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Abstract: This paper considers the Model Predictive Control (MPC) set point
tracking/regulation problem for a discrete LTI system, which is subject to a class
of unbounded disturbances/tracking signals called extended constant signals. The
main contribution is a formulation of the system’s plant equations under which,
for output regulation, no knowledge of the structure or magnitude of
disturbances is needed in order to achieve set point regulation for this
class of signals. The result is of interest since it implies that no disturbance
observer is necessary in order to solve the set point tracking/regulation
problem when full-state feedback is available. The results are experimentally
verified. Copyright c©2005 IFAC
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1. INTRODUCTION

One of the most attractive features of MPC
is its ability to directly deal with constraints.
There is a vast literature on MPC; some recent
survey articles and texts on the topic include
(Rossiter, 2003), (Maciejowski, 2002), (Goodwin
et al., 2001), (Lee and Kouvaritakis, 2001), (Lee
and Kouvaritakis, 2000), (Mayne et al., 2000),
(Camacho and Bordons, 1999), (Lee and Kou-
varitakis, 1999), (Rawlings, 1999), and some
representative research results include (Clarke,
1994), (Lee et al., 1994), (Muske and Rawlings,
1993), (Soeterboek, 1992), (Bitmead et al., 1990),
(Garcia et al., 1989), (Keerthi and Gilbert, 1988).
This paper focuses on the MPC tracking and
regulation problem, for a plant with unknown,
unmeasurable disturbances, as modeled by

x[k+1] = Ax[k] + Bu[k] + Ew[k]

y[k] = Cx[k] + Du[k] + Fw[k],

where u, w and y denote the control signals,
disturbances and outputs respectively, and where
E and F are not necessarily assumed to be
known. w[k] is assumed to satisfy the property
limk→∞ (w[k + 1]− w[k]) = 0. Signals which sat-
isfy this property are called extended constant sig-

nals (Davison and Scherzinger, 1987) and include
constant signals as a special case; other examples
include the unbounded signals w[k] = kθ, 0 ≤
θ < 1 and w[k] = log(k), ∀k = 1, 2, 3, · · ·. In this
MPC problem, it is assumed that constraints are
imposed on the inputs or states of the system.
For the case of constant disturbances, the conven-
tional approach to apply MPC is to use an ob-
server based estimate of the disturbance; e.g. see
(Rossiter, 2003), (Maciejowski, 2002), (Goodwin
et al., 2001), (Rawlings, 1999). In particular, a
common way to deal with unmeasured distur-
bances is to use Kalman filtering in which the
disturbances are included in the system dynamics,
e.g. see (Rossiter, 2003), (Maciejowski, 2002) and
(Goodwin et al., 2001). This typically involves a
knowledge of the E and F matrices. For example,
for the case of constant disturbances, which are a
subset of extended constant disturbances, the fol-
lowing comments are made in recent texts dating
as late as 2003 :
• In (Rossiter, 2003), pg. 21-22 ”Of course the

disturbance is unknown, as is the state x[k],
so it must be estimated. ... An observer can
be constructed for the model under the usual
assumption of observability, to give an esti-
mate of both the state x and the disturbance



d.” and ”Again the overall process model
should be augmented to include the distur-
bance dynamics as follows ...”

• In (Maciejowski, 2002), pg. 56-57, ”It is in-
structive to see how the ’constant output
disturbance’ assumption we made in the pre-
vious section can be handled using observer
theory. We can do this by augmenting the
model of the plant, so that it includes a model
of the output disturbance.”

• In (Goodwin et al., 2001), pg. 756-757 ”one
could use a Kalman Filter to estimate the
current state from observations of the output.
Disturbances can also be included in this
strategy by including the appropriate noise
shaping filters in a composite model.”

As well, when considering MPC which is based on
state estimation, the use of disturbance models for
the state estimator is assumed: e.g.
• In (Rawlings, 1999) ”disturbances are obvi-

ously uncontrollable and are required only in
the state estimator.”

In this paper no knowledge of the disturbance
matrices E and F , nor of the structure or
magnitude of the disturbance, nor an es-
timate of the unmeasurable extended con-
stant disturbance is needed in order to guar-
antee asymptotic regulation of the output to a
specified extended constant tracking signal. Fur-
thermore, no bounds of any type are required on
the allowable disturbances. This is an advantage
over conventional approaches, which typically as-
sume that the disturbances are constant and that
a knowledge of the disturbance matrices E and F ,
in a given problem, is available.

