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Abstract: The paper presents two applications of the novel, artificial neural network 
(ANN) and feature selection based combined, dynamic technique to automatically 
dissolve a large, complex system into a net of connected submodels. The first application 
is a solution for the lower level of customised mass-production systems, for increasing 
their productivity. The second one is a concept for the identification and reorganisation of 
manufacturing agents, based on simulation experience. The main idea behind, is to give 
the learning capability to agents already at their definition phase, and to maximise their 
foresight power.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The paper presents two applications of the novel, 
artificial neural network (ANN) and feature selection 
based combined, dynamic technique to automatically 
dissolve a large, complex system into a net of 
connected submodels.  
 
The introduced submodel detection technique 
assumes that a relative comprehensive database 
about the analysed system is given serving as the 
basis of analysis. Different methods provide this 
condition in the two application areas considered. 
Large databases collected by process monitoring 
systems connected to manufacturing systems and 
production lines are available in the assignment 
related to control of low-level manufacturing 
processes (Viharos, et al., 2003a). The saved values 
of the state and communication variables of the 
simulation model of the analysed production system 
serve with the database at the high-level of 
production control.  
 
The algorithm resulting in a net of submodels 
explores the dependencies inside a given database, as 
typical in data-mining assignments. The concrete 
algorithm processes a large database table, having 
high number of columns and average number of 
rows. This can be a common table inside the 
database, but typically inherits from various basic 
tables through various database preparation steps, 

typically through a number of table joins. The 
solution builds up small submodels, so the meaning 
of the database attributes and the incorporated 
information content determine the explored structure 
and the possible way of its industrial applications.  
 
Also the applications of the results are different on 
the two manufacturing control levels. The 
identification and definition of production agents are 
the main targets at the higher level, in order to 
directly receive a control system with learning 
capabilities. Dependency exploration and 
technological improvements are the goals of the 
application at the lower level.  
 
The rest of introduction deals with various 
consideration aspects according to the introduced 
algorithm and with approaches for ANN-based 
decision support structures. The second part details 
the applied submodel finding method followed by the 
description of its applications for high and low levels 
of production control. Conclusions and references 
close the paper. 
 
1.1 Various consideration aspects related to the 

introduced algorithm 
 
This paragraph aims at positioning the introduced 
submodel finding algorithm. Various aspects can be 
enumerated when specifying the place of a modelling 



     

and model building technique, only a part, 
considered important, is mentioned.   
 
According to the core modelling technique, the 
solution is mainly based on neural networks. 
MultiLayer Perceptron (MLP) ANN models are used 
exclusively, mirroring the position of the technique 
among the wide range of neural network types. The 
training algorithm is based on an accelerated back-
propagation called SuperSab (Tollenare, 1990) but it 
was modified several times.  
 
According to the last remark in the previous section, 
the model building method can be considered as a 
special learning algorithm, too. It does not require 
predetermining whether a parameter is on the input 
or output side of the model for building up, 
consequently, it can be ordered also into the class of 
unsupervised learning algorithms. 
 
Modelling of many-valued mapping is solved by the 
introduced algorithm, too. A similar problem is 
identified and solved excellently by a totally 
different approach of Brouwer and Pedrycz (2003). 
By coincidence, in the next step their research turned 
into the field of handling incomplete data as this was 
the case with the presented algorithm and authors, 
too (Viharos, et al., 2002). 
 
Various approaches can be found in the literature for 
improving the structure of ANN models also in the 
case of MLPs, adding and deleting neurons and links 
are typical steps of this approach. The resulted net of 
connected neural sub-networks can be considered 
also as a special solution of a structure 
determination process of ANNs. The proposed 
algorithm can result similar outcome than a pruning-
learning process combination, so it can be 
considered as a very special form of pruning 
solution. 
 
