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Abstract: The objective of the talk will be to identify current open problems and trends in 
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1. INTRODUCTION 

 
The potential of a seamlessly integrated solution 
covering process control, optimisation, planning and 
scheduling as well as plant asset management is 
generally accepted. It is expected that this integration 
will result in better responsiveness of the whole plant 
to the varying economic environment, removing 
expensive storages, buffers and margins and 
improving operational safety on one side, but will 
also yield dramatic reduction of integration and 
customisation costs. 
 
Current developments in control and optimisation 
theory, together with the enormous increase in 
computational power together with new component 
based software technology open immense 
possibilities for a continuing development in this 
area. 
 
Model predictive control (MPC) is one of a few 
advanced control approaches that have made a 
substantial impact in the industry (Mayne, 2001). 
The reason for such success of this concept is its 
ability to deal with hard constraints imposed on 
manipulated and process variables. These days, MPC 
is an active research area intensively developed by 
leading process control suppliers and academic 
teams. However, the predecessor of today's MPC – 

the ‘Dynamic Matrix Control’ algorithm (Cutler and 
Ramaker, 1980) – was developed by practitioners 
from the industry in the 70's and had been neglected 
by the academic community for a relatively long 
time. 
 
The area of decentralized control and optimisation 
for large-scale systems has a similar genesis. These 
topics were extensively studied in the years when 
popularity of the new science – cybernetics – 
culminated in the 60‘ and 70‘ (Mesarovic et al., 
1970; Findejsen et al., 1980). After this early period, 
the interest of research community faded out, partly 
because of the inherent complexity and difficulty of 
the problem and partly because of limited 
implementation possibilities. However, practitioners 
in the field – motivated by the increasing 
requirements of processing industries as well as 
capabilities of control systems – have continually 
developed more and more complex distributed 
control and optimisation solutions (Shinskey, 1996), 
often relying on heuristics, simulation and experience 
rather than rigorous theoretical research. 
 
With increasing scope of advanced process control 
solutions, emerging solutions bring together process 
control and optimisation functions based on both 
technical/technological and economic knowledge and 
criteria. 



     

 

 
Fig. 1. Cost of solution vs. value to customer for traditional and solution component based solutions. 

 
However, without efficient tools for cross-functional 
integration provided by the latest software 
technologies, the scalability of the traditional 
“configurable” solution – where the pre-built 
knowledge is being configured by selecting different 
options during the configuration process – is 
reaching its limits: the cost of adding some new 
knowledge in an integrated way is prohibitive to 
extend the “controllability”1 of the process from the 
traditional layers of single-loop regulatory control, 
multivariable control and optimisation to higher 
layers of planning, scheduling and supply chain 
management (see Figure 1).  
 
Solutions that can bring additional benefits will have 
to be built from customisable solution components 
with high domain specific process knowledge 
content that is an inherent part of the delivered 
solution.  
 
Mathematical programming (optimisation) is the 
basic enabling technology for this effort. 
Optimisation-based control can absorb – in real-time 
– the economics-related information as a part of its 
internal criteria. The “optimisation-based” paradigm 
can be naturally extended to other areas, for example 
the problems of asset management/predictive 
maintenance, fault detection and active fault 
accommodation (fault recovery) can be formulated as 
optimisation problems – find the best achievable 
performance under the detected faults by finding 
optimal control configurations under a modified set 
of constraints. 
 
In spite of the efficiency and performance of modern 
optimisation methods, it is not viable to formulate 
complex process control and optimisation problems 
as single huge, “all-or-nothing” black box 

                                                 
1 In this paper, the term “controllability” is not used 
in its narrow, rigorous control theoretical meaning 

optimisation tasks. The limiting issues – human 
effort required to set-up, maintain and run/monitor 
such a solution, as well as its flexibility and 
operability – force us to implement solutions of 
complex, large scale problems in a well structured, 
decentralised and hierarchical way.  This is one of 
the many design challenges we see; compromising 
between the needs that support decentralised 
approach and the need of solving global economic 
optimisation problem.   
 
Presented concepts of Integrated Process 
Management based on modern software tools and 
solution components will facilitate 
 

• Tight coupling between economic decisions 
and process/technology-related decisions. 
This will improve responsiveness to the 
varying economic environment (e.g. real-
time pricing of gas and electricity) while 
eliminating additional safety margins, 
buffers, etc., with positive impact on process 
economy. 

