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Abstract: This paper investigates detection of an air leak fault in the intake manifold
subsystem of an automotive engine during transient operation. Previously, it was shown that
integrating the local approach with an auto-associative neural network model of the engine,
significantly increased the sensitivity of fault detection. However, the drawback then is that the
computational load is naturally dependent on the network complexity. This paper proposes the
use of the available physical models to pre-process the original signals prior to model building
for fault detection. This not only extracts existing relationships among the variables, but also
helps in reducing the number of variables to be modelled and the related model complexity.
The benefits of this improvement are demonstrated by practical application to a modern spark
ignition 1.8 litre Nissan petrol engine. Copyright c©2008 IFAC
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1. INTRODUCTION

Due to the increased complexity of modern automotive
engines, an accurate and complete physical model is rarely
available. A number of techniques for Fault Detection
and Diagnosis (FDD) applied to automotive engines have
have been published over the last decade (Gertler et
al., 1993; Nyberg, 2002; Crossman, 2003; Kimmich el al.,
2005). These include both signal-processing and model-
based approaches. It has been argued that simple signal-
based techniques will probably no longer be able to match
the ever-rising requirements on future automotive FDD
systems, leaving model-based fault detection as the most
promising way forward (Kimmich el al., 2005).

This paper focuses on modelling and fault detection for
the intake system of a petrol engine during transient oper-
ation. Nyberg (2002) constructed a model-based diagnosis
system for the air-intake system of a turbo-charged engine.
A mean value model of the air-intake system was used.
Taking into account a variety of sensor faults and leakages,
different types of fault models were used within one com-
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mon diagnostic system. Kimmich et al. (2005) have also
modelled the intake system within an entire engine model
structure. Physical models, in the time and angle domains,
were used to describe any known relationships, with the
remaining unknown ones modelled by neural networks.

Our previous work has proposed the use of a special
type of neural network, the Auto-Associative Neural Net-
work (AANN), for detecting and diagnosing different
diesel engine faults (Antory et al., 2005). This neural
network was chosen because of its close link to Prin-
cipal Component Analysis (PCA), a Multivariate Sta-
tistical Process Control (MSPC) technique. More recent
work, however, showed that some faults falling within cer-
tain operating regions remained undetectable by applying
the conventional Q statistic or squared prediction error.
More recently we proposed integrating the local approach
(Basseville, 1998) into the AANN structure, which sig-
nificantly enhanced fault detection sensitivity (Wang et
al., 2006). In this case, an additional statistic is gen-
erated by the local approach which focuses on changes
in the model parameters when the operating condition
varies. Although this statistic is indeed more sensitive than
the conventional one in fault detection, the computation
required depends heavily on the size and complexity of the
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neural network. Since the AANN has a complex structure
of 5 layers, it is not only difficult to train when the number
of variables increases, but also the computational load for
the local approach increases dramatically. This would then
be a major concern for practical implementation within
the engine management system. This paper proposes the
use of physical models to pre-process the engine signals
before modelling. This reduces the number of variables to
be modelled by the AANN, with a consequent reduction in
the computational load for the local approach. The phys-
ical models also contribute to describing the relationships
between the original engine variables, which removes part
of the modelling from the AANN.

The complete new approach is applied to transient experi-
mental data collected from a 1.8 litre Nissan petrol engine
within a test cell, to be described in the next section.
The techniques involved are outlined in Section 3, followed
by application results in Section 4. The paper ends with
Conclusions.

2. AUTOMOTIVE ENGINE DESCRIPTION

The target application was a 1.8 litre modern spark igni-
tion petrol engine, manufactured by Nissan. This rep-
resents current engine technology with such devices as
variable valve timing, inlet swirl plates, exhaust gas recir-
culation and a close coupled catalyst. The engine was
installed onto a state-of-the-art engine testcell facility at
Queen’s University Belfast. An AC dynamometer with a
Ricardo S3000 controller was used to control the engine
throughout the various modes of operation. Sensor signals
were recorded using the testcell data acquisition hard-
ware – a Ricardo TaskMaster 500/2000 system, capable of
recording upto 32 analogue input channels simultaneously.
The engine installation can be seen in Figure 1.

 

 
Fig. 1. Engine testcell installation

The intake subsystem of this engine was investigated. In
order to simplify the air intake model, the exhaust gas
recirculation (EGR) function was disabled. The following
5 variables were used here to analyze this subsystem:
rotational speed (rev/min), pedal position (%), air flow

(kg/h), inlet manifold pressure (bar), and inlet manifold
temperature (◦C). Rotational speed and pedal position
were the engine inputs, and were varied to generate suit-
able data sequences for nonlinear, dynamical modelling
as in Kimmich et al. (2005). The remaining 3 variables

represent the behaviour of the intake system. Note that
these 5 variables are all available for predetermined rou-
tine maintenance schedules, for example for the annual
Ministry of Transport test in the UK.

