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Abstract: Multi-model approaches to Discrete-Event-Systems (DES) are ideally suited to
implementing operating mode management and inter-mode phase alternation (switching)
policy. The resulting major problem involves respecting full system evolution tracking
(both plant and specifications) when inter-mode switching is evoked. In other words, after
jumping from a mode to another, the newly activated mode must be directed to a state
(its starting state) corresponding to the full system evolution state. The aim is therefore
to determine the possible starting states of each operating mode. This study develops
the underlying notion that, whilst the tracking mechanism is required at plant level, it
is extended to supervision level in the sense that specification interpretation remains
unchanged in relation to the various starting states. This paper attempts to demonstrate
formally, using Supervisory Control Theory (SCT), that there is an unique upervisor for
each operating mode by proving that all event sets authorized by the supervisor remain
independent of the different starting states. Copyright©2005 IFAC
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1. INTRODUCTION

The multi-model concept involves representing a com-
plex system by a set of simple models, each of
which describes the system in a given operating mode
(Kamach et al., 2002). To maintain the recovery pro-
cedure, each plant level model is controlled by its
proper supervisor. Problems such as alternation (or
switching) and model tracking must therefore be stud-
ied. The system is, in fact, assumed to operate in a sin-
gle mode, represented by its model Gi and controlled
by its associated supervisor Si. When a failure or repair
event (a so-called commutation event in our context)
occurs, the system will switch to another operating
mode represented by its model G j and controlled by
its supervisor S j. In this case, G j must be directed to a

state compatible with system evolution. Furthermore,
the specification model of G j must be simultaneously
directed to a state compatible with the G j model to
ensure system tracking. This observation means that
different starting states 1 must be considered.
This study essentially involves commutation between
operating modes and demonstrates specifically condi-
tions governing the existence of one unique supervisor
for each considered operating mode, even under dif-
ferent starting states. Intuitively, for a given operating
mode, the behavior of the resulting supervisor remains
unchanged, irrespective of its starting state. This work
proves formally the unity of such a supervisor.

1 starting state can include initial state and other state start possi-
bilities



Section 2 of this paper introduces selected DES multi-
model design terminology and notation. Formalism
applicable to the problem of commuting between de-
signed process models is also briefly recalled in this
section. Section 3 deals with the existence of super-
visor conditions for each operating mode and cor-
responding control strategies. Study conclusions are
presented in Section 4.

2. DES MULTI-MODEL DESIGN

This section focuses on guaranteed operation under
failure which, whilst causing degraded production,
does allow continuity of service. Reactive systems 2

are subject to failures. This type of system must be
flexible to perform under controlled risks. At sys-
tem design stage, this flexibility involves to taking
into account different operating modes. (Kamach et
al., 2002) and (Kamach et al., 2003) has proposed a
multi-model concept, which involves designing each
operating mode using just one process model. A de-
tailed discussion dealing with the advantages of multi-
model design appears in (Kamach et al., 2002) and
(Kamach et al., 2003). We recall here only the element
required for ensuring development.
To introduce the proposed approach, we consider an
example involving a simple manufacturing plant. This
system comprises three machines, as shown in figure
1.
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Fig. 1. Diagram of production unit example

Initially, buffer B is empty and machine M3 is per-
forming another task outside the unit, but it intervenes
when M1 breaks down. With event b1 (respectively
b3), M1 (respectively M3) picks up a workpiece from
an infinite bin and places it in buffer B, after complet-
ing its work (events e1 respectively e3). M2 operates
similarly, but takes its workpiece from B (event b2)
and places it in an infinite output bin, when it has
finished its task (event e2). It is assumed that only
M1 can break down (event f1) and be repaired (event
r1) (figure 2). Two operating modes are designed for
the overall system : a nominal mode Gn, in which
M1 and M2 produce, and a degraded mode (Gd), in
which M3 replaces M1 (figure 2). These two modes are
created from models of M1, M2 and M3 but they ex-
clude f1 and r1 events, which are considered as inter-
mode commutation events. Initially, the system is in

2 A reactive system aims to react to failures and may lead to
operating mode management

the nominal mode described by Gn. When f1 occurs,
the system passes to the degraded mode described by
Gd . Occurrence of r1 permits transfer from Gd to Gn.
This means that only one operating mode is active at
any one time.
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Fig. 2. Automata models of machines Mi (for i ∈ {1,2,3})
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Fig. 3. Nominal and degraded process model

