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1. INTRODUCTION

Distributed parameter systems provide models for par-
tial differential equations and time delay differential
equations. Often these systems are subject to pertur-
bations or the systems have errors in the parameters
either of which are effectively modeled by stochas-
tic processes that can be described as a multiplica-
tive Gaussian noise. Fractional Brownian motion is a
family of Gaussian processes that are indexed by the
Hurst parameters H ∈ (0, 1). These processes have
been noted empirically in a wide variety of physical
phenomena especially for H ∈ (1/2, 1). Fractional
Brownian motions with values in R

n were introduced
by Kolmogorov (1940) and some important proper-
ties of these processes were given by Mandelbrot and
Van Ness (1968). In this paper, the formal derivative of
a (cylindrcal) fractional Brownian motion in a Hilbert
space with H ∈ (1/2, 1) is used to describe a mul-
tiplicative Gaussian noise in a distributed parameter
systems. This fractional Gaussian noise is used in a
stochastic differential equation in a Hilbert space to
model a stochastic distributed parameter system. An
explicit solution is given for this stochastic differential
equation.

1 Research supported in part by NSF Grants DMS 0204669 and
ANI 0125410.

Since a fractional Brownian motion for H ∈ (1/2, 1)
is not a semimartingale, a stochastic calculus, that is
different from the one for Brownian motion, is re-
quired (Alòs and Nualart, 2003; Duncan et al., 2000;
Duncan et al., 2005b). Some features of this stochastic
calculus (Duncan et al., 2005b) are noted. There are
only limited results for the solutions of stochastic dif-
ferential equations even in finite dimensional spaces.
An explicit solution for a distributed parameter sys-
tem with a finite dimensional multiplicative fractional
Gaussian noise is given in (Duncan et al., 2005a). It
seems that there are no other results for solutions of
these models with a multiplicative Gaussian noise.

2. PRELIMINARIES AND MAIN RESULT

Initially a standard cylindrical fractional Browinian
motion in a separable Hilbert space is defined and
some aspects of a stochastic calculus for such a pro-
cess are reviewed.

Definition 1. Let V be a separable Hilbert space with
inner product 〈·, ·〉. A continuous, zero mean, cylin-
drical Gaussian process in V (BH(t), t ≥ 0) on the
complete probability space (Ω,F , P ) is said to be a
standard cylindrical fractional Brownian motion with



the Hurst parameter H ∈ (0, 1) if E[〈ψ,BH(t)〉] = 0
for all ∈ R and ψ ∈ V and

E[〈ψ1, B
H(s)〉〈ψ2, B

H(t)〉]

= 〈ψ1, ψ2〉
1

2
[t2H + s2H − |t− s|2H ]

for all s, t ∈ R+ and ψ1, ψ2 ∈ V .

A family of stochastic processes is introduced.

Definition 2. Let H ∈ (1/2, 1). The linear space
L2

H([0, 1],L2(U, V )), often denoted by L2
H , where

L2(U, V ) is the family of Hilbert-Schmidt operators
from U to V , is the family of L2(U, V )-valued gen-
eralized processes on (Ω,F , P ) such that X ∈ L2

H

if

(i) the map
(s, ω) 7→ 〈X ′(s, ω)ψ,ϕ〉U

is B([0, 1]) ⊗ F measurable for all ϕ ∈ U ,
ψ ∈ V .

(ii) |X|2
L2

H

= E

∫ 1

0

(u1/2−H(s)

×|I
H−1/2

1− (uH−1/2X)(s)|L2
)2ds

<∞,

where IH−1/2

1− is a fractional integral (Samko et
al., 1993).

Remark. The norm of L2
H can often be expressed

in terms of φH = H(2H − 1)| · |2H−2, so that
L2

H is the completion of the pre-Hilbert space of
(uniformly bounded) processes (X(t), t ∈ [0, 1]) with
the following inner product

E

∫ 1

0

∫ 1

0

〈X(s), X(t)〉L2
φH(s− t)dsdt.

It is convenient to introduce a family of elementary
random variables that are used in the construction of a
stochastic integral.

Definition 3. The linear space S is the family of
smooth, cylindrical, V -valued random variables on
(Ω,F , P ) such that if F ∈ S, then it has the form

F =
n
∑

j=1

fj

(
∫ 1

0

γ1jdB
H , . . . ,

∫ 1

0

γnjjdB
H

)

ηj

where ηj ∈ V , γkj ∈ L2
φH

([0, 1],L2(U,R)), fj ∈
C∞

p (Rnj ) for j ∈ {1, . . . , n} and k ∈ {1, . . . , nj}
and C∞

p (Rn) is the set of f : R
n → R where f ∈

C∞ and f and all of its derivatives have polynomial
growth.