In this investigation, the air leakage was achieved by
drilling a hole of 4mm diameter into a bolt which was
subsequently screwed into the inlet manifold of the engine
after the throttle plate. The fault-free condition was
achieved by using a solid bolt. This air leakage fault in the
engine manifold can be difficult to detect under certain
operating conditions. A minor air leak may potentially
be unnoticeable to the driver. Nevertheless, when a fault
of this type occurs, the driver would depress the throttle
pedal further, until the desired speed is achieved. Thus, in
this fault scenario it is imperative to preserve the values of
the engine inputs i.e. the engine speed and pedal position
between the fault-free and faulty conditions. The data
sequences for the two manipulated variables and the corre-
sponding engine response variables are plotted in Figures
2 and 3 respectively.

Fig. 2. Engine input signals

Fig. 3. Engine response signals
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Three sets of data were recorded by running the same
sequences of the two manipulated variables. This gener-
ated data sets for training, validation and fault detection
respectively. The first two data sets are fault-free and
the engine response signals are shown in Figure 3 by the
black trace. The third data set incorporates the air leak
fault, resulting in the different engine responses given by
the red trace in Figure 3. Each data set contained 6500
samples, recorded at a sampling rate of 2Hz. Comparing
the graphs for the fault-free and faulty response variables,
it is clear that the intake manifold pressure and the intake
air temperature exhibit the most obvious deviations.

3. INTEGRATION OF SEMI-PHYSICAL AANN WITH
THE LOCAL APPROACH

3.1 Available physical models for intake system

The theoretical air mass flow into the engine can be
represented by the following physical model, describing
the engine pumping corresponding to an ideal positive-
displacement pump.

ṁair,th =
1

2
neVdρ2,i (1)

where ṁair,th is the theoretical air flow, Vd is the engine
displacement volume, and ne is the engine speed. Note
that the measured mass air flow is denoted by ṁair,e and
ρ2,i is the inlet manifold air density:

ρ2,i =
p2,i

RT2,i

(2)

where p2,i and T2,i are inlet manifold pressure and temper-
ature respectively, and R is the individual gas constant.
These physical models are integrated into the AANN as
shown in Figure 4.

Fig. 4. Structure of semi-physical system

All the 5 measured signals from the engine are used as
inputs to the AANN. Note that by introducing two simple
physical models, the three variables, p2,i, T2,i, and ne, are
now combined into one, viz. ṁair,th. Only 3 variables now
have to be modelled by the AANN, as explained in the
next subsection.

3.2 Autoassociative neural network model

This nonlinear, dynamic neural model has the architecture
shown in Figure 5.

The AANN represents an identity mapping for a given set
of n variables, denoted in Figure 5 by the vector xT =
( x1 · · · xn ), such that the input and output variables
are identical. The i < n nodes in the bottleneck layer are
regarded as representing the nonlinear scores t1, · · · , ti of
a nonlinear PCA model. The activation functions used in

Fig. 5. Autoassociative neural network architecture

the mapping and demapping layers are hyperbolic tans of
the form ψ(·) = 2

1+exp(−2·) −1. The bottleneck and output
layers have linear activation functions. It should also be
noted that there are direct links from inputs to the scores
and from the scores to the outputs.

This neural network was used for modelling the 3 vari-
ables shown in Figure 4, viz. ṁair,e, ṁair,th, and throttle
position. Once the model had been properly trained and
validated, the local approach was introduced to provide
the Hotelling’s T2 statistic needed for fault detection.

3.3 Applying the local approach to the AANN

A detailed explanation of generating the Hotelling’s T2

statistic using the local approach applied to an AANN
was given in earlier papers (Wang et al., 2006; Wang et
al., 2007). Here only the key steps leading to the resulting
statistic are presented.

First Q is defined as the matrix containing all the param-
eters (weights and bias terms) of the AANN model, and
Q0 corresponds to the normal operating conditions. The

derivatives of the cost Jk (Q) = ‖x (k)− x′ (k)‖22 with
respect to Q for the kth sample, results in the following
condition if the process is in “normal” operating mode:

E
{

∇ (Jk)|Q=Q0

}

= 0, (3)

where ∇(·) is the gradient vector of partial derivatives of
Jk with respect to Q.