2. LTI SYSTEMS AND THE RSP

Consider the LTI discrete time system which has
the input u[k] ∈ <m, the output y[k] ∈ <r, state
x[k] ∈ <n, an unmeasurable extended constant
disturbance signal w[k] ∈ <q and the extended
constant tracking signal yref [k] ∈ <r:

x[k+1] = Ax[k] + Bu[k] + Ew[k]

y[k] = Cx[k] + Du[k] + Fw[k] (1)

e[k] = y[k]− yref [k],

where e[k] is the error in the system. The follow-
ing existence result for a solution to the robust
servomechanism problem (RSP) for (1), assuming
no constraints are applied, is given:

Lemma 2.1. (Davison and Scherzinger, 1987),
(Davison, 1996) There exists a solution to the RSP
for (1) for extended constant tracking/disturbance
signals iff the following conditions are all satisfied:

(1) (C, A, B) is stabilizable and detectable,

(2) rank
[

A− I B
C D

]
= n + r and

(3) the output y[k] is measurable.

Assume now that the existence conditions of
lemma 2.1 all hold and that the control signal
of (1) is bounded. Dropping the time sample
notation [k], assume that the upper and lower
bound constraints are imposed as follows: Let
umin

i < umax
i , i = 1, 2, · · · ,m and define U :=

{u ∈ <m|umin
i ≤ ui ≤ umax

i ,∀i = 1, 2, · · · ,m}.
Let ∂U be the boundary of U , UC be the center
of U and Uo be the interior of U . The following
results can be obtained from (Miller and Davi-
son, 1993) to provide conditions for the feasibility
of (yref , w). Define

T := (0 Im)
(

A− I B
C D

)†(
0
Ir

)
(2)

E :=− (0 Im)
(

A− I B
C D

)†(
E
F

)
(3)

where (·)† = (·)′[(·)(·)′]−1 is the pseudo-inverse;
then we say that the extended constant signals
(yref , w) are feasible w.r.t. (1) if

(T, E)
(

yref

w

)
∈ Uo. (4)

If m = r, and condition (4) does not hold,
then this implies that there exists no control
input subject to the constraints u ∈ U , so that
asymptotic tracking and regulation occurs w.r.t.
(yref , w) (Miller and Davison, 1993).

In what follows we will assume that the conditions
of lemma 2.1 hold, the control signal is bounded,
and that (yref , w) are feasible.

2.1 Equivalent Representation

In order to solve the RSP using MPC methods,
the following equivalent representation of (1) is
made. Let δ[k] := x[k] − x[k − 1] and v[k] :=
u[k] − u[k − 1]; then the following equivalent
representation of (1) is obtained[

δ[k+1]
e[k]

]
=

[
A 0
C I

] [
δ[k]

e[k−1]

]
+

[
B
D

]
v[k]

+
[

E
F

]
w∗[k]−

[
0
I

]
y∗ref [k] (5)

where w∗[k] = w[k] − w[k − 1] and y∗ref [k] =
yref [k] − yref [k − 1]. (Davison, 1996) Stabilizing
properties of the equivalent representation are de-
scribed in (Davison and Davison, 2002)(Davison
and Davison, 2003),(Davison and Scherzinger,
1987).

Now, define the performance index J

J =
∞∑

i=k

e[i−1]′Qe[i−1] + v[i]′Rv[i] (6)



for the system (5), where Q > 0 and R > 0. In
this case, assuming no control signal constraints
are applied, it follows from properties of the
solution to the equivalent representation, that
there always exists a solution to the problem of
minimizing (6) such that the resultant closed loop
system obtained for (5) is stable, i.e. the system{(

0 I
)
,

(
A 0
C I

)}
of (5) is detectable and the

system
{(

A 0
C I

)
,

(
B
D

)}
of (5) is stabilizable,

which implies that the optimal controller which
minimizes (6) is a stabilizing controller.

3. MPC FORMULATION

The use of the difference equations from the
equivalent representation in (5) to model
the plant dynamics is the key to extended
constant disturbance rejection when using an
open loop control law formulation, in which no
knowledge of the structure or magnitide of the
disturbance is assumed. Using (5) enables the
open loop formulation to reject extended constant
disturbances, which can not be similarly rejected
when the plant model (1) is used, and when w[k]
or an estimate of w[k] is not known.

The MPC cost can be defined as

J [k] =
k+P−1∑

i=k

e[i−1]′Qe[i−1] + v[i]′Rv[i] (7)

for the system (5), where the weighting matrices
satisfy Q > 0 and R > 0. The structure of (7) is a
finite horizon version of its RSP counterpart (6).
When P is large enough and when there are no
active constraints, then the cost in (7) will closely
approximate that of the RSP, and the properties
of the RSP will apply to the resulting MPC
controller. This follows from results pertaining
to the length of the horizon time (Keerthi and
Gilbert, 1988).