Definition 4. The derivative D : S → L2
H is a linear

operator which is given for F ∈ S in Definition 3 by

DtF =

n
∑

j=1

nj
∑

i=1

∂fj

∂xi

×

(
∫ 1

0

γ1jdB
H , . . . ,

∫ 1

0

γnjjdB
H

)

× ηj ⊗ γij(t).

The stochastic integral is defined as a dual to D.

Definition 5. Let X ∈ L2
H . The L2(U, V )-valued

generalized process X is integrable with respect to
BH if F 7→ 〈X,DF 〉L2

H
is continuous on S with

the L2(Ω) norm topology. The stochastic integral
∫ 1

0
XdBH is a zero mean, V -valued random variable

such that

〈X,DF 〉L2

H
= E

〈
∫ 1

0

XdBH , F

〉

V

for each F ∈ S.

Let D1,2
H = Dom(D), so that D : D1,2

H → L2
H . Now,

a family of processes is defined that are integrable
according to the Definition 5 so that the stochastic
integral is defined.

Definition 6. Let H ∈ (1/2, 1). The space

L1,2
H ([0, 1],L2(U,D

1,2
H ))

or simply L1,2
H is the family of L2(U,D

1,2
H )-valued

generalized processes (X(t), t ∈ [0, 1]) on (Ω,F , P )
such that

i) X : [0, 1]×Ω → L2(U,D
1,2
H ) is B([0, 1])⊗

F measurable,
ii) There is a measurable version of (DsX(t),

s, t ∈ [0, 1]), that is, the map (s, t, ω) 7→
〈(DsX(t, ω))ϕ,ψ〉 is B([0, 1]2) ⊗ F mea-
surable for each X and all ϕ ∈ U and
ψ ∈ V , and

iii)

|X|2
L1,2

H

= 〈X,X〉L1,2

H

= E

∫ 1

0

〈

u1/2−H(s)I
H−1/2

1− (uH−1/2X)(s),

u1/2−H(s)I
H−1/2

1− (uH−1/2X)(s)
〉

L2

× ds

+ E

∫ 1

0

∫ 1

0

〈

u1/2−H(s)u1/2−H(t)I
H−1/2

1−

× (uH−1/2(q)I
H−1/2

1−

× (uH−1/2(r)

×DrX(q))(s))(t),

u1/2−H(s)u1/2−H(t)I
H−1/2

1−

× (uH−1/2(q)I
H−1/2

1−

× (uH−1/2(r)

×DrX(q))(s))(t)
〉

L2

× dsdt <∞.



The space L1,2
H is a Hilbert space with the inner

product induced from the norm. It is the completion of
the pre-Hilbert space of uniformly bounded L2(U,S)-
valued processes with the inner product
〈X,X〉L2

H

+ E

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

〈DpX(q), DrX(s)〉L2

× φH(p− s)φH(r − q)

× dpdqdrds.

For notational convenience there is some abuse of the
notation | · |L2

and 〈·, ·〉L2
because these can refer to

different families of Hilbert-Schmidt operators. How-
ever, the appropriate family of operators should be
clear from the context.

The following result verifies that the processes in
L1,2

H are integrable and L1,2
H is a natural family of

integrands because the stochastic integral satisfies an
isometry.

Theorem 1. If X ∈ L1,2
H ([0, 1],L2(U,D

1,2
H )), then X

is integrable with respect to BH , so the stochastic
integral

∫ 1

0
XdBH is a well defined zero mean V -

valued random variable in L2(Ω). Furthermore, if
X,Y ∈ L1,2

H , then

E

〈
∫ 1

0

XdBH ,

∫ 1

0

Y dBH

〉

V

= 〈X,Y 〉L1,2

H

.

In applications of stochastic integration, a change of
variables or Itô formula is especially useful. An Itô
formula is given here for a smooth function of a V -
valued process that is defined by an equation that
contains a stochastic integral of a standard cylindrical
fractional Brownian motion.