 
• Flexible integration scheme for consistent 

decision making on individual hierarchical 
levels with different optimisation horizons 
and different time granularity (the users 
prefer a multi-tier system where the higher 
layer you go, the more abstracted the 
physical process becomes – or more 
aggregated in time and in details), based on 
“self-maintaining” models derived from 
plant topology reference model with real-
time responsiveness to technology changes 
(unit configuration/commitment) and 
information (incl. uncertainty) propagation 
between the levels. 

 
• Full exploitation of modern information and 

software technologies for component-based 



     

solution of complex enterprise-wide 
instrumentation, data acquisition, process 
control, optimisation and planning 
problems. 

 
• Extensive cross-functional integration 

between the on-line control and 
optimisation functions and (traditionally) 
off-line functions like asset health 
monitoring/fault detection, model-based 
what-if analysis. 

 
The objective of the talk will be to identify current 
problems and trends and demonstrate some concepts 
for distributed, solution component based 
architecture for integrated process management, 
embracing the layers of Advanced Process Control 
(APC), Real Time Optimisation (RTO) and Planning 
& Scheduling (P&S). 
 
The concepts will be illustrated by the coordinated 
control and optimisation of the process side and the 
utility side, covered, respectively, by Honeywell 
Profit Suite and Unified Energy Solutions with the 
objective to operate the plant with maximum 
achievable profit (maximum efficiency) under the 
constraints imposed by technology and 
environmental impacts. 
 
 

2. CONTROL TECHNOLOGY USED IN 
SOLUTION COMPONENTS 

 
2.1 Process Models for Control and Optimisation 
 
Design of decentralized control of complex systems 
results usually in a highly structured system 
(Mesarovic et al., 1970; Singh, 1977).  As there is no 
appropriate theory supporting the design, an intuitive 
treatment is generally employed. This heuristic 
approach cannot produce optimal results (Mesarovic, 
1975).  
 
Recently, new system theory based on a consistently 
chosen set of paradigms was proposed (Žampa, 
1996; 1999). This theory redefines main system-
theoretical notions without ambiguities and 
inconsistencies from which standard theories suffer 
as pointed out e.g. by Willems (1991). 
 
Control synthesis for complex systems based on 
successive designs of simple feedback loops often 
fails, because of significant interactions among the 
loops (Shinskey, 1996) that deteriorate the resulting 
performance and may even bring the closed loop 
system into instability. The use of formal design 
techniques for Multi-Input-Multi Output (MIMO) 
plants like H2 or H∞, that are popular e.g. in the 
aerospace industry, is not a viable solution for 
process control, because they do not exploit the 
structure of the problem and fail even for medium-
size problems (several tens of input and output 
variables). To treat this design problem rigorously, a 
theory linking system structure and achievable 
control performance is still missing. 

Another fundamental challenge in system modelling 
is the extraction and propagation of information 
(including the uncertainty representation) that is 
compatible with the functionality, granularity and 
objectives of each layer. For integrated plant 
management, the ultimate objective is to achieve 
self-maintaining models based on propagation of 
information from the process control level (dynamic 
models for MPC control) to higher levels 
(optimisation/planning/scheduling). A built-in 
mechanism is needed for reducing complexity, which 
will keep the models manageable. This mechanism 
should filter out high and middle frequency 
behaviour, which is important for efficient process 
control but unnecessary for longer-term optimisation. 
This approach will eliminate the burden of building 
and maintaining separate models for the process 
control and real-time optimisation levels. Real time 
responsiveness of hierarchical plant model to plant 
topology and parameter changes will resolve the 
critical issue of model adaptation preserving 
consistency of individual abstraction layers. 
 
2.2 Advanced Process Control 
 
Model predictive control (MPC) has become a 
standard multivariable control solution in continuous 
process industry covering over 90% of industrial 
implementations of multivariable control (Qin et al., 
1996). For multivariable controllers, the traditional 
controller objective – regulatory control (minimize 
variance of controlled variables around their set-
points, track set-point changes and reject 
disturbances) – can be extended by constraint 
handling (prevent another set of variables from 
exceeding their limits) and transition control (find 
the trajectory for moving set-point from A to B 
optimally). 
 
