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Abstract: Noncausal estimation algorithms, which involve smoothing, can be used for off-line
identification of nonstationary systems. Since smoothing is based on both past and future data, it
offers increased accuracy compared to causal (tracking) estimation schemes, incorporating past
data only. It is shown that efficient smoothing variants of the popular exponentially weighted
least squares and Kalman filter based parameter trackers can be obtained by means of backward-
time filtering of the estimates yielded by both algorithms. When system parameters drift
according to the random walk model, the properly tuned two-stage Kalman filtering/smoothing
algorithm, derived in the paper, achieves the Cramér-Rao type lower smoothing bound, i.e. it
is the optimal noncausal estimation scheme. Under the same circumstances performance of the
modified exponentially weighted least squares algorithm is often only slightly inferior to that of
the Kalman filter based smoother.
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1. INTRODUCTION

Consider the problem of identification of a linear time-
varying system governed by

y(t) = ϕT(t)θ(t) + v(t) (1)
θ(t) = θ(t − 1) + w(t) (2)

where y(t) denotes the system output, ϕ(t) = [ϕ1(t), . . . ,
ϕn(t)]T is a known regression vector, v(t) denotes white
measurement noise, θ(t) = [θ1(t), . . . , θn(t)]T is the vector
of unknown and time-varying system coefficients and,
finally, w(t) denotes the one-step parameter change. We
will be further assuming that

(A1) {v(t)} is a sequence of zero-mean independent
and identically distributed (i.i.d.) random variables with
variance var[v(t)] = σ2

v .
(A2) The sequence of regression vectors {ϕ(t)}, indepen-
dent of {v(t)}, is stationary and ergodic with covariance
matrix E[ϕ(t)ϕT(t)] = Φ > 0.

In this paper we will restrict our attention to two least
squares type parameter estimation frameworks known as
exponentially weighted least squares (EWLS) approach
and the Kalman filter (KF) approach – see e.g. (Haykin,
1996) and (Niedźwiecki, 2000), among many others.
The EWLS estimates can be obtained by solving the
following minimization problem

θ̂(t) = arg min
θ

t∑
i=1

ηt−i
(
y(i) − ϕT(i)θ

)2

� This work was supported by MNiSW.

where η, 0 < η < 1, denotes the so-called forgetting con-
stant. The resulting recursive algorithm has the following
(well-known) form

θ̂(t) = θ̂(t − 1) + R(t)ϕ(t)ε(t)

R(t) =
Σ(t − 1)

η + ϕT(t)Σ(t − 1)ϕ(t)
(3)

Σ(t) =
1
η

[
In − R(t)ϕ(t)ϕT(t)

]
Σ(t − 1)

where Σ(t) =
[∑t

i=1 ηt−iϕ(i)ϕT(i)
]−1

is the inverse of
the exponentially weighted regression matrix, ε(t) denotes
the one-step-ahead prediction error evaluated at instant t,
and In denotes the n × n identity matrix.
All that one needs to assume when deriving the EWLS
estimator is that system parameters vary slowly with time
– no specific model of parameter variation is used. In
contrast with this, the KF approach is based on an explicit
(hypothetical) model of parameter changes, namely within
this framework one assumes that the estimated coefficients
evolve according to the random walk (RW) model, i.e.

(A3) {w(t)} is the sequence of zero-mean i.i.d. random
variables, independent of {v(t)} and {ϕ(t)}, with co-
variance matrix W = cov[w(t)] = σ2

wIn.