The cost function (7) itself is not new to MPC.
It’s importance to the tracking/disturbance rejec-
tion MPC problem is that, for a specified con-
stant tracking and extended constant disturbance
signal, there is no requirement to determine the
steady-state value of the control signal, as is of-
ten the case when the traditional approach of
MPC is used with constant disturbances, e.g. see
(Goodwin et al., 2001), (Rawlings, 1999), (Muske
and Rawlings, 1993) and (Bitmead et al., 1990),
which use a norm of the difference between the
control signal and its steady-state value in the
performance index. This is important because,
again, such a steady-state calculation requires a
knowledge or estimate of the disturbance signal.

3.1 The QP subproblem in MPC

In order to solve the MPC problem at each sam-
pling interval, the cost in (7) is restated as a
constrained quadratic programming (QP) prob-
lem with the control vector U [k] = [u[k]′ u[k +
1]′ · · ·u[k+P−1]′]′ and the output vector Yref [k] =
[yref [k]′ yref [k+1]′ · · · yref [k+P−1]′]′ where

J [k] = 1
2U [k]′HU [k] + f [k]′U [k] + c[k], (8)

and any constraints on the inputs or states of
the system can be redefined in a standard vector
format as AU [k] ≤ B. The optimal solution U∗[k]
to this constrained minimization problem depends
completely on H, f [k] and the constraints on
U [k]. The constant c[k] can be dropped as the
minimization over U [k] is independent of this
constant. State feedback of the plant at time k
is built into the cost (8) through the f [k] vector.
Using the difference model (5) to build H and f [k]
allows for the resulting open loop minimization to
naturally reject step disturbances.

The method used to convert (7) to (8) using the
information provided by (5) is standard, e.g. see
(Goodwin et al., 2001). The vector f [k] must be
calculated at each sample time as it depends on
the values of yref , y[k], δ[k], u[k] and v[k], all
of which are defined at sample time k. In this
case, the vector f [k] can be rewritten at time
k as f [k] = Fuu[k] + Fvv[k] + Fyref

Yref [k] +
Fyy[k] + Fδδ[k], where Fu, Fv, Fyref

, Fy and Fδ

are constant matrices.

4. OBSERVER DESIGN

The equivalent representation framework for the
QP subproblem in MPC which is described in
section 3.1 leads to a natural choice of related
observer design. Since only the difference in state
δ[k] is needed for the calculation of f [k], and since
an extended constant disturbance does not enter
into this equation, only an observer for the state
difference is required to be designed. An observer
for δ[k] of (5) is given by:

δ̂[k+1] = (A− ΛC)δ̂[k] + Bv[k] + Λ(e[k]− e[k − 1]

−Dv[k] + y∗ref [k]) (9)

where Λ is any gain matrix which stabilizes the
system matrix (A−ΛC). Since limk→∞ w∗[k] = 0
in (5) from (Callier and Desoer, 1991), this ob-
server has the property that limk→∞

(
δ[k]− δ̂[k]

)
=

0, ∀w ∈ <q, ∀yref ∈ <r,∀x[0] ∈ <n.

It is to be noted that the above observer design
can be done using Kalman Filtering and that no
knowledge of the disturbance vectors E and F in
(1) is required. MPC can be implemented by
using the observer (9) to estimate the state.



4.1 MPC error due to the observer

Recall that the QP subproblem which is solved
in (8) only requires state feedback with respect
to the calculation of the f [k] vector. In this
term, the state difference δ[k] at sample time
k is propagated into the f [k] vector. With full
state measurement, δ[k] is known, but if this
information is not available then an estimate of
f [k], denoted f̂k, can be calculated by replacing
δ[k] with its observer estimate δ̂[k] given by (9).
Defining the observer error as δ̃[k] := δ[k] − δ̂[k]
and noting that δ̂[k] = δ̂[k]−δ[k]+δ[k] = δ[k]−δ̃[k]
leads to

f̂k = Fuu[k] + Fvv[k] + Fyref
Yref [k] + Fyy[k]

+ Fδ(δ[k]− δ̃[k]) (10)

f̂k = f [k]− Fδ δ̃[k]. (11)

The error which is introduced into the MPC sys-
tem due to the use of f̂k is thus proportional to the
state difference observer error for those portions
of the curve which are unconstrained. This error
is exponentially decaying. Given the MPC cost
(8), with no constraints, the true optimal control
vector U∗

k is calculated to be U∗
k = −H−1f [k].

Computing the optimal control estimate, denoted
by Û∗

k , found using an observer it can be seen that

Û∗
k =−H−1f̂k

=−H−1
{

f [k]− Fδ δ̃
}

. (12)

Thus the error that is found by using the ob-
server estimate of the system difference is directly
proportional to the state difference observer error
δ̃[k], which is exponentially decaying.