Standard approach exploited in large scale process 
control applications is the decomposition of the 
original large model into several smaller subsystems 
and control of each subsystem. Theoretically the 
whole plant can be treated by a single MPC but this 
solution is not practicable. An optimal decomposition 
of a large model should minimize the interactions 
among the subsystems. The principal remaining 
interactions can be modelled as additional measured 
disturbances.  
 
For regulatory and constraint control MPC appears to 
be a well-suited candidate for decentralized design; 
the individual controllers can take full advantage of 
the information on the disturbances at current time 
and their future predictions computed by adjacent 
units in the previous step. However, to provide 
additional space for absorbing the disturbances 
locally, classical MPC formulation has to be 
extended from multivariable set-point based 
regulatory control to range control providing 
additional degrees of freedom for disturbance 
absorption, rejection and optimisation.  
 
With range control, the QP optimisation problem in 
the standard MPC engine 



     

 2 2* arg min
Q R

u Su y r u
u

= + − + ∆% , 

 
where S is the dynamic sensitivity matrix and y%  is 
the response to initial conditions and measured 
disturbance, is replaced by  
 
 2 2* arg min  ;   

, LO HIQ R
u Su y z u y z y

u z
= + − + ∆ ≤ ≤% . 

 
The auxiliary variable z constrained by lower and 
upper set range ,LO HIy y  instead of the reference 
trajectory r provides zero error penalty for controlled 
variables within the funnel defined by the lower and 
upper set range trajectory (see Fig 2a). 
 

-2 -1 0 1 2
0

20

40

60

80

100

120

pe
na

lty

control variable
-2 -1 0 1 2

0

20

40

60

80

100

120

control variable

pe
na

lty

 
Fig. 2: a) – penalty function for range control with 
yLO = -1, yHI =1 (left). b) – modified penalty function 
for range control with simultaneous minimization of 
controlled variable (right) 
 
 
Additional steady-state optimisation (minimisation or 
maximisation of selected controlled variables) can be 
implemented by adding a linear term to the range 
definition as depicted in Fig 2b.  
 
An alternative approach – to optimise the target 
values of selected manipulated variables – will be 
discussed later. In the case of decentralized transition 
control, interaction between target value optimisation 
and dynamic coordination of several multivariable 
controllers may require a more complex three-tier 
structure – the top tier provides optimisation-based 
targets, the bottom tier is a layer of MPC controllers 
and the additional middle tier is a coordination 
“collar” for preventing each MPC controller in the 
bottom tier from receiving a locally infeasible 
transition trajectory (Lu, 2001). 
 
Analysis and design of robust MPC based on 
Maximal Output Admissible Sets (Kolmanovsky and 
Gilbert, 1995), (Kothare et al., 1996) can be extended 
to predictive control schemes based on the range 
control (Pekar and Havlena, 2005). 
 
For decentralized solutions, the concept of 
robustness as “tolerance to model uncertainty” has to 
be extended to complex, hierarchical and networked 
systems. In the multi-tier structure of plant-wide 
process control and optimisation, each layer reduces 
the degrees of freedom available for optimisation at 
upper levels. As a result, individual units are not able 

to localize the impact of local disturbances and 
uncertainties that propagate through adjacent units, 
resulting in poor robustness of the interconnected 
solution. The range control based MPC will enhance 
robust performance, both at the classical “loop level” 
and in the newly introduced “integrated/networked” 
sense. 
 
Replacing set-points by set-ranges provides not only 
the necessary degrees of freedom for the superior 
levels in the hierarchy, but increases the robustness 
of the integrated solution – if the control variable 
trajectory fall into the funnel, the control law 
provides transient with minimum control effort  

 
2* arg min  ;   LO HIR

u u y Su y y
u

= ∆ ≤ + ≤% , 

 
efficiently removing high-frequency excitation in the 
advanced control level.  
 
Other advantageous properties of range control can 
be demonstrated using stochastic constraint control 
formulation. Consider plant model with time domain 
uncertainty described by step response  
 

 ( )2

0 0
( ) ( ) ( );  ( ) ( ) 0, ( )

N t

hy t g u t h t g N t
τ τ

τ τ τ σ
= =

= − = ≈∑ ∑ . 

 
Typically, this class of models can capture the 
difference between the high uncertainty of transient 
response and known steady-state gain. Then the 
output uncertainty excitation 
 

 2 2

0
var{ ( )} ( ) ( )

N

hy t u t
τ

σ τ τ
=

= ∆ −∑  

 
is minimized (in an average sense) by the minimum 
norm control that minimises the 2 ( )u t∆ term. 
 