The optimal, in the mean-square sense, estimator of θ(t)
has the form

θ̂(t) = E[θ(t)|Z−(t)]
where Z−(t) = {y(1), ϕ(1), . . . , y(t), ϕ(t)} denotes the
observation history available at instant t.
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Under (A1) - (A3) and under Gaussian assumptions im-
posed on {v(t)} and {w(t)}
(A4) The sequences {v(t)} and {w(t)} are normally
distributed.

the conditional mean estimates can be computed recur-
sively using the celebrated Kalman filtering algorithm
(Lewis, 1986), (Söderström & Stoica, 1988)

θ̂(t) = θ̂(t − 1) + S(t)ϕ(t)ε(t)

S(t) =
P(t − 1)

1 + ϕT(t)P(t − 1)ϕ(t)
(4)

P(t) =
[
In − S(t)ϕ(t)ϕT(t)

]
P(t − 1) + κ2In

where κ2 = σ2
w/σ2

v . In practical applications, where the
RW model can be regarded only as a crude approxi-
mation of a true description of parameter changes, the
coefficient κ > 0, similarly as the forgetting constant η
in the EWLS algorithm, is treated as a user-dependent
“knob”, allowing one to tune the parameter tracking al-
gorithm to the degree of nonstationarity of the identified
process. Both algorithms, described above, have the finite-
memory property – the influence of past measurements
on parameter estimates diminishes with the age of the
samples. In the case of the EWLS algorithm the rate at
which past data are “forgot” is exponential, while the KF
algorithm is sometimes referred to as an adaptive filter
with linear forgetting – see (Niedźwiecki, 2000) (Chapter
8.1) for explanation of this terminology.
When η = 1 and κ = 0, i.e. when the data forgetting
mechanisms are switched off, both algorithms become
identical with the classical recursive least squares (RLS)
algorithm.
The EWLS and KF algorithms are causal estimation
schemes, which means that at each time instant t they pro-
vide parameter estimates that are functions of the current
and past measurements only. While in most real-time (e.g.
control) applications causality is an obvious requirement,
there are some important practical problems that can
be solved without imposing this constraint. Consider, for
example, the problem of adaptive noise canceling, where
an unmeasurable disturbance d(t) is removed from y(t)
by exploiting its correlation with an auxiliary, measur-
able reference signal r(t). Such reference signal is usually
recorded using an additional microphone placed in the
close vicinity of the noise source (engine, fan etc.). When
cancellation is performed on-line, disturbance estimates
are obtained from d̂(t) = ϕT(t)θ̂(t) where θ̂(t) = f [Z−(t)]
is the (causal) estimate yielded by the parameter track-
ing algorithm, such as EWLS or KF and ϕ(t) denotes
the regression vector made up of samples drawn from
the reference signal r(t). However, when the signals y(t)
and r(t) are prerecorded and then processed in an off-
line mode (which is typical in the case of surveillance
data, “black-box” data etc.), the situation is different.
Suppose that the available data record is of the form
Z = {y(1),ϕ(1), . . . , y(N), ϕ(N)}. Then a more accurate
estimate of d(t) can be obtained from d̃(t) = ϕT(t)θ̃(t)
where the quantity θ̃(t) = g[Z], incorporating all past
data points Z−(t) and N − t “future” data points Z+(t +
1) = {y(t+1), ϕ(t+1), . . . , y(N), ϕ(N)}, is the smoothed
(noncausal) estimate of θ(t).

Smoothing opportunities are seldom taken advantage of
in system identification. Basically, there are two rea-
sons why this happens. First, the currently available
noncausal identification procedures, such as the Rauch-
Tung-Striebel smoothing algorithm described in (Meditch,
1973), (Anderson & More, 1979), are computationally
expensive. Second, many practitioners seem to be simply
unaware of the fact that such noncausal solutions (often
deceptively called unrealizable), are perfectly applicable
in all off-line adaptive signal processing situations, such as
the one discussed above.
In this paper we will demonstrate that very good smoothed
estimates of time-varying system parameters can be ob-
tained by means of backward-time filtering of the re-
sults yielded by the classical tracking algorithms, such
as EWLS and KF. We will show that not only is such
approach computationally attractive, but it also leads
to estimation algorithms with very good properties. In
particular, when system parameters evolve according to
the RW model, the appropriately filtered KF estimates
are statistically efficient, i.e. their accuracy reaches the
Cramér-Rao type lower smoothing bound established re-
cently (Niedźwiecki, 2008).