The applications of ANNs are typically preceded by 
a feature selection algorithm, especially in the field 
of manufacturing (Monostori, et al., 2000) to 
surmount their capability restrictions, with respect to 
the number of parameters and thus, model sizes. It 
can be found that feature selection and training 
processes are typically separated (Viharos, et al., 
2003a). The new, introduced algorithm brakes with 
this practice; it is a dynamic, integrated combination 
of these steps. In this aspect, it can be considered as a 
special feature selection algorithm, or also as a 
hybrid combination of feature selection and learning 
based model building, too.  
 
1.2 Approaches for ANN based decision support 

structures 
 
This paragraph makes an overview of various 
solutions to prepare ANN structures containing 
several, individual and connected submodels. This 
part is intended to inspire that usually the structure 
and connections of the applied modes are more 
predetermined based on different functional 
approaches than self-structuring.  

 
The first group of these algorithms relates to 
techniques where the structures of the connected 
submodels are predetermined before learning (Caelli 
et al., 1999). The paper highlights that the biological 
neural networks are relatively rare connected 
inspiring the necessity of distributed modelling 
solutions and that the assignment solutions of various 
applications can be quicker having a computer model 
consisting of net of submodels structure built up 
usually on the base of field specific know-how. 
Image recognition is this field in Lu and Szeto, 
(1993) with different ANNs for contour detection, 
gradient adjustment and orientation adjustment. The 
structure and connections among these submodels are 
predetermined according to the image evaluation 
process steps. Different applications such as texture 
classification, face and currency recognition are 
solved through the same model structure, combining 
fuzzy and neural techniques showing the possibility 
of having a common, hierarchical decision support 
structure for various assignments built up on the base 
of decision making components (Kung, et al., 1999). 
A two-layered fix structure is presented in the paper 
of Hu, et al., (2004) about learning the motion 
trajectories where the ANN structure is 
predetermined by its working behaviour. One of the 
most elegant and promising approaches is the 
hierarchical mixture of experts (Jordan and Jacobs, 
1994) which consist of decision making components, 
too. 
 
The second group of the modelling algorithms in this 
aspect relates to relatively rare appearing techniques, 
where the structures of the connected submodels are 
dynamically determined during the learning. 
Dynamics is represented in Guan, et al., (1997) 
through the automatic clustering of the ANNs in the 
introduced network-of-networks (NoN) model 
applied in the field of image regularization. A simple 
restructuring algorithm is presented in Mason and 
Robertson, (1995) to make the hardware realization 
of ANNs through the modification of their given 
hierarchy. High-level dynamics is presented in 
Basak, (2004) during building up online adaptive 
decision trees where ANN models are applied in the 
branch points. All ANNs at all of the decision points 
receive the whole input data set as inputs resulting in 
a very promising and adaptive approach.  
 
2. DESCRIPTION OF THE APPLIED SUBMODEL 

FINDING METHOD 
 
Because of the great variety of manufacturing 
description parameters, it is very difficult to build up 
a comprehensive model, e.g. for a production process 
even if a part of the whole system is modelled. 
Identifying parts which can be modelled 
independently is one of the main issues of modelling. 
A very important goal of research is to automatically 
determine individual parts like this based on the 
given parameters and artificial neural network 
models. The following paragraph describes the 
algorithm from the user’s point of view. 
 



     

The application of the algorithm has two main 
prerequisites:  
• The user has to serve with a set of data 

describing the analysed system. This can be 
satisfied typically with a database table where 
columns are the description variables and the 
rows contain their values belonging together. 
Various settings of these features allow different 
analysis of the same system. 

• A further prerequisite of the application is the 
setting of allowed, excepted errors or required 
estimation accuracy for all of the system 
variables. This requirement is inherited from the 
ANN based learning technique, it has to be 
defined when to stop a learning process. 
Implicitly, the user defines by what level of 
estimation accuracy, or allowed error can be 
stated, that a parameter can be estimated based 
on other ones. This setting can be different for 
the individual system parameters but it has to be 
determined before the algorithmic run, 
consequently, in some respect it is an advantage, 
but in other respect it is a disadvantage of the 
solution. Repeated run with various accuracy 
requirements can mirror the variety of solutions 
in respect to this prerequisite. It is worth 
mentioning also that based on some ideas, of the 
authors this is one of the main domains for 
further improvement of the method. 