The objective is now to determine each operating
mode along with the respective commutation condi-
tions. To do this, let Λ as a set containing indices
of all models composing the overall system with
card(Λ) = m < ∞. Card(Λ) represtents the number
of models to be designed. Let λi ∈ Λ. In the exam-
ple Λ = {n,d} where n is the index of the nominal
mode and d the index of degraded mode. Gλi is de-
fined as an uncontrolled automaton. Formally: Gλi =
(Qλi , Σλi , δλi , q0,λi , Qm,λi), where Qλi is a set of states,
Σλi

3 is the set of event labels, and δλi : Qλi ×Σλi ⇒
Qλi , the partial transition function, which is defined
at each q ∈ Qλi for a subset of events σ ∈ Σλi , the
initial state is q0,λi . The marked states are Qm,λi ⊆ Qλi
and represent the end of tasks or sequences of tasks.
Let Σ∗

λi
denote the set of all finite string over Σλi

plus the empty strings ε . δλi is then extended to a
function δλi : Qλi × Σ∗

λi
⇒ Qλi , such that ∀q ∈ Qλi ,

δλi(q, ε) = q and δλi(q, sσ) = δλi(δλi(q,s), σ), σ ∈
Σλi , s ∈ Σ∗

λi
. We can write δλi(q, s)! as an abbrevia-

tion for δλi(q, s) is defined. The language generated
by Gλi is then L(Gλi) := {s ∈ Σ∗

λi
|δλi(q0,λi , s)!}. In

general, we assume that Σλi ∩Σλ j 6= /0 (with i 6= j), i.e.,

3 Σλi can be partitioned to Σλi ,c and Σλi ,uc where the disjoint
subsets Σλi,c and Σλi,uc comprise respectively the controllable and
uncontrollable events.



we assume that common components can be found
between two modes λi and λ j. Initially the system
is described by Gn. Let us define Σ′ = ∪i j{αλi,λ j}
as the set of commutation event from Gλi to Gλ j .
The problem is to determine the arrival state of Gλ j
after the occurrence of αλi,λ j in Gλi . To do this, Gλi
must be extended by adding an inactive state qin,λi
to the state set of the model Gλi so that: Gλi,ext =
(Qλi,ext , Σλi,ext , δλi,ext , q0,λi,ext , Qm,λi,ext), with

• Qλi,ext = Qλi ∪{qin,λi},
• Σλi,ext = Σλi ∪Σ′,

• q0,λi,ext =

{

q0,λi if λi = 1
qin,λi if λi 6= 1

• Qm,λi,ext = Qm,λi : marked state which equal to
Qm,λi because qin,λi will never be marked,

• δλi,ext is defined as follows:
(1) ∀q ∈ Qλi , and ∀σ ∈ Σλi , if δλi(q, σ)!, then

δλi,ext (q, σ) := δλi(q, σ),
(2) ∀q ∈ Qλi from which αλi,λ j can occur (with

i 6= j) then δλi(q, αλi,λ j) = qin,λi : extended
transition function allows model Gλi to be
inactive if the commutation event occurs.

Gλ j is similarly extended to Gλ j,ext . The objective now
is to define δλ j,ext (qin,λ j , αλi,λ j ). To do this, projection
πλi,λ j is introduced as follows:

πλi,λ j : (Σλi)
∗ −→ (Σλ j )

∗ such that :

πλi,λ j(ε) = ε

πλi,λ j(sσ) =

{

πλi,λ j(s)σ if σ ∈ Σλi ∩Σλ j

πλi,λ j(s) if σ ∈ Σλi/Σλ j

In other words, πλi,λ j is a projection whose effect on a
string s ∈ Σ∗

λi
is to erase all events σ of s that do not

belong to Σλi ∩Σλ j . This allows the behavior of com-
mon components only to be tracked. From Gλ j , it al-
lows identification of the output states of the intersec-
tion elements in Gλi when αλi,λ j occurs (i.e. αλi,λ j ∈

post(sσ) 4 ). E.g. πn,d(b1) = ε and πn,d(b1b2) = b2
since b1 ∈ Σn/Σd et b2 ∈ Σn ∩Σd .