2. UNIFIED ANALYSIS FRAMEWORK

When the forgetting constant in the EWLS algorithm is
sufficiently close to 1 and when the coefficient κ in the KF
algorithm is sufficiently close to 0, both algorithms can be
– under (A1) and (A2) – approximately written down in
the following standardized form (Niedźwiecki, 2007)

θ̂(t) = θ̂(t − 1) + γAϕ(t)ε(t) (5)

where the small adaptation gain γ and the constant matrix
A are given by

EWLS : γ = 1 − η , A = Φ−1

KF : γ = κ , A = Φ−1/2

and Φ−1/2 = (Φ1/2)−1. The matrix Φ1/2 > 0 is
the (unique) square root of the covariance matrix Φ :
Φ1/2Φ1/2 = Φ. Furthermore, for sufficiently small values
of the adaptation gain γ and for sufficiently slow changes
in θ(t) (compared to the changes in ϕ(t)), the analysis of
(5) can be carried using the averaging technique (Bai, Fu
& Sastry, 1988), leading to the following approximation

θ̂(t) = (In − γAΦ)θ̂(t − 1) + γAΦθ(t)
+ γAϕ(t)v(t) (6)

which will be the basis of our further investigations.
We will analyze and optimize performance of of the EWLS
and KF algorithms assuming that system parameters
evolve according to the RW model, as specified in (A3)
and (A4). Even though often criticized as “unrealistic”,
the random walk case is an important benchmark problem
in identification of nonstationary systems, since it allows
one to derive close-form expressions which explicitly relate
the mean-square estimation errors to the adaptation gain
γ and second-order system statistics σ2

v , σ2
w and Φ. Using

such expressions one can compare estimation properties
of the analyzed algorithms. Additionally, since for the
system with randomly drifting parameters the Cramér-
Rao type lower smoothing bound is known, one can also
check statistical efficiency of different solutions.
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3. EWLS ALGORITHM

3.1 Causal estimation

For the EWLS algorithm it holds that γ = 1−η, A = Φ−1

and hence the recursive relationship (6) can be rewritten
in an explicit form as

θ̂(t) = F (q−1)θ(t) + F (q−1)z(t) (7)
where q−1 denotes the backward shift operator

F (q−1) =
γ

1 − (1 − γ)q−1
,

and z(t) = Φ−1ϕ(t)v(t). Note that {z(t)} is a white noise
sequence with covariance matrix Z = cov[z(t)] = σ2

vΦ
−1.

According to (7), the parameter estimation error ∆θ̂(t)−
θ(t) can be expressed in the form

∆θ̂(t) = [F (q−1) − 1]θ(t) + F (q−1)z(t)

=
F (q−1) − 1

1 − q−1
w(t) + F (q−1)z(t)

leading to the following expression for the steady-state
mean-square error (MSE)

TEWLS = E[||∆θ̂(t)||2] =
1
2π

∫ π

−π

tr
{
S∆θ̂(ω)

}
dω

=
1
2π

∫ π

−π

∣∣∣∣F (e−jω) − 1
1 − e−jω

∣∣∣∣
2

tr {Sw(ω)} dω

+
1
2π

∫ π

−π

∣∣F (e−jω)
∣∣2 tr {Sz(ω)} dω .

Under (A1) - (A3) it holds that Sw(ω) = W = σ2
wIn,

Sz(ω) = Z = σ2
vΦ

−1, ∀ω ∈ [−π, π]. By means of residue
calculus (Jury, 1964) one obtains

TEWLS =
(1 − γ)2nσ2

w

γ(2 − γ)
+

γσ2
vtr{Φ−1}
2 − γ

∼= nσ2
w

2γ
+

γσ2
vtr{Φ−1}

2
(8)

where the approximation is tight for sufficiently small
values of γ.
The first term on the right-hand side of (8) constitutes
the bias component of the mean-square error (MSE) and
the second term – its variance component. Since the bias
component is inversely proportional to the adaptation gain
γ, whereas the variance component is proportional to γ, to
obtain good tracking results one should trade off both error
terms. The optimal value of γ, i.e. the one that minimizes
TEWLS, can be obtained by means of solving

γ2
opt

1 − γopt
=

c1

c2
(9)

where c1 = tr{W} = nσ2
w and c2 = tr{Z} = σ2

vtr{Φ−1}.
Using the small gain approximations (γ � 1) one arrives
at γopt

∼=
√

c1/c2 and

(TEWLS)min = TEWLS|γ=γopt
∼= σvσw

√
ntr{Φ−1} .