This “minimum norm” control property of range 
control MPC can be used in cautious optimisation 
strategy (taking the uncertainty explicitly into 
account). The control and optimisation criterion 
‘maximise uncertain output under given high limit 
yHI‘ can then be formulated in probabilistic terms as  
 

find control u such that 
{ } 1HIP Su y y ε+ < ≥ −% . 

 
Minimisation of the output variation by minimum 
norm control results in getting the maximum 
achievable performance under given (time varying, 
input dependent) uncertainty (Havlena et al., 2002). 
Similar stochastic approach to MPC is reported in 
(Kouvaritakis et al., 2004). 
 
We have demonstrated that range control provides a 
unified framework for the versatile control needs – 
regulatory, constraint, and transition controls, where 
the role of the same controlled variable can change 
over different time/operations. Another contribution 
of range control approach is separation of closed-



     

loop time response tuning from open loop model – 
which is particularly useful in connection with local 
model switching. Recall that in the case of standard 
LQ control, the closed loop response depends on the 
tuning parameters Q, R as well as on the open loop 
dynamics. 
 
Upper and lower range bound funnel can be 
generated as a response of a dynamic system to the 
changes of the reference as well as disturbance inputs 
to provide additional space for disturbance rejection 
– see Figure 3. In this way, range control provides 
robust, minimum control effort model matching – 
without attacking the open loop dynamics by 
providing extra space during the transient and 
independent tuning of transient and disturbance 
rejection dynamics (Baramov, 2005). 
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Fig. 3. Normalized range responses to step change in 
the set-range (left) and disturbance (right). 
 
 
Another extension of the MPC with range control is 
ratio control. With hard fixed ratio constraint, the 
optimisation problem is non-linear. However, the 
hard constraint on the ratio of process 
variables ( ) / ( )i j ijy k y k c=  can be replaced by a soft 
constraint added to the criterion. For a process with 
two outputs, the penalty corresponding to a soft 
constraint on the ratio 
 

( ) 22
1 12 2 1 2

1
( ) ( ) ( )

N
k Q

k
q y k c k y k y Cy

=
− = −∑  

 
can be written in matrix form as 

 

[ ]
-

-

2 2
1 1 1 1

2 2 2 2 Q QC

T TC Q C QC
Q

y S u y S u
I C

y S u y S u  
 
 

+ + 
− = + + 

% %

% %
, 

 
i.e. resulting optimisation problem is a standard 
quadratic programming. Moreover, the soft 
constraints on the ratio do not increase the dimension 
of the original optimisation problem. 

2.3 Real Time Optimisation 
 
A standard way of dealing with high dimensionality 
in processing industries is solving the problem in two 
separate layers: the Advanced Process Control (APC) 
layer performing dynamic optimisation (typically on 
linearised models), and the Real Time Optimisation 
(RTO) layer performing static optimisation (usually 
non-linear). Most of the RTO packages try to detect a 
steady state condition and then optimise the costs of 
operations by optimising the steady state via set 
points. To operate in this fashion, RTO have to wait 
for transient responses to settle. However, for 
processes with slow dynamics and/or high levels of 
disturbances, the dependence of RTO on steady state 
detection substantially deteriorates the performance 
of the overall system. Clearly, there is a need for 
RTO to operate during transients with a tight 
interaction with the APC layer.  
 
In a typical optimal load allocation for a number of 
units operating in parallel, the performance index like 
boiler efficiency or heat rate is well defined only for 
steady state operations. Note that optimal allocation 
is based on equal incremental costs of parallel units. 
If the master controller for the set of parallel units is 
implemented as MPC, the optimisation layer can 
dynamically respond to the predicted steady state that 
is obtained as the target values of manipulated 
variables at the end of the prediction horizon 
(provided the prediction horizon length is correct) 
resulting in fast tracking of the optimal allocations.  
 
On the APC layer, all the three common tasks – 
regulatory control, constraint control and economic 
optimisation – are unified in a single range control 
formulation using an additional term forcing the 
manipulated variable u at the end of the control 
horizon T to follow the target uTARG 
 

TARG

2 2 2
TARG* arg min ( )  

,

, .

Q R R

LO HI LO HI

u Su y z u u T u
u z

y z y u u u

= + − + ∆ + −

≤ ≤ ≤ ≤

%

 
In this way, economic optimisation is implemented 
as transition control that utilizes the additional 
degrees of freedom resulting from the range control. 
 