2.1 Determining starting states of Gλi,ext(λi 6= 1)

Let us assume that the commutation event produced
is αλi,λ j i.e. model Gλ j ,ext must be activated. The
following theorem will then give us the starting state
of this model.

Theorem 2.1.
Under the foregoing assumptions, ∀s ∈ L(Gλi), such
that αλi,λ j ∈ post(s). The starting state of model Gλ j is
given by δλ j,ext (qin,λ j , αλi,λ j ) = δλ j(q0,λ j , παi,α j(s)). �

4 post(s) represents the next event to occur after generation of
string s

Theorem 2.1 allows us to determine exactly the
state to which Gλ j must be directed after occur-
rence of αλi,λ j . E.g. we assume that f1 is gen-
erated after occurrence of b1b2 in Gn. So from
qin,d, Gd can be directed to q2,d . In fact, theorem
2.1 states that δd,ext(qin,d , αn,d) = δd,ext(qin,d, f1) =
δd(q0,d , πn,d(b1b2)) = δd(q0,d, b2) = q2,d (since b1 ∈
Σn/Σd and b2 ∈ Σn ∩Σd) (figure 4).
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Fig. 4. Extended nominal and degraded porcess model

Since each process model has a unique inactive
state, we have a nondeterministic problem. Indeed,
from an inactive qin,λi , several states can be reached
for the same commutation event. To overcome this
problem, we define a set of events allowing occur-
rences of commutation event αλi,λ j : αλi,λ j = αλi,λ j,k

if δλ j (q0,λ j , πλi,λ j (s)) = qk,λ j to be distinguished in
model Gi (with f1 ∈ post(s)). E.g. f1 = f1,2 if
δd,ext(q0,d , πn,d(s)) = q2,d.

2.2 Determining of recovery states of Gλi,ext

Let us now assume Gλ j ,ext is activated. Event αλ j ,λi
(repair event r1 in the example) can occur. If this is the
case, Gλ j,ext will be directed to its inactive state qin,λ j
and Gλi,ext will be simultaneously activated by leaving
its inactive state qin,λi to one recovery state q ∈ Qλi .
This state is given by applying theorem 2.2:

Theorem 2.2.
∀s ∈ L(Gλi), such that
αλi,λ j ∈ post(s) and ∀s′ ∈ L(Gλ j ,δλ j(q0,λ j , πλi,λ j (s)))

5 ,
such that αλ j ,λi ∈ post(s′). Then the recovery state in
model Gλi,ext is given by:

δλi,ext(qin,λi , αλ j ,λi) =

δλi(q0,λi , πλi,λ j (s)πλ j,λi(s
′)). �

In other words, to determine the recovery state of Gλ j ,
we must memorise the string generation history in Gλi .

In the example, commutation event r1 can occur
from states q0,d or q2,d of Gd (figure 4) assuming
that f1 has been required after occurrence of b1 in

5 L(Gλ j ,δλ j (q0,λ j , πλi ,λ j (s))) = {s′ ∈

Σ∗
λ j
|δλ j (δλ j (q0,λ j , πλi ,λ j (s)), s′)!}



Gn. From q2,d , δn,ext(qin,n, αd,n) = δn,ext(qin,n, r1) =
δn(q0,n, πn,d(b1)πd,n(b2e2b2)) = q2,n.

3. SUPERVISOR UNIQUENESS

Let Gλi and Gλ j be two models of the process and
suppose that Gλi is the initial model. In this case, Gλi
will possess only one starting state the initial state
but Gλ j can possess a set Qλ j,st of starting states q.
For each q ∈ Qλ j,st , the behavior of Gλ j is charac-
terized by language L(Gλ j ,q) = {s ∈ Σ∗

λ j
|δλ j(q, s)!}.

The interesting question is now whether there is an
unique supervisor Sλ j for all Gλ j,q such that: ∀q ∈

Qλ j,st , L(Sλ j ,Gλ j ,q) = Kλ j ,q, where Kλ j ,q is the desired
language of Gλ j,q. This section discusses conditions
governing the existence of such a supervisor. From
(Ramadge and Wonham, 1987) there exists a super-
visor S for G so that L(S,G) = K if and only if K is
controllable. That is KΣuc ∩L(G) ⊆ K.

Let Kλi be the desired language of Gλi . {Kλ j,q |q ∈

Qλ j,st} is the set of desired languages respectively for
{Gλ j,q |q ∈ Qλ j,st}. The objective here is to show that
there is also a single supervisor Sλ j for Gλ j ,q whatever
q ∈ Qλ j ,st . Theorem 3.1 states necessary and sufficient
conditions for the existence of a such supervisor.