3.2 Noncausal estimation

To obtain the smoothed estimate of θ(t), further denoted
by θ̃(t), we will pass the estimates yielded by the EWLS
algorithm through an appropriately designed noncausal
filter G(q−1) = . . . + g−1q

−1 + g0 + g1q
1 + . . .

θ̃(t) = G(q−1)θ̂(t) . (10)

For causal estimators such two-stage scheme, combining
explicit filtering of parameter estimates with implicit fil-
tering (7) imposed by the EWLS approach, was proposed
and analyzed in (Niedźwiecki, 1990).
As shown in (Niedźwiecki, 2007), a very simple form of
smoothing can be obtained by setting G(q−1) = qτo , where
τo is the nominal (low frequency) delay of the filter F (q−1).
In this case θ̂(t) is simply regarded as an estimate of
θ(t− τo), instead of θ(t). The approach described below is
more sophisticated. To make a judicious choice of G(q−1)
we will examine the effect it has on estimation errors
∆θ̃(t) = θ̃(t) − θ(t). Note that the steady-state MSE can
be in this case written down in the form

T ′
EWLS = E[||∆θ̃(t)||2] =

1
2π

∫ π

−π

f
[
X(e−jω)

]
dω (11)

f [X] = c1(X − 1)(X∗ − 1)HH∗ + c2XX∗

where X(e−jω) = F (e−jω)G(e−jω), H(e−jω) = 1/(1 −
e−iω) and ∗ denotes the complex conjugation.
We will look for a transfer function X(e−jω) which mini-
mizes T ′

EWLS. When no causality constraints are imposed
on X(e−jω), minimization of (11) is pretty straightforward
– the problem can be solved by minimizing f

[
X(e−jω)

]
for every value of ω ∈ [−π, π]. Setting ∂f/∂X∗|X=Xopt = 0
one obtains Xopt = c1HH∗/(c2 + c1HH∗), or equivalently

Xopt(q−1) =
c1/c2

c1/c2 + (1 − q−1)(1 − q)
. (12)

Since the right-hand side of (12) can be rewritten in the
form γ2/([1 − (1 − γ)q−1][1 − (1 − γ)q]), where γ is the
solution of γ2/(1 − γ) = c1/c2, one finally arrives at (cf.
(9))

Xopt(q−1) = Fopt(q−1)Fopt(q) (13)

Fopt(q−1) =
γopt

1 − (1 − γopt)q−1
.

According to (13), when the EWLS algorithm is optimally
tuned, the best smoothing results can be obtained by
choosing

Gopt(q−1) =
Xopt(q−1)
Fopt(q−1)

= Fopt(q)

=
γopt

1 − (1 − γopt)q
. (14)

Note that the filter Gopt(q−1) is anticausal, which means
that the smoothed estimates θ̃(t) can be obtained by
means of backward-time filtering of the estimates yielded
by the EWLS algorithm. This can be done recursively
using the following simple formula

θ̃(N) = θ̂(N)

θ̃(t) = (1 − γ)θ̃(t + 1) + γθ̂(t) (15)
t = N − 1, . . . , 1

where the optimal gain γopt, usually not known a priori,
was replaced with γ – the gain used in the tracking
algorithm. Making such a choice is equivalent to adopting
G(q−1) = F (q) = γ/(1 − (1 − γ)q), X(e−jω) = |F (e−jω)|2
leading to

T ′
EWLS

∼= nσ2
w

4γ
+

γσ2
vtr{Φ−1}

4
∼= 1

2
TEWLS (16)

which means that, irrespective of the choice of γ, the
proposed smoothing procedure allows one to reduce the
mean-square parameter estimation errors by the factor
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of 2. Of course, the same applies to the best achievable
performance: (T ′

EWLS)min
∼= (TEWLS)min/2.