In the case of decentralized control, without global 
coordination, composition of local optima achieved 
by each predictive range controller and local 
optimiser may provide significantly worse 
performance than the globally optimal solution. One 
approach is to use more centralized optimisation 
layer and add some mechanism how to reach globally 
optimal targets by local controllers without a conflict. 
An alternative approach is to use decentralized 
optimisation with additional coordination layer to 
guarantee convergence to globally optimal solution.  
 
As an example of the first approach, a three tier 
APC/RTO integration method was proposed (Lu, 
2001).  
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Fig. 4. Example of industrial energy steam plant topology. 
 
The top tier finds global optimum uG based on 
projected future constraints 
  

G
Gmin ( )

u
f u  

 G G,LO HI LO HIy Gu y u u u≤ ≤ ≤ ≤  
 
where G, the global gain matrix, and the two sets of 
constraints are composed from local gains and 
constraints of individual controllers. Then set of 
locally feasible targets uTARG closest to the global 
solution uG  for (i)-th controller can be obtained as  
 
 ( )( )

TARG

( ) ( )
TARG Gmin

i

i i

iu
u u−∑ , 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
TARG TARG,i i i i i i i i

LO D HI LO HIy G u y y u u u≤ + ≤ ≤ ≤ . 
 
The two sets of constraints correspond to the 
constraints of the (i)-th controller at the end of its 
prediction horizon. This step is a “coordination 
collar” that protects local controllers from obtaining 
locally infeasible target destination. While the global 
optimum is based on the full gain matrix, the locally 
feasible targets are based on the (i)-th diagonal block 
of the gain matrix and local estimate of the impact of 
disturbances yD that may result from interaction with 
the other controllers.  
 
The locally feasible target is then passed to the 
corresponding (i)-th controller 
 

TARG

2 2( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2( ) ( )
TARG

* arg min
,

( )  

i i i i i i

Q Ri i

i i

R

u S u y z u
u z

u T u

= + − + ∆ +

+ −

%
, 

( ) ( ) ( ) ( ) ( ) ( ),i i i i i i
LO HI LO HIy z y u u u≤ ≤ ≤ ≤ . 

 
This integration approach has been successfully 
commercialised and deployed in both refineries and 
ethylene plants with significant benefits (Verne, 
1998), Nath and Alzein (1999) describe application 
of this technology to an entire ethylene facility. The 

optimiser coordinating 10 RMPCT controllers is 
executed every minute while a comparable 
“classical” RTO solution runs every 2-4 hours. The 
acceptance test for the project demonstrated 10% 
increase in average production. 
 
To illustrate an alternative approach to interaction 
between the APC and RTO layers, consider the 
industrial utility as in Figure 4. Unit’s resource flows, 
Ri, and product flows, Pj, are functions of a chosen 
set of optimisation variables, x, and a set of 
parameters p (measured variables not subjected to 
optimisation, slowly varying with respect to control 
and optimisation execution period) 
 

( )
( )

r

p

, , 1, ,
, , 1, ,

i i

j j

R R x p i n
P P x p j n

= =
= =

K

K
 

 
It is assumed that all resource flow functions are 
convex, and all product flow functions are concave. 
The cost criterion is a linear combination of resource 
and product flow functions  
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The price coefficients c may vary in time and depend 
on parameters. 
 
In the case of parallel units with fixed total flow, the 
optimal allocation problem results in well-known 
incremental cost based allocation (Šomvárský et al., 
2002). For more complex set-ups, general 
optimisation problem 
 

 
( )
( )

minimize

subject to   0

f x

h x =
 



     

has to be solved (additional inequality constraints 
will be considered later). Introducing the Lagrangian 
function  
 ( ) ( ) ( ), TL x f x h xλ λ= + , 
  
necessary conditions for minimum are given by 
 
 ( ), 0L x λ∇ =  
 
and using Newton’s method to solve this non-linear 
equation, iterations 1k k kx x x+ = + ∆ , 1k k kλ λ λ+ = + ∆  
can be obtained by solving the system of equations 
 

 
( ) ( ) ( ) ( )
( ) 0 ( )

k k k k k
xx k x x
T k k k

L x h x x f x h x
h x h x

λ
λ

    ∆ +
= −    

∆    
. 

 
which – after a simple rearrangement – are the 
necessary conditions for ( )1,k kx λ +∆  to be the 
solution of a quadratic program 
 

 
1
2minimize

subject to 0

T T kk
xxx

Tk k
x

x x L xf
h h x

∆ + ∆ ∆
+ ∆ =

. 