Using the above derivatives, an improved residual vector
Z (∇ (J) , k) is defined as:

Z(∇(J),k), 1√
k

k
∑

j=1

∂ ‖x(j)−x′(j)‖22
∂Q

∣

∣

∣

∣

∣

∣

Q=Q0

(4)

Using this definition of Z (∇ (J) , k), a Hotelling’s T2

statistic is then calculated as follows:

T 2(Z, k)=Z
T(∇ (J),k)Σ−1(Q0)Z(∇ (J),k) , (5)

with the null and alternative hypothesis tests being for-
mulated as:

H0 : T
2 (Z, k)≤T 2

0 H1 : T
2 (Z, k)>T 2

0 , (6)

where T 2
0 is the 95% (or 99%) confidence limit for a χ2

distribution function for which the number of degrees of
freedom equals to the dimension of Z (·).
Obviously the sensitivity in detecting changes in the mean
value of Z (·) reduces as k is ever-increasing. However, it
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has been suggested in (Zhang et al., 1994) that this can
be handled by using a moving window such that:

Z (∇(J),k), 1√
k0

k
∑

j=k−k0+1

∂ ‖x(j)− x′(j)‖22
∂Q

∣

∣

∣

∣

∣

Q=Q0

, (7)

where k0 is the window length. Typically there is a tradeoff
involved in the selection of k0: a larger k0 may reduce the
number of false alarms, but it also reduces the sensitivity
of Z (·) in detecting incipient faults. In practice, k0 should
be selected according to the performance of Hotelling’s
T2 statistic on faulty and validation data. Its value must
be small enough to produce the necessary sensitivity for
fault detection, and also be sufficiently large so that the
validation data does not produce too many false alarms.

3.4 Overall system for fault detection

The proposed overall system for fault detection using
dynamical engine data is shown in Figure 6. It is worth not-
ing that this approach is generally applicable. The physical
models are used to process the engine signals, reducing
the number of variables to be modelled from 5 to 3. An
AANN model is then built from experimental data relating
to these 3 variables. The Q statistic is directly calculated
from the trained neural network model as the squared
prediction error. When the local approach is applied to this
AANN model, the improved residual vectors are calculated
to produce the Hotelling’s T2 statistic.

Fig. 6. Overall scheme for fault detection

The Q and Hotelling’s T2 statistics are now used for
detecting the engine fault as detailed in the next section.

4. ENGINE APPLICATION STUDY

All 3 sets of engine data were pre-processed using the
physical models, reducing the number of variables from
5 to 3. In the absence of pre-processing using the physical
models, a 5-15-3-15-5 AANN was required to produce
a satisfactory modelling accuracy. By contrast, the new
semi-physical model had a much simpler structure in the
form of a 3-5-2-5-3 AANN. The monitoring charts shown
in this section include all the three data sets. The statistics
generated from the training data are used for calculating
the 95% and 99% confidence limits. The validation data
was employed to double check the reliability of the AANN
model. If the Q statistic calculated from the validation
data exceeded the confidence limits, then the model could
have been over-fitted to the training data. Generating
the Hotelling’s T2 statistic for the validation data helped
in selecting an appropriate window size for the local
approach.

Figure 7 shows the Q statistic for all 3 data sets, which
are shown separated by vertical lines. Its values are almost
identical for the training and validation data sets, because
both were collected under fault-free conditions. Unfortu-
nately, although the third data set contains the fault, the
Q statistic is not sensitive enough to detect it.

Fig. 7. Q statistic from semi-physical AANNmodel applied
to fault detection

For the local approach, the window size was chosen as 10
using trial-and-error by observing the T2 statistic values
across the validation and faulty data sets. The T2 statistic
arising from the local approach is able to detect the engine
fault, as seen in Figure 8. Note that there are certain
regions in the faulty data where effect of the air-leak is not
apparent. This is expected, as the fault would not affect
the engine when it has high throttle openings. Under such
circumstances, the manifold pressure is close to, or equal
to, the atmospheric pressure. Consequently, not much air
would pass through the leakage hole because the pressure
difference would be negligible.

Fig. 8. Hotelling’s T2 statistic applied to engine fault
detection based on an AANN

The advantage of introducing the local approach to the
AANN is, once again, an enhanced sensitivity for fault
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detection, as suggested in a previous simulation study
(Wang et al., 2006) and by application to a diesel engine
(Wang et al., 2007). Further, by using the physical models
to reduce the number of variables to be modelled, the
computational load is greatly eased. If the original 5-
15-3-15-5 for all the original variables was used, there
would be a total of 305 improved residual vectors needed
for applying the local approach. The semi-physical model
used to produce the results shown in Figure 8 (3-5-2-5-3)
allowed this number to be reduced to 75.

5. CONCLUSIONS

This paper proposed a modified modelling and fault detec-
tion approach for an automotive engine intake system. It
combined three elements, namely the physical models, an
AANN, and the local approach. Physical models helped in
reducing the complexity of the AANN model by capturing
a priori known information about the engine signals. It also
significantly eased the computational load involved in the
local approach. The local approach provided an additional
T2 monitoring statistic for fault detection, which proved to
be more sensitive than the conventional Q one. Application
to dynamic experimental data from a 1.8 litre Nissan
petrol engine verified these benefits.
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