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Abstract: This paper provides a new and powerful tuning method of controllers
in the two-degree of freedom control scheme in the sense of that we require only
one-shot experimental data of the closed loop. The key concept of our method is to
use the fictitious reference (From this reason, we refer to our method as fictitious
reference iterative tuning (FRIT)). Moreover, by using this tuning method, we also
provide a new and powerful identification method in the sense of that we require
only one-shot closed experimental data. Finally, we give an experimental result in
order to show the validity of the proposed method in this paper. Copyright c©2005
IFAC
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1. INTRODUCTION

Recently, the control system synthesis based on
the direct use of the measured input/output data
attracts attentions with respect to practical view
points. Since the real measured input/output data
of a plant includes fruitful informations on the
dynamics of the plant more directly than mathe-
matical models obtained in system identifications,
it is to be expected that such direct approaches
provide effective controllers reflecting the dynam-
ics of a plant. In the case of that the structure
of a controller is fixed (e.g.,PID controllers), this
direct approach is regarded as the parameter tun-
ing based on the direct use of the data with-
out mathematical model of a plant. As one of
these tuning schemes, iterative feedback tuning

(which is abbreviated to IFT in the following) was
proposed by Hjalmarsson et.al(cf.(Hjalmarsson et
al., 1998), (Hjalmarsson et al., 2002), and so on)
and was studied in (Hjalmarsson et al., 2002),
(Bruyne et al., 1999), (Hamamoto et al., 2003),
(Nakamoto, 2003) and so on.

IFT is the tuning method that iteratively updates
the variable parameter of an implemented con-
troller so as to minimize a performance index,
e.g., the sum of squared error signal between the
desired reference signal and the real output, by
using the input/output data obtained in the iter-
ative closed loop experiments. This minimization
can be computed by performing non-linear op-
timization technique like Gauss-Newton method
in which Hessian and Jacobian consist of the



experimental data. This means that IFT enables
us to obtain an appropriate parameter reflecting
the plant information through the experimental
data for the sake of achieving the specification.
Thus, IFT is very effective approach in the case
of that a controller with a variable parameter has
been already implemented in the real plant with
unknown dynamics.

On the other hand, however, the fact that non-
linear optimization methods used in IFT require
the input-output data also means that many ex-
periments must be performed in order to up-
date the parameter of controllers so as to achieve
the minimization of the performance index. Thus
there may be many cases in which the use of
IFT spends considerable cost and time, which is
a crucial problem with respect to practical points
of view.

From these backgrounds, we have provided a new
method of iterative parameter tuning by using
only one-shot experiment for the sake of reducing
cost and time required for arriving at the opti-
mum parameter of the controller in the iterative
tuning in (Souma et al., 2004). As another similar
method for parameter tuning of controller based
on one-shot experimental data, Campi, Lecchini
and Savaresi have proposed and developed Virtual
Reference Feedback Tuning (VRFT) in (Campi
et al., 2002), (Campi et al., 2003), and (Lecchini
et al., 2002) by using novel concept based on
adaptive identification. Independently of VRFT,
the key concept of our approach is to use the
fictitious reference signal for the off-line tuning
of the parameter of the controller. Thus, we refer
to our new method as fictitious reference iter-
ative tuning (it is abbreviated to FRIT in the
following). The fictitious reference signal appears
in the unfalsified control which is a novel concept
proposed and developed by Safonov in (Safonov
and Tsao, 1997).

In this paper, we expand FRIT into the two-
degree of freedom control scheme. At the same
time, it is well-known that a feedforward-controller
in the two-degree of freedom control scheme is re-
garded as a filter consisting of a desired reference
model and the (quasi-) inverse model of a plant.
In the case of that the dynamics of a plant is
unknown, this means that applying our FRIT to
the feedforward controller yields the plant model
on the off-line iterative computation by using one-
shot experimental data in the case of that the
dynamics of a plant is unknown. Thus, the method
we provide in this paper is also used to develop
a new and powerful identification method in the
sense of that we require only one-shot experimen-
tal data of the closed loop system.

The contributions of this paper are the following
two points: First, as stated in the above, since

our method require only one-shot experimental
data of the closed loop system, one can dras-
tically reduce cost and time in the closed loop
identification experiment . The issue on a system
indetification in the closed loop is known as one
of the important topics in the control and sys-
tem theory (e.g.,cf.(Forssel and Ljung, 1999),(Lee,
1995),(Lee et al., 1995),(Verhaegen, 1994) etc.),
so our method can provide the contribution to
this area in the practical sense. Second, fictitious
reference signals used for the parameter tuning in
this paper is introduced in the unfalsified control
theory (cf. (Safonov and Tsao, 1997), (Safonov
and Cabral, 2001)), which is one of the nice ex-
tensions of the behavioral approach proposed by
Willems (cf. (Willems, 1991) (Willems, 1997)).
Thus, this work is also regarded as one of the
applications of the unfalsified control and shows
that the notion of the behavior is also a powerful
concept to solve the real practical problems.