 
This algorithm can be extended for problems with 
inequality constraints resulting in well known local 
SQP (Sequential Quadratic Programming) method 
(Nocedal and Wright, 1999). 
 
For real-time optimisation applications, the SQP can 
be implemented with iterations spread-in-time (IST), 
with the limits and rate-of-change constraints 
providing natural “trust region” in each iteration. In 
real-time applications, feasibility of successive 
iterations should be enforced (Panier and Tits, 1993). 
Also, objective function may not be well-defined 
outside the feasible set. IST approach results in fast 
tracking of optimal trajectory. The problem with 
feasibility of trust region based methods (empty 
intersection of the feasible set and trust region for a 
general starting point) is avoided, as the iterations are 
started from currently applied set-point that is always 
feasible. 
 
The concept of incremental cost, used for load 
allocation to parallel units (boiler, that supply steam 
to a common header, or turbines, that operate 
between the same headers) can be generalized to a 
more complex multi header topology. Consider a 
problem of production cost minimization under given 
steam and generation demand. Let f(x) represent the 
cost function of the steam from the boilers. The 
linear equality constraints define steam balance 
conditions for flows x in individual headers 
 
 ( ) 0h x Bx d= − =  
 
where the balance matrix has non zero elements Bij= 
±1 for flow xj entering/ leaving i-th header and di is 
the demand for process/heating steam from header i 
and the total generation balance 
 

 [ ] G( ) 1, ,1 ( ) 0g x G x d= − =K  

 
where G(x) is the generation on individual turbines as 
a function of steam extraction/condensation flows 
and dG is the total generation demand. Row i of the 
first order optimality condition 
 

 ( ), ( ) ( )T
x x xL x f x B g xλ λ µ= + +  

 
can be interpreted as a transformation of the 
incremental costs related to flow xi from header j to 
header k  
 
 ( ) /j k ig x xλ λ µ= + ∂ ∂  
 
i.e. incremental cost of steam from header k is the 
incremental cost of steam from header j reduced by 
the incremental cost of generation. If the equilibrium 
prices are known, the optimal allocation between 
parallel extraction flows 

1
, ,

ni ix xK  from headers 

1, , nj jK  to header k can be found locally based on 
modified equal incremental generation condition 
 

 ( )
j ks

is

g x
x

λ λ∂
∝ −

∂
. 

 
For the equilibrium price, the global minimum cost 
benefit will be obtained as a sum of individual local 
cost (resulting in maximum generation from 
available steam). 
 
 ( ) ( )k TOT

j i k k is s s
s s

f x x d G xλ λ µ= − − ∆∑ ∑  

 
Moreover, the balance between internal interaction 
flows as well as global demand will be achieved. 
 
The optimal (equilibrium) price can be obtained by 
solution of the dual problem. When the duality gap 
occurs, the set of interconnection flow prices, such 
that each system can minimise its local costs and 
achieve global optimisation, does not exist. The 
conditions under which the duality gap does not 
occur are rather restrictive – convex cost function 
f(.), convex feasible set defined by the inequality 
constraints and linear equality conditions (Simmons 
and White, 1977) – but are fully satisfied e.g. for a 
class of load allocation problems. 
  
Decomposition theory appeared in the 1970's and 
80's in the works of Mesarovic et al. (1970). Singh 
(1977, 1978), Findeisen et al. (1980, 1982), Jamshidi 
(1996) and recently Michelena et al. (1998, 2002) 
analyse different method of coordination. The 
complementary approach is aggregation. Its principal 
idea is that a subsystem is replaced by a simpler 
model with the characteristic behaviour of the 
original system almost unchanged. Several 
aggregation techniques were presented lately by 
Tsurkov (2000; 2001). 
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Fig. 5. Industrial energy steam plant topology with aggregation of parallel units. 
 
 
Also the load allocation problem can be formulated 
using  the aggregation. For parallel units operating  
between the same headers (in a more general setting, 
using the same resources and turning out the same 
product), optimal load allocation problem can be 
solved locally  and  the  group of parallel units can be  
described as a single unit characterised by resulting 
optimised cost curve (see Fig. 5). Then, the global 
optimisation problem uses the aggregated models, 
i.e. there is a single aggregated flow between each 
couple of interconnected headers represented by a 
single (locally optimal) cost curve. 
 