Theorem 3.1.
Let Gλ j be an automaton with m > 1 starting states q∈
Qλ j,st and {Kλ j,q |q ∈ Qλ j,st} a set of possible desired
languages of Gλ j . Supervisory control Sλ j exists such
that ∀q ∈ Qλ j,st , L(Sλ j ,Gλ j ,q) = Kλ j,q if and only if:

(1) ∀q ∈ Qλ j,st , Kλ j,q is controllable w.r.t. L(Gλ j ,q),
(2) ∀(q,q′) ∈ Qλ j ,st ×Qλ j,st , (∀s ∈ Kλ j ,q, s′ ∈ Kλ j ,q′)

and s = s′, (∀σ ∈ Σλ j,c), if sσ ∈ Kλ j,q, such that
s′σ ∈ L(Gλ j ,q′), then s′σ ∈ Kλ j,q′ ,

(3) condition 2 holds with s and s′ interchanged i.e.
if s′σ ∈ Kλ j ,q′ , then sσ ∈ Kλ j,q. �

Condition 1 of theorem 3.1 shows that controllability
is a necessary but not a sufficient condition for su-
pervisory control of a multi-model DES. Conditions 2
and 3 show that if an event σ is enabled by Sλ j while
the starting state of Gλ j is q, and σ is also possible
from state q′ ∈ Qλ j,st , then σ must be enabled by
Sλ j . Note that the purpose of theorem 3.1 is to show
that by using basic supervisory control for a multi-
model DES, only one supervisor Sλ j , ∀q ∈ Qλ j,st , can
be designed such that L(Sλ j ,Gλ j ,q) = Kλ j ,q. However,
in conventional supervisory control, plant models pos-
sess only one initial state. To prove theorem 3.1, we
extend Gλ j to Gλ j,ext possessing only one initial state.
In this case conventional SCT can be applied. The
followinge 2 stages are required to achieve this.

(1) Extend first the model of Gλ j to Gλ j,ext =

(Qλ j ,ext , Σλ j,ext , δλ j ,ext , q0,λ j,ext , Qm,λ j ,ext)
as described in section 2 to obtain a model with
only one starting state qin,λ j . This is then the
unique initial state of Gλ j,ext . We can then design
a supervisor using a conventional supervisory
control approach,

(2) Extend also Kλ j,q by adding a commutation event
(αλ j ,λi)q such that

Kλ j ,q,ext := (αλi,λ j )qKλ j ,q = {s |∃v ∈ Σ∗
λ j

, sv ∈

(αλi,λ j)qKλ j ,q}. (αλi,λ j )q is the commutation event
from Gλi to Gλ j when the starting state of Gλ j is
q.

Now, from {Kλ j,q |q ∈ Qλ j,st} we can determine the
unique corresponding desired language for Gλ j ,ext . Let
this language be ∪q∈Qλ j ,st

Kλ j ,q,ext .

We now try to show that there is a supervisor Sλ j,ext

such that L(Sλ j ,ext , Gλ j,ext ) = ∪q∈Qλ j ,st
Kλ j,q,ext if and

only if ∪q∈Qλ j ,st
Kλ j ,q,ext is controllable. If Sλ j,ext exists,

it will observe all the event of Σλ j,ext . We try to prove
the existence of Sλ j that observing only the events of
Σλ j . For this, we introduce the projection function Pλ j
defined as follows:

Pλ j : (Σλ j ,ext)
∗ −→ (Σλ j )

∗ such that :

Pλ j(ε) = ε

Pλ j(sσ) =

{

Pλ j(s)σ if σ ∈ Σλ j

Pλ j(s) otherwise

Let Sλ j : Pλ j(Σ
∗
λ j ,ext) ⇒ Γ := {γ ∈ Pwr(Σλ j ,ext ) :

Σλ j ,ext,uc ⊆ γ}, (Σλ j,ext,uc is the set of uncontrollable
events), such that ∀s ∈ Σ∗

λ j ,ext , Sλ j(Pλ j (s)) = Sλ j,ext(s).
Knowing that
L(Sλ j ,ext ,Gλ j ,ext) = ∪q∈Qλ j ,st

Kλ j ,q,ext and

Sλ j(Pλ j(s)) = Sλ j,ext(s), then
L(Sλ j ,Gλ j,ext ) = ∪q∈Qλ j ,st

Kλ j ,q,ext

if and only if:

(1) ∪q∈Qλ j ,st
Kλ j ,q,ext is controllable w.r.t

L(Gλ j ,ext ),
(2) ∪q∈Qλ j ,st

Kλ j ,q,ext is observable w.r.t
L(Gλ j ,ext ) and Pλ j ((Rudie and Wonham, 1992)
and (Jiang and Kumar, 2000)).