[Assumptions and Notations]:

A plant in this paper is assumed to be a single-
input single-output, linear, time-invariant, finite
dimensional system. For a time series (data) w, in
order to describe the value at the time t, we use
the notation wt. Let q denote the shift operator
defined by qwt := wt+1 for a time series w. Let u
and y denote the input and output data, respec-
tively, obtained in a finite time. Let N denote the
number of the sampled data. Let R

n denote the
set of real vectors of size n. In order to describe
y at time t as the output of an operator G(q) for
the input u, one must write the convolution in
the form of yt =

∑t
k=0 gkuk−i normally, where

G(q) =
∑∞

k=0 gkq−k is the Markov parameters
description of G(q). However, we use an abbre-
viated description as yt = (G(q)u)t for the sake of
enhancing the readability. In addition, in order to
explain the basic concept of FRIT and the role in
the framework of closed loop system identification
in the two-degree of freedom control scheme, we
disregard the noise in the following explanation.

2. FRIT IN THE TWO-DEGREE FREEDOM
CONTROL SCHEME AND ITS

APPLICATION TO CLOSED LOOP SYSTEM
IDENTIFICATION

First, we give a brief review of well-known two-
degree of freedom control scheme (cf. (Desoer and
Gustafson, 1984) etc.) Consider a two-degree of
freedom control system in Fig.1.

Here, assume that they are parameterized by us-
ing ρe ∈ R

ne and ρr ∈ R
nr (where ne and nr

are the number of the parameters of the feedback
controller and the feedforward controller, respec-
tively). In the following, we often use the notation
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Fig. 1. A two-degree of freedom control system

ρ = (ρe, ρr) ∈ R
nr+ne . Moreover, for example,

ρe(k) denotes the k-th element of ρe . Let y(ρ)

and u(ρ) denote the output and the input obtained
in the closed loop with the controller parameter ρ.
And assume that we are given the desired response
model Td(q). It is preferable that the feedforward
controller is designed as

C(ρr)
r (q) = G(q)−1Td(q), (1)

if we have a nominal model G(q). By changing
tracks, we focus on this point for deriving our
closed-loop system identification method in the
case of that the dynamics of a plant is unknown.

2.1 FRIT(Fictitious Reference Iterative Tuning)
in the two-degree of freedom control scheme

As stated in the previous section, IFT method
must perform a lot of experiments for updating
the controller parameter so as to achieve the op-
timum value in the sense that the performance
index is minimized. By contrast, our FRIT re-
quires only one-shot experiment, then the off-line
Gauss-Newton method by using the fictitious ref-
erence signal yields the optimum parameter in the
fictitious space. Moreover, this optimum parame-
ter corresponds to the optimum one in the real
closed loop system. Now, we suppose that G(q)
is unknown, and our aim is to obtain G(q). For
this purpose, if we apply IFT (cf.(Hjalmarsson
et al., 1998)) or our FRIT, the feedforward con-
troller can be parameterized so as to be described
by G(q)−1Td(q) from the experimental data. More-
over, our FRIT requires only one-shot experiment
for arriving at the optimal parameter while IFT
requires many experiments for the same purpose.
Hence, our FRIT scheme for two-degree of free-
dom control systems with unknown plant enables
us to obtain the inverse model G(q)−1, which
means that the model G(q) can also be obtained,
by using only one-shot experimental data.

Suppose that the aim of the controller parameter
tuning is to find the optimum parameter ρ∗ in the
sense that

ρ∗ = argmin
ρ

N∑
t=1

‖y(ρ)
t − (Td(q)r)t‖2. (2)

Note that the achievement of the above minimiza-
tion yields the appropriate parameter of a con-
troller, which yields also G(q)−1. In the following,
we explain how off-line computation yields the
optimal parameter.

Let ρi(ρei and ρri) denote the i-th step parameter
in the following explanation. First, by using the
initial parameter ρ0 , perform the first experiment
on the closed loop system with ρ0 and obtain
the first data (u(ρ0), y(ρ0)). By using (u(ρ0), y(ρ0)),
compute the fictitious reference signal r̃(ρi) at the
i-th step as

r̃(ρi) =
u(ρ0) +C

(ρi)
e (q)y(ρ0)

C
(ρi)
r (q) + Td(q)C

(ρi)
e (q)

(3)

and compute the error written by

ẽ(ρi) := (y(ρ0) − Td(q)r̃(ρi)). (4)

Observe that r̃(ρi) is a reference signal that yields
u(ρ0) and y(ρ0). Note that ẽ(ρi) can be computed
off-line at each i−the step. Consider the following
performance index in the fictitious domain:

