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Abstract: Coughing is one of the most frequent presenting symptoms of many diseases affecting the airways and 
the lungs of both humans and animals. In piggeries, the continuous on-line monitoring of cough sound can be 
used to build an intelligent alarm system for the early detection of diseases. In a first study, with experiments 
under laboratory conditions, algorithms have been developed to detect cough sounds and to classify the animals 
whether they were ill or not. In this study, the algorithm was tested in field conditions. Pig cough sounds were 
registered on 44, 150 days old, 60 kg heavy Landrace x Large White x Duroc crosses, by an operator holding a 
microphone at about 20 to 50 cm from the pigs head. From these sound files, feature vectors were extracted, 
containing information on the sound energy, spectral properties and time derivates. These feature vectors were 
compared to a reference set by means of a dynamic time warping algorithm. This leads to a two class 
classification: ill, no ill. The classification was checked by a veterinarian and found to be correct in 86 % of the 
cases. Copyright 2005 IFAC 
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1. INTRODUCTION 
 
Health care management is a critical and demanding 
issue in current livestock production. Discarding the 
economic cost related to large scale diseases, early 
detection of diseases is important considering public 
health care issues like reducing antibiotics residuals. 
Also for reasons of animal welfare and monitoring 
and tracing of the food production chain, online 
disease monitoring is important. Therefore currently 
great effort is spent to the development and 
application of sensors and sensing techniques for 
diagnosis in the agricultural sector (Tothill, 2001).  
With respect to objective and automated detection of 
respiratory diseases in livestock, it has been shown 
that artificial intelligence is successfully applicable 
to obtain automated cough recognition from free 
field cough recognition.  
 
In the work of Moshou et al. (2001) and Van Hirtum 
and Berckmans (2003a, 2004) an accurate algorithm 
is presented to detect citric acid induced coughing 
originating from healthy individual piglets under 
laboratory test conditions. In their work an intelligent 
free field recognizer is proposed to distinguish 

between coughing evoked in absence or presence of a 
respiratory infection. A drawback of the developed 
algorithm is that it is time consuming to run, what 
can cause problems when applying it in practice. 
Furthermore, the results are obtained on a database 
which is registered on individual subjects housed in a 
laboratory test-installation consisting of a laboratory 
inhalation-chamber. The test-installation, described 
by Urbain et al. (1996) and Van Hirtum and 
Berckmans (2003a), allows to control environmental 
housing conditions, medical follow-up and to reduce 
environmental noises. So cough sounds are registered 
in optimal environmental sound conditions. 
Therefore the performance of the developed 
algorithms to recognize cough in field conditions 
needs to be assessed in order to validate the usage of 
sound analysis in livestock health management.  
 
The objective of this study was to develop and test a 
cough recognition algorithm that can be used in pig 
houses under field conditions. 
 

 



 

 
2. MATERIALS AND METHODS 

 
2.1. Animals and housing 
 
Experimental data were obtained from swine houses 
for finishing pigs assigned to the Parma ham 
production in Northern Italy. The pigs (Landrace x 
Large White x Duroc crosses for Parma ham 
production) were in the first period of the finishing 
phase. Their mean weight was around 60 kg and 
their mean age was 150 days. The farm was 
composed of three barns for piglets, sows, and 
finishing pigs. The barn for finishing pigs was an 
open-space of 8.3 m x 83 m. It was subdivided in 16 
boxes of 6 x 5 m wide, containing 50 pigs each. Each 
boxes had a dunging area of 1.3 m x 5 m. The boxes 
were delimited by a little wall in concrete, 1.0 m 
high and 0.2 m thick. 
 
Sick pigs affected by cough, were confined in the six 
final boxes, in order to separate them from the 
healthy ones. A serological assay of blood samples to 
verify the presence of Pleuropneumonitis antibodies 
was conducted on sick pigs to verify the source of 
coughing. After the slaughtering, Pleuropneumonitis 
was confirmed by the autopsy examine performed by 
the farm veterinarian. The average daily gain (ADG) 
in healthy pigs was 653 g/day, while the sick pigs 
showed a lower ADG calculated in 437 g/day. 
 
2.2. Measurements 
 
Pig’s cough was recorded using a microphone linked 
to the sound card of a portable computer. The 
operator, standing in the box among the pigs, 
recorded the coughs putting the microphone at 20-50 
cm from the animal. This was done to record the 
cough sound in practical field conditions, without 
taking the acoustical characteristics of the stable into 
account. The recordings were made at a sample rate 
of 22050 Hz, with a resolution of 8 bits. In total, 44 
cough attacks, all observed in different files, have 
been recorded from 44 different animals, resulting in 
almost 4 hours of data. The details of the recordings 
are shown in table 1. 
 