Let (X(t), 0 ≤ t ≤ 1) be a V -valued process with
continuous sample paths that satisfies the stochastic
equation

X(t) = X(0) +

∫ t

0

a(r)dr +

∫ t

0

b(r)dBH(r) a.s.

for t ∈ [0, 1], where X(0) ∈ V is deterministic,
the stochastic integral is defined by Definition 5 and
the V -valued process (a(t), 0 ≤ t ≤ 1) and the
L2(U, V )-valued process (b(t), 0 ≤ t ≤ 1) are
σ(BH(t), 0 ≤ t ≤ 1) measurable and furthermore
satisfy

E

[

∫ 1

0

∫ 1

0

∫ q

0

|a(p)|2V dpφH(q − r)drdq

+

∫ 1

0

∫ 1

0

∫ q

0

|Dra(p)|
2
L2
dpφH(r − q)drdq

]

<∞

and

E

[

∫ 1

0

∫ 1

0

|b(q)|2L2
φH(r − q)drdq

+

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

|Drb(p)|
2
L2
φH(p− t)

× φH(r − q)dpdqdrdt

+

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

|DαDrb(p)|
2
L2

× φH(r − t)

× φH(β − p)

× φH(α− q)

× dαdβdpdqdrdt

]

<∞.

Theorem 2. Let (X(t), 0 ≤ t ≤ 1) be the process
given above that satisfies the associated integrability
assumptions above. Let F : V → V be a twice
continuously differentiable function with F ′ and F ′′

uniformly bounded in the operator norms. Then the
process (F (X(t)), 0 ≤ t ≤ 1) satisfies the stochastic
equation

F (X(t))

= F (X(0)) +

∫ t

0

F ′(X(r))a(r)dr

+

∫ t

0

F ′(X(r))b(r)dBH(r)

+

∫ t

0

∫ 1

0

∫ p

0

trUF
′′(X(p))(Dqa(r), b(p))

× φH(p− q)drdqdp

+

∫ t

0

∫ 1

0

∫ p

0

trUF
′′(X(p))

× ((Dqb(r))dB
H(r), b(p))

× φH(p− q)dqdp

+

∫ t

0

∫ p

0

trUF
′′(X(p))(b(q), b(p))

× φH(p− q)dqdp a.s.,

where F ′ and F ′′ are the first and the second deriva-
tives respectively.

These stochastic calculus results are proved in (Duncan
et al., 2005b).

A (strong) solution is explicitly given to a stochastic
differential equation in a Hilbert space that can be used
to model some stochastic partial differential equations
(cf. (Duncan et al., 2005a) for some examples). The
stochastic differential equation is one with a multi-
plicative fractional Gaussian noise that is given by

dX(t) = AX(t)dt+
∞
∑

n=1

CnX(t)〈ln, dB
H(t)〉 (1)

X(0) = x0

where x0, X(t) ∈ V , H ∈ (1/2, 1), (ln, n ∈ N) is a
complete, orthonormal basis of V and (Cn, n ∈ N) is
an L(V )-valued sequence.



The following assumptions are used to obtain a solu-
tion.

(A1) The linear operator A with domain Dom(A)
generates a strongly continuous semigroup (T (t),
t ≥ 0).

(A2) The family of linear operators (A,Cn, n ∈ N)
is a commuting family on D(A) and

∞
∑

n=1

|Cn|
2 <∞.

Definition 7. A strong solution of the equation (1) is
a B([0, 1]) ⊗F measurable and D(A)-valued process
(X(t), t ∈ [0, 1]) such that

P

(
∫ 1

0

(|X(s)| + |AX(s)|)ds <∞

)

= 1,

the V -valued process (
∑∞

n=1
CnX(t), t ∈ [0, 1])

satisfies a.s. Definition 6 (iii) without the expectation
so that the stochastic integral in (1) is well defined and
for each t ∈ [0, 1]

X(t) = x0 +

∫ t

0

AX(s)ds

+

∫ t

0

∞
∑

n=1

CnX(s)〈ln, dB
H(s)〉 a.s.

The following main result gives an explicit expression
for a strong solution of (1).

Proposition 1. If (A1) and (A2) are satisfied and x0 ∈
Dom(A), then there is a strong solution of (1) that is
given by

X(t) = exp

[

∞
∑

n=1

Cn〈ln, B
H(t)〉 −Ht2H−1

∞
∑

n=1

C2
n

]

× T (t)x0.

A proof of this result is given in (Duncan et al.,
2005b). The proof is a direct application of the Itô
formula in Theorem 2 given there.

These stochastic differential equations can be used to
model stochastic partial differential equations with a
multiplicative noise. Some examples are described in
(Duncan et al., 2005a).
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