Remark

Note that the optimal smoothing (noncausal) gain is
identical with the optimal tracking (causal) gain. This
has important practical implications. When γopt is not
known, which is a typical situation in practice, adaptive
optimization of the tracking algorithm will also guaran-
tee performance optimization of the two-step smoothing
procedure. Optimization of the adaptation gain is pos-
sible using sequential or parallel estimation techniques
(Niedźwiecki, 2000). The first case uses a single tracking
algorithm, equipped with an adjustable gain. The second
case takes several algorithms, with different gains, runs
them in parallel and compares them according to their
predictive abilities.

4. KF ALGORITHM

4.1 Causal estimation

Let Q be a unitary matrix, made up of the eigenvectors of
Φ, converting Φ into a diagonal form: QTQ = QQT = In,
QTΦQ = Λ, where Λ = diag{λ1, . . . , λn} is a diagonal
matrix made up of the eigenvalues of Φ.
For the KF algorithm it holds that γ = κ and A = Φ−1/2.
In this case the relationship (6) can be rewritten in a closed
form as (Niedźwiecki, 2007)

θ̂(t) ∼= QF(q−1)QTθ(t) + QΛ−1/2F(q−1)QTz(t) (17)
where

F(q−1) = diag{F1(q−1), . . . , Fn(q−1)}

Fi(q−1) =
κ
√

λi

1 − (1 − κ
√

λi)q−1
, i = 1, . . . , n

and z(t) = Φ−1/2ϕ(t)v(t), Z = cov[z(t)] = σ2
vIn.

Based on (17) the following error model can be derived

∆θ̂(t) ∼= Q
F(q−1) − In

1 − q−1
QTw(t)

+ QΛ−1/2F(q−1)QTz(t)
leading to

TKF = E[||∆θ̂(t)||2] =
1
2π

∫ π

−π

tr
{
Q

F(e−jω) − In

1 − e−jω

× QTSw(ω)Q
F(ejω) − In

1 − ejω
QT

}
dω+

+
1
2π

∫ π

−π

tr
{
QΛ−1/2F(e−jω)QTSz(ω)Q

× F(ejω)Λ−1/2QT
}

dω .

In the case considered Sw(ω) = W = σ2
wIn, Sz(ω) = Z =

σ2
vIn, ∀ω ∈ [−π, π]. For small adaptation gains one obtains

TKF =
n∑

i=1

[
σ2

w

2κ
√

λi

+
κσ2

v

2
√

λi

]

=
tr{Φ−1/2}

2

(
σ2

w

κ
+ κσ2

v

)
where the last transition stems from the fact that∑n

i=1 1/
√

λi = tr{Λ−1/2} = tr{Φ−1/2}.
Optimization of TKF is straightforward – the minimum
value of the mean-square parameter estimation error is
achieved for

κ = κopt =
σw

σv
(18)

which is an expected result, since under (18) the algorithm
(4) is a “true” Kalman filter, i.e. the optimal parameter
tracking procedure. Note that

(TKF)min = TKF|κ=κopt
∼= σvσwtr{Φ−1/2} .

4.2 Noncausal estimation

In agreement with (Niedźwiecki, 2007), the following
scheme will be used to obtain smoothed KF estimates

θ̃(t) = QG(q−1)QTθ̂(t) (19)
where G(q−1) = diag{G1(q−1), . . . , Gn(q−1} and Gi(q−1),
i = 1. . . . , n denote transfer functions of the appropriately
designed noncausal filters.
Combining this result with (17) and noting that the
matrices Λ, F(q−1) and G(q−1) are diagonal and hence
they commute, one arrives at

θ̃(t) ∼= QX(q−1)QTθ(t)

+ QΛ−1/2X(q−1)QTz(t) (20)

where X(q−1) = diag{X1(q−1), . . . , Xn(q−1} and Xi(q−1)
= Fi(q−1)Gi(q−1) , i = 1, . . . , n.
Minimization of the mean-square estimation error T ′