If these two conditions are validated, we can state that
there is then one unique supervisor Sλ j for Gλ j such
that ∀q ∈ Qλ j,st , L(Sλ j ,Gλ j ,q) = Kλ j,q.

To prove theorem 3.1, it is helpful to introduce the fol-
lowing lemmas. Thereafter we consider the following
notation Kλ j ,q,ext := (αλi,λ j)qKλ j ,q.



Lemma 3.2.

∪q∈Qλ j ,st
Kλ j ,q,ext = ∪q∈Qλ j ,st

Kλ j ,q,ext . �

Lemma 3.3.
∀q ∈ Qλ j,st , (αλi,λ j)qKλ j ,q = (αλi,λ j)qKλ j,q. �

Lemma 3.4.
∪q∈Qλ j ,st

Kλ j ,q,ext is controllable w.r.t. L(Gλ j ,ext) if

and only if ∀q ∈ Qλ j ,st , Kλ j,q is controllable w.r.t.
L(Gλ j ,q). �

Proof of Lemma 3.2
See (Ramadge and Wonham, 1987).
Proof of Lemma 3.3

(1) First show that ∀q ∈ Qλ j,st , (αλi,λ j )qKλ j,q ⊆

(αλi,λ j)qKλ j ,q.

Let s ∈ (αλi,λ j )qKλ j,q ⇒ s = (αλi,λ j )qu with
u ∈ Kλ j ,q, then ∃v ∈ Σ∗

λ j
|uv ∈ Kλ j ,q this means

that (αλi,λ j)quv ∈ (αλi,λ j )qKλ j ,q

⇒ s = (αλi,λ j)qu ∈ (αλi,λ j)qKλ j ,q

⇒ s = (αλi,λ j)qu ∈ Kλ j ,q,ext .
(2) Now schow that

(αλi,λ j)qKλ j ,q ⊆ (αλi,λ j)qKλ j ,q.

Let s ∈ (αλi,λ j )qKλ j ,q, then ∃uands′ ∈ Σ∗
λ j

(with
s = (αλi,λ j )qs′) such that
(αλi,λ j)qs′u ∈ (αλi,λ j)qKλ j ,q.
So s′u ∈ Kλ j,q,
then s′ ∈ Kλ j,q ⇒ (αλi,λ j )qs′ ∈ (αλi,λ j )qKλ j,q.
Hence s ∈ (αλi,λ j)qKλ j,q

of lemma 3.4

(1) Suppose that ∪q∈Qλ j ,st
Kλ j ,q,ext is controllable

w.r.t L(Gλ j ,ext ) and show that Kλ j,q is control-
lable w.r.t. L(Gλ j ,q).
Let s ∈ Kλ j ,q

⇒ (αλi,λ j )qs ∈ (αλi,λ j)qKλ j ,q

⇒ (αλi,λ j )qs ∈ (αλi,λ j)qKλ j ,q(lemma 3.3)

⇒ (αλi,λ j )qs ∈ ∪q∈Qλ j ,st
(αλi,λ j )qKλ j ,q

⇒ (αλi,λ j )qs ∈ ∪q∈Qλ j ,st
Kλ j ,q,ext (lemma 3.2).

In other words, let σ ∈ Σλ j,uc such that sσ ∈

L(Gλ j ,q). However, ∪q∈Qλ j ,st
Kλ j ,q,ext is control-

lable w.r.t. L(Gλ j ,ext ), it follows that (αλi,λ j)qsσ ∈

∪q∈Qλ j ,st
Kλ j ,q,ext (by controllability)

⇒ (αλi,λ j )qsσ ∈ ∪q∈Qλ j ,st
Kλ j ,q,ext

⇒ (αλi,λ j )qsσ ∈ ∪q∈Qλ j ,st
(αλi,λ j )qKλ j ,q

⇒ sσ ∈ Kλ j ,q,
(2) Now suppose that ∀q ∈ Qλ j,st , Kλ j,q is control-

lable w.r.t. L(Gλ j ,q) and show that

∪q∈Qλ j ,st
Kλ j ,q,ext is controllable w.r.t.