Using aggregation and hierarchical solution of the 
global allocation problem, convergence of the global 
problem calculating the aggregated cumulative flows 
is drastically improved. The optimal allocation of 
cumulative flows to parallel units is handled by local 
allocation algorithms. However, the aggregation 
necessarily results in conservative treatment of 
internal constraints between the extraction and 
condensing flows within a single turbine. The trade-
off depends on turbine/header topology – whereas in 
the case of the topology depicted in Figure 4 
aggregation will not provide major benefits, for the 
topology depicted in Figure 5 the convergence and 
stability of the allocations will be significantly 
improved. 
 
2.4 Asset management 
 
The impact of asset management elements in 
Integrated Process Management have been limited. 
We will use examples from power generation 
domain to illustrate how the same solution 
component – economic optimisation based on 
incremental costs – can be reused asset related  
problems and how the asset management can be 
integrated with advanced process control layer. 
 
A typical dependence of losses resulting from 
technology ageing/degradation resulting in 
diminishing productivity and average cost of 
maintenance is depicted in Figure 6. The optimal 
maintenance period depends on the rate of process 
degradation. 
 

Beside long term process degradation, when manual 
performance monitoring and manual evaluation may 
be practicable, for short term degradation, also the 
decision about the maintenance has to be automated. 
An example is Soot Blowing Optimisation, where the 
fouling of boiler surfaces results in reduced heat 
transfer, increased losses in the flue gas and reduced 
efficiency. 
 

Fig. 6 – Typical maintenance economy – different 
rates of process degradations and corresponding 
optimal maintenance periods. 
 
 
Beside a global approach – scheduling a fixed soot 
blowing sequence based on global performance index 
degradation – more detailed optimisation targeting 
individual surfaces is required. The optimum 
depicted in Fig. 6 can be also interpreted as equal 
incremental costs of soot blowing steam and 
incremental losses from reduced efficiency. The 
incremental cost based approach can be extended to 
multivariable optimisation problems.  
 
While the impact of fouling can be evaluated by real 
time performance monitoring components, the 
incremental benefits from cleaning can not be simply 
evaluated – change in cleanliness of any surface 
results in redistribution of heat flux, different fuel 
consumption and cooling water redistribution. 
Cumulative impact on global performance can be 



     

evaluated only using a steady-state boiler heat 
balance model.  
 
Another area for dramatic improvement of the return 
on asset is extension of asset life. Classical methods 
of life time estimation based on accumulated creep 
and cycling stress damage calculated by thermal 
stress monitoring packages as defined by ASME or 
TRD industry standards are overly conservative and 
provide extensive space for asset life time extension 
based on modern computational methods like Finite 
Element Method for thermal and stress field 
evaluation. 
 
Beside the benefits from improved monitoring 
methodology, information about the current values of 
thermal stress can be used in real-time – defining an 
auxiliary output to unit master controller, reflecting 
the impact of load and fuel changes to thermal stress 
at the critical point of the boiler. This auxiliary 
output will be used to introduce real-time feedback 
constraint control as introduced in Section 2.2 based 
on maximum allowable stress. This approach 
provides maximum unit responsiveness and optimal 
utilisation of boiler storage capacity during the 
transients under given constraint on asset life time 
consumption rate. 
 
 

3. APPLICATION FRAMEWORK 
 
Currently, commercially available computers and 
operating systems play more and more significant 
role in hosting level 3 and level 4 applications 
(advanced control, real time optimisation, 
performance monitoring, planning, scheduling). 
However, control applications have many 
requirements not provided by commercial operating 
systems. Honeywell Advanced Process Control 
group undertook the implementation of a platform to 
run on MS Windows 2000 and successors that would 
provide execution services, data exposure, process 
data access, configuration, and other application 
needs in as general and flexible way as possible. The 
solution is based on software components 
(Szyperski, 1999) using Windows standard 
Component Object Model (COM) and Distributed 
COM (DCOM) technology (Grimes, 1997). The 
resultant platform is called Unified Real Time (URT). 
 