Jẽ(ρ) =
N∑

t=1

‖ẽ(ρ)
t ‖2. (5)

Note that Eq.(5) consists of already-known in-
formation (y(ρ0), Td(q), r̃(ρi)). For the sake of
minimization of Jẽ(ρ), that is, in order to find

ρ̃∗ = argmin
ρ

Jẽ(ρ), (6)

we perform the following Gauss-Newton algo-
rithm. Consider the gradient

∂Jẽ(ρ)
∂ρ

∣∣∣∣
ρ=ρi

=
N∑

t=1

ẽ(ρ)t

(
∂ẽ(ρ)
∂ρ

)
t

∣∣∣∣
ρ=ρi

(7)

and the following update equation

ρi+1 = ρi − γR−1
i

∂Jẽ(ρ)
∂ρ

∣∣∣∣
ρ=ρi

, (8)

where Ri is a Hessian approximated by

Ri =

(
∂Jẽ(ρ)

∂ρ

∣∣∣∣
ρ=ρi

)T (
∂Jẽ(ρ)

∂ρ

∣∣∣∣
ρ=ρi

)
(9)

and γ is a parameter that tunes the speed of the
convergence. In Eq.(8) and Eq.(7), ∂ẽ(ρ)

∂ρ

∣∣∣
ρ=ρi

can

be computed as



∂ẽ(ρ)

∂ρ
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ρ=ρi

=
Td(q)

Td(q)C
(ρe)
e (q) + C

(ρr)
r (q)

×


(
Td(q)

∂C(ρe)
e (q)
∂ρ + ∂C(ρr)

r (q)
∂ρ

)
Td(q)C

(ρe)
e (q) +C

(ρr)
r (q)

×(C(ρe)
e (q)y(ρ0) + u(ρ0))−

(
∂C

(ρe)
e (q)
∂ρ

y(ρ0)

)}∣∣∣∣∣
ρ=ρi

(10)

In this point, it should be noted that the off-line
computation can yield ẽ(ρi) and ∂ẽ(ρi)

∂ρ , so we do
not have to perform an experiment at each step in
the Gauss-Newton method, differently from IFT.

The remained problem is to see whether Eq.(5)
is equivalent to that of Eq.(2). The following
theorem gives a solution to this problem.

Theorem 2.1. Let (u(ρ0), y(ρ0)) denote the in-
put/output data in the feedback system described
in Figure 1 by using the initial parameter ρ0. As-
sume that (u(ρ0), y(ρ0)) are not trivial zero data.
Then limρi→ρ′

∑N
t=1 ‖(y(ρi)t − (Td(q)r)t‖2 = 0 if

and only if limρi→ρ′
∑N

t=1 ‖ẽ(ρi)t‖2 = 0. ✷

Proof: We omit the proof here. The detailed proof
will be shown in our forthcoming paper (Kaneko
et al., 2004).

The above theorem guarantees that the minimiza-
tion of Jẽ(ρi) by using fictitious reference in the
off-line computation yields the optimum parame-
ter ρ∗ in the real closed loop.

From the practical points of view, if one can
find the optimum parameter, then there are many
cases in which it is possible to achieve the sum of
the squared error is almost equal to zero. Thus,
the above theorem gives the practical solution for
the question on whether the minimizations of the
fictitious cost and that of the real cost are almost
equivalent. Of course, it is preferable to guerantee
that then minimization of the real cost function
is equivalent to that of the fictiotious one. This
point is one of our future studies.

Remark 2.1. At first glance, our proposed method
“FRIT” seems to be similar to “VRFT” proposed
by Campi in (Campi et al., 2002) and (Campi et
al., 2003) the sense that we require only one-shot
experimental data and the fictitious or virtual sig-
nals are used for the parameter tuning in the off-
line. However, in VRFT, the virtual signal is com-
puted with respect to the input while our fictitious
signal is computed with respect to the output.
This is somewhat indirect in the sense that the
aim of the controller is to let the output follow
the desired output. Moreover, VRFT requires the
power density spectrum of the input from the first
experiment in order to design “shaping filter ”(see
also (Campi et al., 2002)) used for the iterative

tuning. This means that the first experiment in
VRFT must be open-loop experiment. The rea-
son for this is that it is very difficult to obtain
the power density spectrum of the input in the
closed loop data because of the existence of the
correlation between the input and the output in
the feedback system. Particularly, this also means
that VRFT can not be applied to an unstable sys-
tem and an already-operated closed loop systems
in the real industries. On the contrary to VRFT,
our method FRIT can be applied to the case in
which the first experimental data is obtained in
the closed loop system. Hence, our method FRIT
has advantages in these senses. ✷

2.2 Closed loop identification using FRIT

Combining the role of the feedforward controller
in the two-degree of freedom control scheme and
the concept of FRIT for two-degree of freedom
control structure, we can obtain one of the system
identification methods of a system embeded in the
closed loop so as to enable us to save a lot of costs
for the idetification. The algorithm of closed loop
system idetification with FRIT in Fig.1 can be
summarized as follows:

(a). Initial setting: Give a desired transfer func-
tion Td(q) from r to y and the initial con-
trollers C

(ρe0)
e (q) and C

(ρr0)
r (q) (the relative

degree is zero) with the initial parameter
ρ0 = (ρe0, ρr0).