L(Gλ j ,ext ).
∀q ∈ Qλ j,st , Kλ j,q is controllable w.r.t.
L(Gλ j ,q)
means that ∀q ∈ Qλ j ,st ,
(αλi,λ j)qKλ j ,q = Kλ j ,q,ext (lemma 3.3) is control-
lable w.r.t L(Gλ j ,ext ) because the commutation
event (αλi,λ j)q is always enabled by Sλ j,ext .
Thus ∪q∈Qλ j ,st

Kλ j ,q,ext is controllable w.r.t.
L(Gλ j ,ext ) as required because controllability is
preserved under unions.

Proof of theorem 3.1.
We have seen that:
L(Sλ j ,ext ,Gλ j ,ext) = ∪q∈Qλ j ,st

Kλ j ,q,ext if and only if

∪q∈Qλ j ,st
Kλ j ,q,ext is controllable. From ((Lin and Won-

ham, 1988)). We can also see that: ∀q ∈ Qλ j,st ,
L(Sλ j ,Gλ j,ext ) = ∪q∈Qλ j ,st

Kλ j ,q,ext , i.e. ∀σ ∈ (Σλ j ,ext −

Σλ j )
6 , then σ is always enabled by Sλ j . On the

other hand, there is a supervisor Sλ j such that:
L(Sλ j ,Gλ j,ext ) = ∪q∈Qλ j ,st

Kλ j ,q,ext , if and only if

• ∪q∈Qλ j ,st
Kλ j ,q,ext is controllable w.r.t

L(Gλ j ,ext ),
• ∪q∈Qλ j ,st

Kλ j ,q,ext is observable w.r.t
L(Gλ j ,ext ) and Pλ j .

If these two conditions are satisfied, then there is an
unique supervisor Sλ j such that
∀q ∈ Qλ j,st , L(Sλ j ,Gλ j ) = Kλ j,q.
Note that this observation is equivalent to conditions 2
and 3 of theorem 3.1.
1. Controllability
Suppose that Sλ j,ext exists, then ∪q∈Qλ j ,st

Kλ j,q,ext is
controllable w.r.t L(Gλ j ,ext ). Now if
∪q∈Qλ j ,st

Kλ j ,q,ext is controllable w.r.t L(Gλ j ,ext ), then

∀q ∈ Qλ j,st , Kλ j ,q is also controllable w.r.t.
L(Gλ j ,q) (Lemma 3.4).
Hence if L(Sλ j ,Gλ j ,ext) is controllable w.r.t
L(Gλ j ,ext), then L(Sλ j ,Gλ j,q) is also controllable w.r.t.
L(Gλ j ,q) as required.
2. Observability
We must now demonstrate the equivalence rela-
tionship between conditions 2 and 3 of theorem
3.1 and observability of ∪q∈Qλ j ,st

Kλ j,q,ext . Note that

∪q∈Qλ j ,st
Kλ j ,q,ext is observable w.r.t L(Gλ j ,ext) and Pλ j

if (∀σ ∈ Σλ j,c), ∀s,s′ ∈ ∪q∈Qλ j ,st
Kλ j ,q,ext , Pλ j(s) =

Pλ j(s
′) and sσ ∈ ∪q∈Qλ j ,st

Kλ j,q,ext , s′σ ∈ L(Gλ j ,ext),

then s′σ ∈ ∪q∈Qλ j ,st
Kλ j ,q,ext .

A) Suppose that ∪q∈Qλ j ,st
Kλ j,q,ext is observable w.r.t

L(Gλ j ,ext) and Pλ j . Now ∀(q,q′) ∈ Qλ j,st ×Qλ j ,st , let
σ ∈ Σλ j,c, s ∈ Kλ j ,q and s′ ∈ Kλ j ,q′ such that s = s′.