Control applications typically need to expose data to 
operators and engineers, pass data between modular 
pieces of an application, or between applications. 
Advanced applications may need to expose large 
amounts of data, which implies that flexible 
containers and structures are needed for organization 
of data. To meet these needs, data values that need to 
be exposed are encapsulated in component objects 
called data items and organized in a tree structure. 
The generality of the data tree provides the flexibility 
needed for large applications to organize their data in 
a simple way.  
 
Scheduler blocks perform execution. A scheduler 
block typically heads a branch that contains the 

function blocks and data items for an application 
instance. Each scheduler block exposes child data 
items that hold scheduling information such as 
desired execution interval, interval offset, demand 
trigger, execution priority, and active/inactive status. 
 
Details on Unified Real Time (URT) platform and 
architecture of a typical advanced control application 
depicted in Figure 7 will be presented in Invited 
Session "Variability Management for Control System 
Software" (Horn et al., 2005). 
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Fig. 7 – Architecture of an application built from 
software components. 
 
 
Even with software component based applications, 
there is still a number of barriers to extension of 
“controllability” of the process – starting from 
additional costs, difficult integration of knowledge in 
different forms, lack of solution collaboration to 
limited action space. A cost effective way to higher 
controllability is to increase solution customisability. 
Customisable solutions can be built from plug-in 
solution components, that use common base 
infrastructure (transparent and scalable system 
services). The “plug-and-play” content of the 
solution components will expand the traditional 
scope of control and optimisation to performance 
monitoring/diagnostics, forecasting, planning, 
scheduling and supply chain management. Unified 
Authoring Environment will provide language, 
algorithms and specific process knowledge. 
 
The solution component – basic building block for 
customisable solutions (smallest customisable 
module that offers independent functionality) is 
different from software components – typically it is 
one or more software component, but while software 
components are containers designed to encapsulate 
with respect to reusability, scalability etc., the 
solution components encapsulate with respect to  



     

 
 

Fig. 8 – Automation Authoring Environment for customisable solution components. 

 
Fig. 9 – Example of enterprise wide optimization in a refinery. 

 
algorithmic content or domain knowledge. Built-in 
solution components encompass at least the common 
control/optimisation subspace and can work together 
with externally coded plug-in components. 
 
The next generation .NET based software platform 
for Automation Authoring Environment for solution 
components called .CNTL is depicted in Figure 8. 
 
 

4. DEMO APPLICATION 
 
Although the presented concepts are applicable 
across the processing industries, in the talk we shall 
particularly concentrate on problems arising in power 
generation and chemical/refining industries. 
 
The reasons for choosing these domains are as 
follows:  

• Power generation is leading other industries 
in its need for real-time responsiveness. 
External conditions are dictated by real-time 
cost and price fluctuations in the energy 
market, by stringent environmental 
constraints and by demands for stability of 
the distribution system. Moreover, different 
time scales must consistently be considered: 
medium to long-term production plans 

(months-years) and short-term schedules 
(down to fractions of seconds) for power 
contract execution and ancillary services 
(frequency control). Other industries are 
likely to face similar challenges of the 
demand driven real-time economy in the 
near future. 

 
• Chemical/refining industries provide the 

most complex control problems. A refinery 
example of enterprise wide optimisation is 
depicted in Figure 9. To date, the largest 
implementation of coordinated RMPCT 
controllers coordinates 40  controllers with 
total number of controlled variables and 
additional constraints exceeding 1000 (Nath 
and Alzein, 2001). 

 
 

5. CONCLUSIONS 
 

The paper summarized some of the challenges 
resulting from increasing scope of integrated process 
management solutions that bring together 
technical/technological and economic knowledge and 
criteria. Current control technologies and their 
implementation based on software components was 
reviewed. Solution components were introduced as 



     

basic building blocks and efficient tools for cross-
functional integration that will enable extension of 
the “controllability” of the process from the 
traditional layers of single-loop regulatory control, 
multivariable control and optimisation to higher 
layers of planning, scheduling and supply chain 
management. 
 
The talk covered work that several research teams in 
Honeywell have done as a pioneer attempt at solving 
those challenging problems – mostly in the advanced 
control and real time optimisation tiers. There is still 
much work left to be done – starting with the design 
challenge between the need of decentralized solution 
and the need of solving global economic 
optimisation on enterprise wide level and continuing 
with incorporating flexible planning and scheduling 
layers into an essentially decentralized control 
system, with adequate levels of abstraction of the 
physical process and different time granularity at 
different layers. 
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