Table 1. Overview of the continuous registered 
sounds. 

 

Number of on-line 
registered sound files 

44 files 

Duration Min: 3.2 s  

Max: 23.2 s  

Average: 9.7 s 

Number of individual 
sounds 

592 sounds 

Number of coughs 159 sounds (27 %) 

Number of other 
sounds 

433 sounds (73 %) 

 
2.3. Sound signal analysis 

The signal analysis was done in four steps. In these 
four steps a feature vector was created, that was used 
to classify the sound signal. The four signal analysis 
steps are schematically illustrated in figure 1. 

Step 1: Band pass filter. In the work of Tothill 
(2001), Moshou et al. (2001), and Van Hirtum and 
Berckmans (2003a, 2004), the relevance of the 
spectral content towards the automated cough 
identification is shown. To calculate this spectral 
content of the rough sound signal s(n), a number of 
band pass filter blocks were applied. Each filter block 
covers a part of the total spectrum of the signal. In 
this case third order Butterworth filters were used to 
implement a total of 22 filter blocks. The filter bank 
approach in this research is less calculation power 
consuming than the application of the more standard 
Fourier transform that was used by Van Hirtum and 
Berckmans (2002, 2003a, 2004). Another advantage 
of this approach is that one only needs to evaluate the 
filters that are necessary to discriminate the desired 
sounds (cough sounds in this case) from the others. 
Psychophysical studies have shown that the human 
perception of the frequency content of sounds does 
not follow a linear scale. To meet this non linear 
subjective sound perception, the lower frequencies 
were divided into smaller pieces (22 smaller 
bandwidths). The highest upper cut-off frequency 
was 9500 Hz, because the sampling rate of the 
recording was 22050 Hz.   

 
 

 
 
Fig. 1. The 4 signal analysis steps: from rough sound 

samples s(n) to the feature vector: [X1(m) X2(m) 
… X22(m)]T 

 
Step 2: AM demodulator. The starting point of AM-
FM demodulation is that any sound can be modelled 
with an Amplitude Modulation – Frequency 
Modulation (AM-FM) model. By band pass filtering, 
a small bandwidth can be isolated and modelled by 
an exponentially damped AM-FM signal. In this 
work, only the AM component was further used to 
make the discrimination between different sounds. 
The AM-FM model for the signal coming from the 
first band pass filter block s1(n) can be written as: 

( ) ( ) ( )1
0

cos
n

c ms n a n n q m dm θ
 

= Ω +Ω + 
 

∫  (1) 

Bandpass 
Filter 1

AM 
demodulator

Lowpass 
Filter 

Sampling rate 
reduction

( )1X m

Bandpass 
Filter 2

AM 
demodulator

Lowpass 
Filter 

Sampling rate 
reduction

( )2X m

Bandpass 
Filter 22

AM 
demodulator

Lowpass 
Filter 

Sampling rate 
reduction

( )22X m

( )s n



 

Where Ωc is the carrier frequency, |q(n)|≤1 is the 
frequency information signal, Ωm is the maximum 
frequency deviation from Ωc (0<Ωm<Ωc) and θ = 
φ(0) is an arbitrary phase offset. Obviously, this 
model was applied to all the 22 band pass filter 
blocks. 
 

The above model can be efficiently worked out by 
means of the Teager energy operator (TEO). The 
discrete time Teager energy operator (TEO) is 
defined as follows (Cairns et al., 1996): 
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Where T is the sampling period. From this the AM 
component, |a(n)|, is calculated as: 
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where t(n) =  s(n)-s(n-1). 
 
The effect of the AM demodulation is illustrated on a 
signal coming from filter bank number 19, shown in 
Figure 2. It is clear that the AM demodulated signal 
follows the instantaneous amplitude of the band pass 
filtered signal. Applying this AM demodulation to 
the total set of 22 band pass filters gives a vector 
with a dimension of 1 x 22, [X1(m) X2(m) … 
X22(m)]T. Further, this vector will be called the 
feature vector. The AM demodulated signal was 
calculated at the same sampling rate as the original 
signal (22050 Hz) and as a result a feature vector 
could be put together every 1/22050=45.3µs. As this 
is too much information for the classification 
algorithm to master, a reduction of the sample rate 
was inevitable.  

