)

where c = [c1, c2, · · · , cn]T , d = [d1, d2, · · · , dn]T , and
e = [e1, e2, · · · , en]T which is defined by (2).

The aim of SLMC is to drive the system states to the
sliding surface and remain on it. From Lyapunov theorem
for global stability, the control input for the system is:

U(t) = Ueq(t) + Uc(t) (4)

where Ueq represents equivalent control which is the con-
trol action necessary to maintain an ideal sliding motion on
sliding surface and Uc represents corrective control which
drives the phase trajectory towards the sliding surface. It
is given by Uc = Ksign(S), where K is a matrix (Ertugrul
et al. (2000)). The corrective control given by Ksign(S)
exhibits high frequency oscillations in its output which is
known as chattering. Chattering is an undesirable phe-
nomena since it excites unmodeled high-frequency plant
dynamics and this can result in unforeseen instabilities.
To eliminate it, in general, a saturation function or a
sigmoid is used instead of the sign function. In this case,
the corrective control is computed as:

Uc(t) = KG(S). (5)

where G(S) is a saturation or a shifted sigmoid function,
which can be chosen as the following function:

G(S) =
1 − e−S

1 + e−S
. (6)

3. NEURAL SLIDING-MODE CONTROL

3.1 Structure of NSLMC

Two neural networks in parallel are used to realize the
equivalent control and corrective control of SLMC design
as in Figure 1 which shows where neural network #1
is used to estimate the equivalent control, and neural
network #2 is employed to generate the corrective control
to estimate the chattering effect. The sum of Ueq and Uc

form the control signal to be applied to the controlled
plant.

When the state of system reaches the sliding mode, the
equivalent control term takes control of the system and
the corrective control term goes to zero. The difference
between the equivalent control and the estimate of the
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Fig. 1. The neural sliding mode control structure

equivalent control is reflected as corrective control which
take effect only when the states of the system deviate from
the sliding surface. When sliding takes place, the equiva-
lent control has the same role as the inverse dynamics of
the controlled system (Ertugrul et al. (2000)).

3.2 Neural Computation of the Equivalent Control

The structure will be chosen as a two-layer feedforward
neural network with one hidden layer and one output layer.
The inputs to the neural network are the desired target
and actual value of the output. The output of the neural
network is the equivalent control Ueq. The weight adaption
of the neural network is based on a minimization of the
cost function as follows:

E =
1

2
(Ueq − Ûeq)

2 =
1

2
ζ2 (7)

where ζ = Ueq − Ûeq.

The Levenberg–Marquardt (L–M) algorithm is used to
update the weights of neural network 1 instead of the
backpropagation algorithm which is a steepest descent
algorithm. The selection of L–M algorithm is based on
the fact that the L–M algorithm is widely accepted as the
most efficient one in the sense of realization accuracy for
nonlinear least squares (Hagan et al. (1994)).

The formula for updating weights is given as follows:

△W = [JT (W )J(W ) + µI]−1JT (W )ζ (8)

where the parameter µ is adjustable and J(W ) is the
Jacobian matrix. µ is multiplied by some factor β whenever
a step would result in an increased E. When a step reduces
E, µ is divided by β. By adjusting µ in this way, the
search direction interpolates between the gradient and the
Gaussian-Newton direction. That is the reason why the
rate of convergence is satisfactory. Jacobian matrix J(W )
can be expressed as follows:

J(W ) =

[

∂ζ

∂W1

∂ζ

∂W2

· · ·
∂ζ

∂Wn

]T

. (9)

From equation (7),

∂ζ

∂Wi

=
∂(Ueq − Ûeq)

∂Wi

= −
∂Ûeq

∂Wi

. (10)

Equation (10) can be calculated using the standard back-
propagation algorithm. Thus, the Jacobian matrix can be
computed by (9).

From (7), we find that the desired equivalent control is

unknown. To overcome this problem, Ueq−Ûeqwas replaced

E

E

E

E

d + G(  ) K
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...
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Fig. 2. The structure of NN2

by the value of sliding function S since the characteristics
of Ueq − Ûeq and S are similar (Tsai et al. (2004)), that is,

when S is close to 0, Ueq − Ûeq → 0.