 
Satisfying the above requirement allows to run the 
developed algorithm. Its result can be grouped into 
three main parts: 
• Net of accepted submodels. They can perform 

the estimation of their output parameters with 
the prescribed, individual accuracy. They can 
have common parameters, so the result is a net 
of neural networks (similar to NoN, above). 

• List of rejected submodels (Not highlighted in 
Figure 1.). These models were analysed during 
the search but they were rejected. The basics of 
this evaluation method is described in 
(Monostori, et al., 2000) with the extension that 
a model is accepted if at least one of their 
parameters can be estimated with the prescribed 
accuracy, based on the remaining ones. 

• Because models are identified through their 
building up process, the algorithm results also in 
the concrete neural network models for each of 
the accepted submodels. This allows the prompt 
application of the whole, or a part of the net of 
submodels for solving various assignments. A 
sample technique of this solution is detailed in 
(Monostori, et al., 2000). 

The algorithm can be applied also when the data set 
incorporates also incomplete information (Viharos, et 
al., 2002).  
 
Figure 1. shows an example of a resulted net of 
accepted submodels having five main parts (in 
brackets), dividing a system containing eleven 
(indexed from zero to ten) description parameters. 
The fourth row of the demonstrated software window 
shows that the algorithm identified a submodel 
where parameters no. 2, 3 and 6 as model inputs are 

able to estimate the variable no. 5. The four 
identified submodels have common parameters, e.g. 
parameter no. 6 is estimated by the submodel showed 
in the second row, but it is to be found among the 
input variables of the next two submodels, too, 
showing that this technique recognises a structure of 
connected submodels, over the identification of its 
individual parts. 
 

 
Fig.1.The resulted submodel structure of a complex 

system  
 

3. APPLICATIONS OF THE ALGORITHM FOR 
HIGH AND LOW LEVELS OF PRODUCTION 

CONTROL 
 
3.1 Application of the method for low level of 

production control 
 
Manufacturing systems in our epoch work in a fast 
changing environment full of uncertainties. 
Increasing complexity is another characteristic which 
shows up in production processes and systems and in 
enterprise structures as well (Merchant, 1998). 
 
A Hungarian R&D project, called Digital Factory 
was started to make all the important, production-
related information available and manageable in a 
controlled, user-dependent way by the efficient 
application of information and communication 
technologies (Monostori, et al., 2002). 
 
The project covers the following - partly overlapping 
- main directions to be treated in a comprehensive 
way: 
• Management and scheduling of large-scale 

projects (Kovács, et al., 2003). 
• Tele-presence and interactive multimedia 

(Haidegger and Popa, 2002). 
• Monitoring of complex production structures 

(Viharos, et al., 2003b) 
 
The paper considers a small part of aspects, steps and 
results of the third cluster, called “Monitoring of 
complex production systems” of the above 
introduced project. All of the clusters incorporate 
three main work areas representing the continuous 
development starting with basic and applied research, 
followed by research and development (R&D) 
assignments, and ending in the market-oriented 
demonstrations of the cluster results.  
 



     

A part of the R&D work tried to build up production 
models where dependencies among parameters are 
unknown. The modelling was based on learning form 
collected manufacturing data sets. No measurements 
were needed in this case, because there was a huge 
number of related monitoring parameter. These data 
are stored in big databases incorporating the high 
value of information on the experience through 
production supervision collected in course of several 
years. Engineers’ opinion was quite interesting at the 
beginning: “there should be some connections among 
these parameters”.  
 
The new submodel finding technique, illustrated 
earlier, was applied beyond the ANN-based model 
building with predetermined input-output 
parameters, for analyzing the dependencies among 
data, driven by some not satisfactory analysis.  
 