KF =
E[ ||∆θ̃(t)||2] can be carried out in an analogous way as
minimization of T ′

EWLS, performed in Section 3.2. Using
the same technique one can show that Xopt

i (q−1) =
F opt

i (q−1)F opt
i (q) where

F opt
i (q−1) =

κopt

√
λi

1 − (1 − κopt

√
λi)q−1

and κopt = σw/σv denotes the optimal tracking gain.
This leads to Gopt

i (q−1) = F opt
i (q) and to the following

backward-time filtering scheme, analogous to (15)

θ̃(N) = θ̂(N)

θ̃(t) = (In − κΦ1/2)θ̃(t + 1) + κΦ1/2θ̂(t) (21)
t = N − 1, . . . , 1

obtained after adopting Gi(q−1) = Fi(q). Similarly as
before it holds that T ′

KF
∼= TKF/2 and (T ′

KF)min
∼=

(TKF)min/2.
Since in the steady state it holds that (Niedźwiecki, 2007)
S(t) ∼= κΦ−1/2, where S(t) is the matrix recursively
updated by the KF algorithm, a good estimate of Φ1/2 can
be obtained from Φ̂1/2(t) = κS−1(t). When the regression
sequence is wide-sense stationary and ergodic (as assumed
here), inversion of S(t) has to be performed only once, e.g.
in the middle of the analysis interval (t = N/2).
According to (Niedźwiecki, 2008), for any estimator θ̂(t)
of θ(t), including all noncausal estimators, it holds that
(under assumptions (A1) - (A4))

E
[
∆θ̂(t)∆θ̂T(t)

]
≥ 1

2
σvσwΦ−1/2 = BLSB (22)

where BLSB denotes the Cramér-Rao type lower smooth-
ing bound (LSB).
Note that (T ′

KF)min
∼= tr{BLSB}. Furthermore, it can be

shown that
(
E[∆θ̃(t)∆θ̃T(t)]

)
min

= E[∆θ̃(t)∆θ̃T(t)]κ=κopt

∼= BLSB, which means that the optimally tuned two-step
KF algorithm is, in the steady state and under (A1) - (A4),
a statistically efficient estimation procedure, achieving the
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same performance as the – computationally more involved
– Rauch-Tung-Striebel smoother (i.e. the genuine Kalman
smoother) designed for the system (1) - (2). In Section
6 we will show that simulation experiments fully confirm
this claim.

5. COMPARISON OF THE EWLS AND KF
APPROACHES

Using the Cauchy-Shwartz inequality one obtains

tr{Φ−1/2} ≤
√

n tr{Φ−1}
which leads to (TKF)min ≤ (TEWLS)min and (T ′

KF)min ≤
(T ′

EWLS)min, where equality holds iff all eigenvalues of Φ
are identical. Of course, both relationships are a straight-
forward consequence of the fact that under (A1) - (A4)
the optimally tuned KF algorithms are the best, from
the statistical viewpoint, tracking/smoothing procedures.
This optimality feature of the KF algorithms should not
be overemphasized. One should remember that optimality
holds for a specific class of systems with randomly drift-
ing coefficients. When system parameters do not change
according to the random walk model, the KF track-
ing/smoothing algorithms are neither more nor less ap-
propriate than the analogous EWLS algorithms.
Comparison of numerical complexity of the proposed al-
gorithms favors the EWLS approach. The efficient mech-
anization of the EWLS-based smoother (3)+(15) requires
2n2 + 5n multiply-add operations per time update in the
tracking (forward-time) loop, and only 2n operations per
time update in the smoothing (backward-time) loop. The
analogous counts for the KF-based smoother (4)+(21) are:
1.5n2 + 5.5n operations and 2n2 operations, respectively
(the cost of evaluating Φ1/2 was not included, since such
operation is performed only once). In contrast with this,
the Rauch-Tung-Striebel smoother requires O(n3) opera-
tions per time update.

6. COMPUTER SIMULATIONS

Two simulation experiments, adopted from (Niedźwiecki,
2007), were performed to check properties of the analyzed
algorithms.