3.3 Neural Computation of the Corrective Control

One of the problems in the application of neural networks
is how to choose the number of layers, the number of
neurons in each layer and the connections among neurons.
This is not a problem here since the structure of the neural
network #2, which is shown in Figure 2, is decided by the
design of SLMC. From (3) and (5), the gains of SLMC are
represented as the weights of neural network #2. In this
way, the gains of SLMC are adapted gradually to the best
values.

An adaption scheme to minimize the sliding function is
proposed using gradient descent method. The cost function
is defined as

J =
1

2
SST . (11)

Since S is the error in (3), minimization of S results in
minimization of the error. To minimize J , the weights are
changed in the direction of the negative gradient,

△K = −µ
∂J

∂K
, △ci = −µ

∂J

∂ci

, △di = −µ
∂J

∂di

,

where µ is the learning rate, K is defined in (5), and ci and
di are both defined in (3). A learning rate is selected by
user in order to determine how much the link weights and
node biases can be modified based on the change direction
and change rate. An adaptive learning rate is a better
choice which attempts to keep the learning step size as
large as possible while keeping learning stable.

The gradient descent for ci can be derived using (3) as:

△ci = −µ
∂J

∂ci

= −µ
∂J

∂S

∂S

∂ci

= −µS
∂S

∂ci

= −µ · S · ei. (12)

The gradient descent for di can be derived using (3) as:

△di = −µ
∂J

∂di

= −µ
∂J

∂S

∂S

∂di

= −µS
∂S

∂di

= −µ · S · ėi. (13)

The gradient descent for K can be derived as:

△K = −µ
∂J

∂K
= −µ

∂J

∂S

∂S

∂K
= −µS

∂S

∂K
. (14)

From (3),

S(e) = cT e + dT ė = cT (Xd − X) + dT ė. (15)

That is, from (4) and (5)

∂S

∂K
= −

∂X

∂K
= −

∂X

∂U

∂U

∂Uc

∂Uc

∂K
= −

∂X

∂U
G(S), (16)
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Fig. 3. The model structure of the test engine

where X is the output of the system and G(S) is defined in
(6). Since the engine system will be represented by a neural
network, according to the backpropagation algorithm,
∂X/∂U can be derived easily. Finally,

△K = −µS
∂X

∂U
G(S). (17)

4. NSLMC SIMULATIONS OF ENGINE TORQUE
CONTROL

4.1 Engine Description

A test vehicle with a V8 engine and 4-speed automatic
transmission is instrumented with engine and transmission
torque sensors, wide-range air-fuel ratio sensors in the
exhaust pipe located before and after the catalyst on each
bank, as well as exhaust gas pressure and temperature
sensors. The vehicle is equipped with a dSpace rapid
prototyping controller for data collection and controller
implementation. Data is collected at each engine event
under various driving conditions, such as Federal Test
Procedure (FTP cycles), as well as more aggressive driving
patterns, for a length of about 95,000 samples during each
test. The engine is run under closed-loop fuel control using
switching-type oxygen sensors. The dSpace is interfaced
with the powertrain control module (PCM) in a by-pass
mode.

4.2 Control Objectives

The objective of the present engine controller simulations
is to provide control signals so that the torque gener-
ated by the engine will track the desired (or demanded)
torque. The measured torque values are obtained using
a commercial engine controller under warmup conditions.
Based on the data collected we use the neural sliding-
mode controller to generate control signal TPS (throttle
position) with the goal of producing exactly the same
torque response as in the data set. That is to say, for the
simulation purposes, the demanded torque is given by the
torque level in the vehicle data set and we build a controller
that provides control signal which achieve the required
torque performance. The performance is measured by a
norm of deviations between the demanded and measured
torque levels.

4.3 Engine Combustion Model

We consider a model of the test engine shown as in Figure
3 where TRQ (engine torque) is the output. The model
structure chosen here is compatible with the mathematical
engine model developed by Dobner (1980), Dobner (1983)
and others.

The engine model is constructed by a two-layer feedfor-
ward neural network with four inputs: TPS (throttle po-
sition), MAP (manifold absolute pressure), RPM (engine
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Actual State
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Fig. 4. The structure of the torque control system
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Fig. 6. NSLMC training control effect

speed) and SPA (spark advance), where TPS is the control
signal and the other three inputs are reference signals com-
patible with the control signal at any operating conditions.