 
Fig. 2. The explored complexity of dependencies 

among different parameters (represented as 
numbers) of machines inside a production line 
with 8.8% of expected estimation accuracy.  

 
Figure 2. and 3. show an interesting result 
representing the complexity of dependencies in our 
production equipment. Sixty-five parameters 
(represented as numbers) were used for the 
description of some machines and processes, 
consequently, only a part of the whole production 
line was taken into account, and also only a special 
production aspect was studied, indicating that a 
comprehensive analysis is an enormously complex 
and difficult task in the production line level. The 
expected level of accuracy is different concerning the 
Figure 2. and 3., it is +/- 8.8% at the first and +/- 
5.6% at the later one, higher level of accepted errors 
allows more and also smaller submodels as 

represented in the pictures. It has to be mentioned 
that only a short examples of the rejected submodels 
is highlighted in the pictures. The ratio in the number 
of accepted and rejected submodels is approximately 
1:7 in both of the cases. 
 

 
Fig. 3. The explored complexity of dependencies 

among different parameters (represented as 
numbers) of machines inside a production line 
with 5.6% of expected estimation accuracy. 

 
In spite of this difficulty, one of the main future 
targets of the research and development activities is 
to extend these modelling and dependency 
exploration techniques into the comprehensive 
production line level.  
 
The explored dependencies among manufacturing 
data can be considered as an important improvement 
in the data analysis process after two, unsuccessful 
examinations of the given production steps but with 
predetermined input-output parameters. The 
highlighted connections can directly serve as the 
model basis of this low-level manufacturing 
assignment and may indicate new ideas for technical 
improvements. The determination of appropriate 
expected accuracy levels based on the collected 
statistical process control (SPC) data is one of the 
main directions for further developments in 
application. 
 
3.2 Application of the method for high-level of 

production control – main motivation  
 
This paragraph details the concept how to apply the 
above introduced algorithm for high-level of 
manufacturing control. An agent-based control 
technique is addressed and agent identification is the 
target of the solution with a special aspect to directly 
receive learning agents. It can be seen that agent 
identification for control production systems is 



     

typically solved through field-specific approaches. A 
well-known example and an excellent solution is the 
PROSA architecture (Valkenaers, et al., 2001) where 
the identified agents are typical components of 
manufacturing systems, like product, resource, order 
and staff. Neither to overemphasise the self-
determination of main entities nor to downgrade the 
otherwise very important professional know-how 
incorporated in the predetermined structure but the 
current approach breaks with the field-specific 
solution it tries to identify agents automatically.  
 
The application of the method for the high-level 
production control: highlighting analogues between 
learning agent identification and submodel 
exploration assignments. The following paragraph 
highlights the analogues between the submodel and 
agent identification, as main basis of the concept. 
 
The exploration of separate, small submodels is quite 
similar to the agent definition tasks, because an agent 
can be considered as a small part of a larger system.  
More obvious is the analogue from the system 
parameters point of view, used to model it. Opposite 
to the typical great number of them, an agent is used 
to incorporate local information; consequently, it 
considers only a part of this parameter set. 
 
Decision making and reasoning are other important 
aspects of the analogue. Based on the definition of 
the agent itself, it makes decisions, usually, to attain 
their own goals. Typically, time is needed to achieve 
or to come nearer to their targets; consequently, it is 
especially important to have internal foresight 
capability. It needs models in its own knowledge 
representation which allow inferences for time 
ahead. The local information can be in accordance 
with the parameters of one or more submodels 
explored with the introduced algorithm that is only a 
part of the whole parameter set. The analogue of 
foresight capability can be satisfied through the 
application of the method on a database having 
parameters concerning the description of the time 
relevant behaviour of the analysed system. 
Especially important is the main basis of the 
analogue, namely, this can be ensured, because the 
basic target of the agent is to reach the highest level 
of foresight capability in the presented approach.  
 
A basic feature of artificial neural networks is their 
learning ability which is also one of the most 
required properties of agents. As explained above, a 
set of ANNs is one of the main results of the 
solution, consequently, the analogue can be detected 
when these submodels with learning ability are 
internal parts of the agent knowledge base.  
 