 
Fig. 2. AM demodulation of a sound fragment 

coming from band pass filter number 19. 
 
Steps 3 and 4: Low pass filtering and sample rate 
reduction. To reduce the huge information rate (22 
values in the feature vector, every 45.3 µs), feature 

vectors were left out. In this case, for every block of 
220 feature vectors, the first feature vector was kept 
and the other 219 vectors were omitted (Step 4). To 
execute this sub sampling step in conformance with 
the Nyquist theorem, some low pass filtering was 
done. Here, a third order low pass Butterworth filter 
was applied, with a cut-off frequency set to 100 Hz 
(Step 3). The result of the applied scheme as shown 
in figure 1, is a feature vector with 22 values, at a 
sample rate of 22050/220 ≈ 100Hz. This gives one 
feature vector, every 10 ms. 
 
2.4. Classification  
 
Cough sound recognition was assessed with dynamic 
programming i.e. dynamic time warping (DTW) 
(Deller et al., 1993; Rabiner and Juang, 1993). As 
indicated higher, each sound was divided into frames 
of equal length and the features of each frame were 
stored in a feature vector. Thus, each sound was 
represented by a sequence of data feature vectors that 
form a sound template. During the recognition phase 
the template of the test sound is compared to each 
template in the set of training templates using the 
DTW algorithm. The training template producing the 
minimum distortion determines the classification 
output. For more detailed information the reader is 
referred to Van Hirtum and Berckmans (2002). 

 
3. RESULTS AND DISCUSSION 

 
In Figure 3, an example is shown of an original 
sound recording for a continuous sound registration 
of 19.2 s. In this example file, a total of 19 cough 
sounds was automatically detected. This number 
coincides with the manual, auditory detected number 
of coughs. 

 
Fig. 3. The original 19.2 s continuous sound 

registration. In this registration 19 cough sounds 
were identified. 

 
Since the number of online registered sound files is 
limited (44), as shown in table 1, all sound files were 
manually listened and visually inspected to validate 
the sound classification algorithm. This manual 
listening resulted in a labelled database for all the 
592 sounds, tagging the individual sound with either 
the label ‘cough’ (159 sounds or 27 %) or the label 
‘other’ (433 sounds or 73 %).  



 

Recognition performance was assessed applying the 
well known ‘leave 10 out’ method. The classifier 
was trained, using all the individual cough events, 
except 10 %. The remaining 10 % was used for 
testing. With this 10 % of the cough sounds, 10 % of 
the ‘other’ sounds were mixed, to have a 
representative snap check. A permutation was 
applied 10 times, until all cough sound had been in 
the test class. This method is known to provide a 
good estimation of the error in case of small 
databases. The recognition performance of the newly 
developed algorithm applied on the 44 sound files is 
summarized in Table 2. 
 

Table 2. The recognition performance of the cough 
detection algorithm on field data. 

 

Set Cough sounds 
correctly 

classified (%) 

Other sounds 
correctly 

classified (%) 

1 93.7 95.3 

2 81.2 81.4 

3 87.5 88.6 

4 87.5 83.7 

5 93.7 93.0 

6 75.0 93.2 

7 93.7 67.8 

8 87.5 81.3 

9 81.2 90.9 

10 73.3 88.3 

Average 85.5 86.6 
 

The accuracy of the cough recognition with the 
features and classification approach described higher 
yielded on average 86%. Depending on the test set, 
the recognition performance reached values between 
73% and 94%. This is on average 8% lower than the 
recognition rate obtained in case of citric acid 
induced coughing (Moshou et al., 2001; Van Hirtum 
and Berckmans, 2003a; 2004). Several factors 
contributed to the lower recognition rate. Firstly the 
data were registered in field conditions and not in a 
laboratory set-up as was the case in previous work. 
Secondly, in contrast to the results presented in 
previous work, individual sounds were objectively 
and automated detected from the continuous and on-
line sound registrations. For application in the field, 
the average success rate of 86% for detection of 
individual coughs seems acceptable because it can be 
expected that ill animals will cough several times 
and the chance that they will be detected is (much) 
higher than 86%.   
 

4. CONCLUSIONS 
 
In this research, it was demonstrated that the 
combination of on-line measured sound information 
by means of a cheap microphone with a cough sound 

recognition algorithm, can be used to monitor the 
health status of pigs in field conditions. The cough 
recognition algorithm was tested on 44 sound files 
recorded in field conditions. Cough could be 
classified successfully with an accuracy of 86%. 
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