4.4 Control Algorithm

The structure of the torque control system is shown in
Figure 4. The inputs to the NN1 are desired TRQ∗ which
is in the data set and actual TRQ which tries to track the
desired TRQ∗. The sum of two outputs of the NN1 and
NN2 is TPS which is the control signal for the engine.

The sliding surface S is defined as:

S = c1e + d1ė (18)

where e represents error between target TRQ∗ and actual
TRQ which is TRQ∗

−TRQ. From the defined S, the
structure of NN2 can be decided and it is shown in Figure
5. The inputs to the NN2 are the error between the
target TRQ and the actual TRQ and the derivative of the
error. The other part of control algorithm and the weight
adaption rules were described in Section 3.

4.5 Simulation Results

The training data range for the evaluation of the control
algorithm for TRQ control is arbitrarily selected from 1000
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to 5000 events in the data set for Federal Test Procedure
(FTP) test, while the valudation data is from 5000 to
8000 events. All values of signals are normalized to a
range between −1 and 1 for convenience in the neural
network training. Figure 6 shows the output (TRQ) of
the engine using neural sliding-mode control as compared
to the demanded TRQ in the data set. From Figure 6, we
can see that the TRQ controlled by the NSLMC controller
tracks the TRQ demand very well. Figure 7 shows the
output of the control input to the engine compared to the
TPS in the data. From Figure 7, we can also see that the
control output of the NSLMC controller is very close to
the measured TPS in the data set. Figure 8 shows the
output of the equivalent control and corrective control
compared to the TPS in the data. From this figure, we
can see that most of the time, the corrective control is
around zero. Only when the system states deviate from
the sliding mode, the controller takes action to pull the
system states back to the sliding surface. Figure 9 shows
the validation effect of the control method. From Figure
9, we can see that the control effect is very good even for
the data that never trained before.

The initial values for c1, d1 and K are 1 in the experiments.
In the training process, d1 keeps unchanged. They can be
selected randomly, that is, they do not have to be selected
with big initial values. The trajectory of sliding function S
during training is as in Figure 10. From the figure, we can
see that only after 6 events, the sliding function S reaches
the acceptable value (under 0.005 is acceptable).

4.6 Discussions of the Achieved Results

Compared to the method in Tsai et al. (2004), the training
speed is very quick and there’s no oscillation during the
training. Actually, it just took only 15 steps (about 1
minute) to get very good results (The computer used
is a 3.2GHz Pentium 4 with 1G RAM). While using
backpropagation (delta training rule), it took around 20
steps to make MSE to be below 0.003. But at that time,
there are some big oscillations in the output where the
target data has the oscillation in a small range. It took 400
steps to smoothen out these big oscillations which requires
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one additional hour running on the computer. Because
of the generalization of the neural networks, the neural
sliding mode controller still works very well for the data
in the range of 5000–9000 which is not trained during the
simulation. Considering the speed and control and learning
simultaneously, neural sliding-mode control method may
be a good candidate for online learning control.

The parameters of neural network for the corrective con-
trol are set by trial and error in Ertugrul et al. (2000) and
Tsai et al. (2004), which is a time-consuming task and are
selected big to achieve fast convergence on purpose. In our
scheme, the parameters are selected as 1 which is enough to
guarantee performance. The way of computation of K here
is different from the method in Ertugrul et al. (2000) and
Tsai et al. (2004) where the computation of the gradient
of K is acquired from the integral of G(S) which would be
unpredictably big in real experiments.

5. CONCLUSIONS

Our research results show that the method of neural sliding
mode control is a good approach for engine torque control.
The scheme of neural sliding mode control is realized by
two parallel neural networks. The first neural network
estimates the equivalent control term and the other one
generates the corrective control term.

The following advantages are observed in the numerical
experiments:

• The method does not require any prior knowledge
about the engine under control and its characteristics.

• Chattering is eliminated without any performance
degradation.

• The speed of convergence is surprisingly fast using
the Levenberg–Marquardt algorithm.

• The structure of neural network for the corrective
control is well defined by the SLMC design.

Research work on the application of this technique to
engine air-fuel ratio control is underway and will be
reported in a future paper.
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