U∗
k − Û∗

k =−H−1Fδ δ̃[k]. (13)

The formulation for the optimal control with con-
straints leads to similar results, e.g. see (Bryson Jr.
and Ho, 1975).

5. EXPERIMENTAL VERIFICATION

In evaluating the performance of the proposed
MPC controller two example systems are used.
The first is a SISO three pole diagonal state-
space model which is marginally stable, and the
second is a two input/output mass-spring-damper
system.

Simple three pole example The simple three pole
example is constructed in order to illustrate the
behavior of the extended constant tracking prob-
lem. The following continuous time LTI state-
space model is constructed:

A =

[
0 0 0
0 −1 0
0 0 −2

]
, B =

[
1
1
1

]
, E =

[
0
1
1

]
,

C =
[

1 1 1
]

, D = [0], F = [0].

The above continuous time-time plant is approx-
imated by a discrete time system with a sampling
interval of 1 sec. The horizon used for the MPC
cost is P = 100, and the weighting matrices used
are Q = 1 and R = 1.

In the simulation, it is desired that the out-
put should track the extended constant signal
yref [k] =

√
k, with no disturbances present.

Mass spring damper system The mass spring
damper system represents a system with two
forces as inputs and two positions as outputs. This
system is sampled with a sampling interval of 0.1
seconds using a 10 second MPC horizon window,
leading to P = 100. The horizon cost weighting
matrices used are Q = I2 and R = 100I2. The
continuous system is defined by

A =




−0.06 1.09 0 0 0 0
−1.09 −0.06 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −0.05 0.9987
0 0 0 0 −0.9987 −0.05




,

B =




0.616 0.616
−0.0338 −0.0338

1.0 −1.0
−101 −101

0 0
−.7075 0.7075




, E =




1
2
0
0
3
4




,

C =

[
−0.0338 −0.6163 101 −101 −0.7075 0
−0.0338 −0.6163 1.0 −101 0.7075 0

]
,

D = 0, F = 0

Two sets of simulations are performed. In the
first set of simulations, it is desired that regu-
lation be achieved despite an extended constant
disturbance of w[k] =

√
k, first with no input

constraints, then with input constraints. In the
second set of simulations there is no disturbance
present, and it is desired that the system should
track the extended constant reference signals y1 =
0, y2 =

√
k. Again, this is performed both with

and without input constraints.

5.1 Results obtained for examples

Simple three pole example Figure 1 shows the
effect of tracking the extended constant reference
signal yref =

√
k both with and without input

constraints, using full-state feedback only. The
input constraint used is u[k] ≤ 0.2 which is about
half the magnitude of the peak control effort
that would otherwise be used. This constraint is
evident for approximately 20 seconds. Its affect
on the output is only evident during the period
of time when the constraint is active, after that
the signal quickly matches the desired reference
trajectory.

Mass spring damper system Figure 2 shows the
effect of disturbance rejection of an extended
constant signal using observer feedback for the
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Fig. 1. Tracking of an extended constant output trajectory, with and without constraints.
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Fig. 2. Rejection of an extended constant disturbance using both full state and output feedback.
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Fig. 3. Tracking of an extended constant reference signal, using no input constraints
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Fig. 4. Tracking of an extended constant reference signal with both mild and harsh constraints.



case when input constraints of |ui[k]| ≤ 0.03 are
imposed on the system.

Figures 3 and 4 illustrate tracking of an extended
constant reference signal y2[k] =

√
k both with

and without input constraints, using full-state
feedback. Figure 3 shows the case where no input
constraints are present. Figure 4 shows the case
where both relatively mild and relatively harsh
input constraints are imposed. The ”mild” con-
straints used are |ui[k]| ≤ 0.01 and the ”harsh”
constraints used are |ui[k]| ≤ 0.005. When no
constraints are present, the peak magnitudes of
the system are just under 0.03. Again the effects of
the constraints are most noticeable in the duration
in which they are active.

6. CONCLUSIONS

In the MPC tracking/regulation problem for a
LTI system subject to unknown, unmeasurable
extended constant disturbances, it is shown that:

(1) On using the formulation of the plant equa-
tions given in (5), and on assuming that the
state is measurable, it is possible to minimize
the finite horizon MPC cost (8) without
having any knowledge or estimation of
the disturbance magnitude or struc-
ture and without using any observer.

(2) In the case, when the state is not unmea-
sureable, it is shown that the observer de-
fined in (9) can be used. This observer has
the desirable property that again it is not
necessary to have any knowledge of the
magnitude or structure of the distur-
bance. Since the observer need only estimate
the state and not the disturbance, the order
of the observer is smaller than that normally
used in practice, where an estimate of both
the state and disturbance is generally made.

Experimental verification shows that MPC con-
trollers based on the above approach work well.
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