Finally, the analogue inherited from the network 
nature should be emphasised. If the submodels or 
submodel groups are ordered to individual agents the 
received net of submodels can be corresponded to 
agents communicating with each other through 
sharing values of common system parameters. 
 

The application of the method for high-level of 
production control: realizing learning agent 
identification with combined simulation and 
submodel identification techniques. Analogues 
detailed in the previous paragraph serve as basis for 
the identification of agents in production systems. As 
explained before, one of the prerequisites of the 
submodel exploration technique required also for 
agent identification is a table containing data vectors 
describing the behaviour of the system concerned. 
This data set can be collected by production control 
systems connected to manufacturing equipment or 
can be typically generated by a simulation model 
(Gerdes, et al., 2005).  
 
Decision points incorporated in production systems 
are analysed at first. To make it simple, let us assume 
that there exists an agent structure describing the 
given system (e.g. its restructuring is the main 
assignment) and also a simulation model have been 
built up. Other cases can be treated similarly to this 
one. The next part defines the contents of the date 
vectors as a coding of system states.  
 
Agents make decisions, consequently, a part of the 
date vector parameters consist of their variables. 
Another part of these vectors is formed by the 
internal measures of the agent, while a further part 
consists of parameters from the observation of its 
environment. Examples for the first part are, e.g. 
capacity utilisation from the past and from the future, 
level of present, bidded, scheduled occupation, 
values of own target function, foreseen order types. 
The later one can be formed by external environment 
observations but, moreover, by some communication 
of agents. These three types of parameters will be 
specified for the solution, e.g. these variables have to 
be defined and collected for all of product, resource, 
order and staff agents in the case of PROSA 
architecture (Valckenaers, et al., 2001).  
 
Ordering the parts of parameters to each-other is the 
next main question. Various, e.g. time-shifted 
solutions can be introduced; preparation of date 
vectors with parameters coming from handling the 
elements of the same order can be an order oriented, 
very simple solution.  
 
Having the data set defined allows running the 
submodel exploring algorithm. A set of submodels 
having at least one common parameter is ordered to 
one agent giving the knowledge base to it and 
serving with learning ability, too. A separated set of 
submodels allows identifying different agents. The 
contents of data table, as the basis for dependency 
exploration, contains, in an explicit or implicit way, 
the time parameter, consequently, the ordered 
submodels ensure the required foresight capability, 
too. The requirement for continuous validation of the 
agent’s knowledge base will be emphasised, 
moreover, system restructuring is required if repeated 
learning cannot result in an appropriate level of the 
model accuracy. This makes the application 
possibilities of reinforcement learning techniques 
stronger in this field.  



     

 
Not all the submodel findings result in a separated 
model set. In this case the minimisation of common 
parameters among model sets can specify the 
individual agents. The values of these parameters 
have to be shared among agents, causing a 
continuous communication among them. Another 
communication of agents is inherited from the 
information exchange between the whole analysed 
system and its environment.  
 
This paragraph described a concept and steps for 
automatic agent identification by using the submodel 
finding technique and the simulation model of the 
analysed system. These individual steps can be 
solved also in another way bringing up further 
research activities. One of the main challenges is to 
find the balance between the field-specific agent 
(pre)definition and the introduced, automatic agent 
identification approaches. This research is already in 
the conceptual phase; concrete realizations and test 
are just running.  
 

4. CONCLUSIONS 
 
The paper presents two applications of the novel, 
artificial neural network and feature selection based 
combined, dynamic technique to automatically 
dissolve a large, complex system into a net of 
connected submodels. The first application is a 
solution for the lower level of customised mass-
production systems, for increasing their productivity. 
The second one is a concept for the identification and 
reorganisation of manufacturing agents, based on 
simulation experience. The main idea behind, is to 
give the learning capability to agents already at their 
definition phase, and to maximise their foresight 
power.  
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