6 (Σλ j ,ext −Σλ j ) = {σ ∈ Σλ j ,ext |σ 6∈ Σλ j }



If sσ ∈ Kλ j,q and s′σ ∈ L(Gλ j ,q′), one must show that
s′σ ∈ Kλ j,q′ (condition 2 of theorem 3.1).
s ∈ Kλ j ,q

⇒ (αλi,λ j)qs ∈ (αλi,λ j )qKλ j ,q

⇒ (αλi,λ j)qs ∈ ∪q∈Qλ j ,st
Kλ j ,q,ext .

In other words, s′ ∈ Kλ j ,q′

⇒ (αλi,λ j)q′s′ ∈ ∪q∈Qλ j ,st
Kλ j ,q,ext .

Since s = s′, Pλ j((αλi,λ j )qs) = Pλ j((αλi,λ j )q′s′).
On the other hand
(αλi,λ j )qsσ ∈ ∪q∈Qλ j ,st

Kλ j ,q,ext

⇒ (αλi,λ j)q′s′σ ∈ ∪q∈Qλ j ,st
Kλ j,q,ext

because ∪q∈Qλ j ,st
Kλ j ,q,ext is observable.

⇒ (αλi,λ j)q′s′σ ∈ ∪q∈Qλ j ,st
Kλ j,q,ext (lemma 3.2)

⇒ (αλi,λ j)q′s′σ ∈ Kλ j ,q′,ext

⇒ (αλi,λ j)q′s′σ ∈ (αλi,λ j )q′Kλ j ,q′

⇒ s′σ ∈ Kλ j ,q′ .
Condition 2 of theorem 3.1 is now checked. Condition
3 holds with s and s′ interchanged.
B) Supposing that condition 2 of theorem 3.1 is true
and Pλ j(s) = Pλ j(s

′). One must show that if sσ ∧

s′ ∈ ∪q∈Qλ j ,st
Kλ j,q,ext and s′σ ∈ L(Gλ j ,ext ), then s′σ ∈

∪q∈Qλ j ,st
Kλ j ,q,ext (observation).

Let sσ ∈ ∪q∈Qλ j ,st
Kλ j ,q,ext . This means that ∃v ∈

Σ∗
λ j
|sσv ∈ ∪q∈Qλ j ,st

Kλ j ,q,ext ⇒ ∃q ∈ Qλ j,st such that
sσv ∈ Kλ j,q,ext . So sσv = (αλi,λ j)qs1σv ∈ Kλ j ,q,ext

(with s = (αλi,λ j )qs1) ⇒ s1σv ∈ Kλ j ,q ⇒ s1σ ∈ Kλ j,q.
On the other hand s′ ∈ ∪q∈Qλ j ,st

Kλ j ,q,ext , then ther ∃t ∈

Σ∗
λ j
|s′t ∈ ∪q∈Qλ j ,st

Kλ j ,q,ext , namely there ∃q′ ∈ Qλ j,st

such that s′t ∈Kλ j ,q′,ext ⇒ s′t = (αλi,λ j)q′s2t ∈Kλ j ,q′,ext

(with s′ = (αλi,λ j )q′s2) ⇒ s2t ∈ Kλ j,q′ ⇒ s2 ∈ Kλ j,q′ .
Furthermore s1 = s2 since Pλ j(s) = Pλ j(s

′). How-
ever from condition 2 of theorem 3.1 s2σ ∈ Kλ j,q′ .
Hence (αλi,λ j )q′s2σ = s′σ ∈ (αλi,λ j)q′Kλ j ,q′ . So s′σ ∈

∪q∈Qλ j ,st
Kλ j ,q,ext . Consequently if conditions 2 and 3

of theorem 3.1 are true, then ∪q∈Qλ j ,st
Kλ j ,q,ext is ob-

servable w.r.t
(L(Gλ j ,q,ext),Pλ j ). So for DES multi-modelling ∀q ∈
Qλ j,st , only one unique supervisor Sλ j (if it exists)
controls some operating mode described by its model
Gλ j . �

4. CONCLUSION

Research described in this paper has been performed
within the context of designing and controlling a
multi-model for a Discrete Event System. When alter-
nations are required, such systems need to be tracked
from one operating mode to another. This problem
has been presented and previously solved in and it
is briefly recalled here. A major requirement was to
study conditions governing the existence of a unique
supervisory controller (if one exists) for each oper-

ating mode (irrespective of its starting state). It has
been proved that the property of controllability is a
necessary, but not a sufficient, condition. The property
of observation has been included to complement this
existence condition.
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