6.1 Example 1

The simulated two-tap finite impulse response (FIR) sys-
tem was governed by

y(t) = θ1(t)u(t) + θ2(t)u(t − 1) + v(t)
u(t) = 0.8u(t − 1) + e(t)

where v(t) ∼ N (0, 1), e(t) ∼ N (0, 1) and {e(t)} is an i.i.d.
sequence independent of {v(t)}.
System parameters were generated using the random walk
model

θ(t) = θ(t − 1) + w(t)
where w(t) ∼ N (0, 0.0001I2) and θ(t) = [θ1(t), θ2(t)]T.
Performance of the compared estimators was quantified
in terms of the associated mean-square errors. The MSE
of an estimator θ̂(t) was evaluated by means of combined
time and ensemble averaging. First, for each realization
of {θ(t)}, {u(t)} and {v(t)}, the following steady state
performance index was computed

I =
1

2000

4000∑
t=2001

||θ̂(t) − θ(t)||2 .

KF

0 0.005 0.01 0.015 0.02 0.025
0

0.01

0.02

0.03

0.04
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Fig. 1. Dependence of the mean-square parameter esti-
mation errors on the adaptation gains κ and γ for
the KF/EWLS trackers (×) and the KF/EWLS-based
smoothers (+). The lower tracking bound (LTB) and
the lower smoothing bound (LSB) are indicated by
horizontal lines. Solid lines show theoretical depen-
dence of MSE on κ and γ for both algorithms.

The obtained results were next averaged over 200 real-
izations of {θ(t)} and 200 realizations of {u(t), v(t)} (i.e.
over 200×200 realizations altogether). The same set of
realizations was used for different algorithms and different
values of γ and κ.
Figure 1 shows results obtained for the KF and EWLS
trackers and for the KF-based and EWLS-based smoothers
derived in the paper. Note very good fit between the
theoretical MSE curves and the results of computer simu-
lations. In agreement with theory, the optimally tuned KF
smoothing algorithm achieves the lower smoothing bound,
which limits performance of any (causal or noncausal)
estimation scheme. The optimally tuned EWLS smoother
yields mean-square errors that are well below the lower
tracking bound and pretty close to the lower smoothing
bound. Hence, in the case considered, it may be deservedly
called suboptimal.

6.2 Example 2

In our second simulation experiment sinusoidal parameter
changes were enforced (see Figure 2):

θ1(t) = 1.5 + sin(2πt/3000)
θ2(t) = 0.5 + sin(2πt/1500)
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Fig. 2. Evolution of system parameters.

The remaining simulation details (input, noise) were
kept unchanged. Mean-square errors were computed in
the same way as before (200 different realizations of
{u(t), v(t)} were used to compute ensemble averages). This
experiment was intended to check how the proposed algo-
rithms cope with deterministically time-varying systems,
i.e. systems that clearly violate assumption (A3).

Figure 3 shows the plots of the mean-square estimation
errors obtained for different KF and EWLS estimation
algorithms (no theoretical curves are shown as in this case
they are not available). From the qualitative viewpoint the
obtained results are similar to those presented earlier. Note
that the potential rates of the MSE reduction, achievable
by means of smoothing, are higher for the deterministically
(slowly) time-varying system than for the system with
randomly drifting coefficients. Note also that in this case
the KF-based smoother shows no advantage over the
EWLS smoother, which is pretty understandable as it is
operated under “nonstandard” conditions.

7. CONCLUSION

We have considered the problem of identification of a linear
dynamic system with randomly varying coefficients. When
identification can be performed off-line, which is allowed
in certain applications, estimation of time-varying system
parameters can be based on both past and future data
samples. Such noncausal (smoothing) estimation schemes
offer considerable performance improvements compared
with their causal (tracking) variants. We have shown the-
oretically, and confirmed by means of computer simula-
tions, that statistically efficient or near-efficient smoothed
estimates can be obtained by backward-time filtering of
the estimates yielded by the well-known and widely-used
exponentially weighted least squares and Kalman filter
based parameter trackers. The proposed algorithms have
low computational requirements and are easy to imple-
ment.
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