(b). The first experiment: Perform one-shot ex-
periment and obtain the finite input/output
data u(ρ0) and y(ρ0).

(c). The off-line tuning: Compute the following
Gauss-Newton method.
(1). Set i = 0.
(2). Compute the fictitious reference signal

r̃(ρi) in Eq.(3).
(3). Compute the update equation Eq.(8) by

using Eq.(7) and Eq.(10).
(4). Check ‖ρi+1 − ρi‖2 < ε (where ε is a

sufficiently small positive real number).
* No: i = i+ 1 and go back to (2).
* Yes: ρ̃∗ := ρi and go to (d).

(d). Calculate the plant model by using

G(q) = Td(q)C(ρ̃∗)
r (q)−1 (11)

with obtained the optimal parameter ρ̃∗.

Remark 2.2. The obtained model depends on
Td(q), because it determines the frequency band
in which we can obtain the accurate mathematical
model. Moreover, since the initial experimental
data reflects on not only the plant dynamics but
also the feedback loop property, the initial feed-
back controller also plays a crucial role in this
algorithm. They are our further studies. ✷



3. EXPERIMENTAL RESULT

In this section, we give an experimental result for
showing the validity of our approach. The system
we address here is described by Figure 2. The cart

PC

The cart

The pulley

u

The servo motor

y

The belt
Fig. 2. The cart system

is attached to the belt and the belt is moving
by the rolling of the servo motor. The location
y (output) from the initial position of the cart is
measured by the potentiometer and send to the
personal computer (PC). And the servo motor is
driven by the voltage u (input) from PC. The
controllers are

C(ρi)
e (q) = ρei(1) + ρei(2)

q

q − 1

and

C(ρi)
r (q) =

ρri(5)q2 + ρri(4)q + ρri(3)
q2 + ρri(2)q + ρri(1)

(The closed loop controller is a well known P.I,
Controller). We have no information on the dy-
namics of this system a priori except the relative
degree of the plant The desired response model is
to

Td(q) =
(

1
1− q−1e−0.1∆

)2

which corresponds to
(

1
0.1s+1

)2

in continuous
time. We use the reference signal as the sum
of some sinusoidal waves described by r =∑3

i=1 sin(10i−1t). Moreover, ∆ is the sampling
time 0.01[sec], the experimental time is 10[sec]
(i.e., N = 1000), and γ = 1.0 × 10−6. Firstly, we
obtained the initial experimental data y(ρ0) and
u(ρ0) described by Fig.3 and Fig.4, respectively.
Next, we perform our FRIT algorithm described
by the previous section. As the optimal controller,
we obtain

C(ρ̃∗)
r (q) =

q2 − 1.299q + 0.302
36.7q2 − 73.22q + 36.52

and

C(ρ̃∗)
e (q) = 2.5573 + 2.0347

q

q − 1
.

As a result, we obtain a model of the plant
described by

0 1 2 3 4 5 6 7 8 9 10
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Time[sec]

P
os
iti
on
 [m
]

Fig. 3. The intial output data
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Fig. 4. The intial input data

G(q) =
(

1
1− q−1e−0.1∆

)2

×36.7q
2 − 73.22q + 36.52

q2 − 1.299q + 0.302
.(12)

We perform the validation test by using the step
response (see Fig.5) and the response for the sum
of some sinusoidal waves (see Fig.6). From Fig.5
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Fig. 5. The validation using the step signal (The
real line:The obtained model, The dotted
line: experimental data)
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Fig. 6. The validation using the sum of sinusoidal
waves (The real line:The obtained model,
The dotted line: experimental data)

and Fig.6, we can observe that the obtained model
describe the dynamics (particularly, in the low-
frequency).

4. CONCLUSIONS

In this paper, we have provided a new and pow-
erful method of closed loop system identification
from the practical points of view. The key concept
is fictitious reference iterative tuning in the two-
degree of freedom control scheme. The detailed
discussions, proofs and remarks will be shown in
our forthcoming paper (Kaneko et al., 2004).

Of course, the study in this paper is the first
step of the research topic on fictitious reference
itertive tuning and its applications. The difference
between FRIT and VRFT by Campi et.al. need
to be clarified. Moreover, the effectiveness of the
noise we neglet in this paper is also considered
in order to develop our method as one of the
practical tools for system identification.
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