DISTRIBUTED PARAMETER SYSTEMSWITH A
MULTIPLICATIVE FRACTIONAL GAUSSIAN NOISE !

T. E. Duncan * B. Pasik-Duncan **

* Department of Mathematics, University of Kansas, Lawrence,
KS 66045, duncan@at h. ku. edu

** Department of Mathematics, University of Kansas, Lawrence,
KS 66045, bozenna@at h. ku. edu

Abstract: A fractional Gaussian noise is used in a stochastic differential equation in a
Hilbert space to model a stochastic distributed parameter system. An explicit solution is
given for this stochastic differential equation. Copyright©2005 IFAC

Keywords: Distributed parameter systems, Fractional Brownian motion, Stochastic

systems

1. INTRODUCTION

Distributed parameter systems provide models for par-
tial differential equations and time delay differential
equations. Often these systems are subject to pertur-
bations or the systems have errors in the parameters
either of which are effectively modeled by stochas-
tic processes that can be described as a multiplica-
tive Gaussian noise. Fractional Brownian motion is a
family of Gaussian processes that are indexed by the
Hurst parameters H € (0,1). These processes have
been noted empirically in a wide variety of physical
phenomena especially for H € (1/2,1). Fractional
Brownian motions with values in R™ were introduced
by Kolmogorov (1940) and some important proper-
ties of these processes were given by Mandelbrot and
Van Ness (1968). In this paper, the formal derivative of
a (cylindrcal) fractional Brownian motion in a Hilbert
space with H € (1/2,1) is used to describe a mul-
tiplicative Gaussian noise in a distributed parameter
systems. This fractional Gaussian noise is used in a
stochastic differential equation in a Hilbert space to
model a stochastic distributed parameter system. An
explicit solution is given for this stochastic differential
equation.
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Since a fractional Brownian motion for H € (1/2,1)
is not a semimartingale, a stochastic calculus, that is
different from the one for Brownian motion, is re-
quired (Alos and Nualart, 2003; Duncan et al., 2000;
Duncan et al., 2005b). Some features of this stochastic
calculus (Duncan et al., 2005b) are noted. There are
only limited results for the solutions of stochastic dif-
ferential equations even in finite dimensional spaces.
An explicit solution for a distributed parameter sys-
tem with a finite dimensional multiplicative fractional
Gaussian noise is given in (Duncan et al., 2005a). It
seems that there are no other results for solutions of
these models with a multiplicative Gaussian noise.

2. PRELIMINARIES AND MAIN RESULT

Initially a standard cylindrical fractional Browinian
motion in a separable Hilbert space is defined and
some aspects of a stochastic calculus for such a pro-
cess are reviewed.

Definition 1. Let V be a separable Hilbert space with
inner product (-,-). A continuous, zero mean, cylin-
drical Gaussian process in V (B*(t), t > 0) on the
complete probability space (€2, F, P) is said to be a
standard cylindrical fractional Brownian motion with



the Hurst parameter H € (0, 1) if E[(x), B (¢))] = 0
forall € Rand ¢ € V and

E[(¢1, B (s ))(meH(t)H
W’hﬁfz) [t2H+32H |t — s*7]
forall s,t € R4 and wl,wg eV.

A family of stochastic processes is introduced.

Definition 2. Let H € (1/2,1). The linear space
L%.([0,1], L2(U,V)), often denoted by L%, where
L5(U, V) is the family of Hilbert-Schmidt operators
from U to V, is the family of Lo(U,V)-valued gen-
eralized processes on (€2, F, P) such that X € L%
if
(i) the map
(87“") = <X/(S7w)w7§0>U
is B([0,1]) ® F measurable for all ¢ € U,
YeV.
1
(ll) |X‘%2 :]E/ (Ul/g_H(S)
H 0

X |Iﬁ_1/2(UH—1/2X)(5)|£2)2d5
< 00,

where IH /24

., 1993).

is a fractional integral (Samko et

Remark. The norm of L% can often be expressed
in terms of ¢y = H(2H — 1)| - [*272, so that
L? is the completion of the pre-Hilbert space of
(uniformly bounded) processes (X (), € [0, 1]) with
the following inner product

of, [

It is convenient to introduce a family of elementary
random variables that are used in the construction of a
stochastic integral.

[,2 ¢H(S - t)dsdt

Definition 3. The linear space S is the family of
smooth, cylindrical, V-valued random variables on
(Q, F, P) such that if F' € S, then it has the form

n 1 1
F = Zf] </ ﬁ/ldeH7 .. ,/ ’ynJ]dBH> ’l’}]
j=1 0 0

where n; € V, v € LiH([O, 1], L2(U,R)), f; €
Ce(R™) for j € {1,...,n} and k € {1,...,n;}
and Cp°(R™) is the set of f : R™ — R where f €
C* and f and all of its derivatives have polynomial
growth.

Definition 4. The derivative D : S — L% is a linear
operator which is given for I’ € S in Definition 3 by

br=33 5

j=1i=1

1
/ ’yn].deH>
0

The stochastic integral is defined as a dual to D.

1
X(/ ’YldeH,
0

X 1 @ 7ij ().

Definition 5. Let X € L?%. The Ls(U,V)-valued
generalized process X is integrable with respect to
B if F +— (X,DF)z is continuous on S with
the L?(2) norm topology. The stochastic integral
fol XdB* is a zero mean, V-valued random variable

such that
o[,

(X,DF);» =

foreach F' € S.

Let Dj;* = Dom(D), so that D: D;*> — L. Now,
a family of processes is defined that are integrable
according to the Definition 5 so that the stochastic
integral is defined.

Definition 6. Let H € (1/2,1). The space
L3i*([0,1], L2(U, D))

or simply L}f is the family of Lo(U, D}f)-valued
generalized processes (X (t), t € [0,1]) on (9, F, P)
such that

) X:[0,1]xQ— Ly(U, D5?) is B([0,1]) ®
JF measurable,

ii) There is a measurable version of (DX (¢),
s,t € [0,1]), that is, the map (s,t,w) —
(DX (t,w))p,v) is B([0,1]?) ® F mea-
surable for each X and all ¢ € U and
¥ €V, and

iii)

2
|X|L}_}2 = <X7X>L§I*2

- E/o<u1/2,H<s>Iff:”2<uH71/zX><s>,

wrjp ()L 12X (9) s

X ds

+E/ / Uy o (8)ur /o (t OV b 1/2

x (ug_1 /oI
X (up—1/2(r)
x DrX(q))(s))(?),
U1/27171(8)U1/27H(75)If{:1/2
X (upr_1 ()
X (UH71/2(7“)

% D, X(a)()(®),

X dsdt < oo.
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The space L}f is a Hilbert space with the inner
product induced from the norm. It is the completion of
the pre-Hilbert space of uniformly bounded L2 (U, S)-
valued processes with the inner product

<X3X>L§_I

= 1 / 1 / 1 / (D, X (0). D, X (),

X ¢u(p—8)pu(r —q)
X dpdgdrds.

For notational convenience there is some abuse of the
notation | - |z, and (-, ), because these can refer to
different families of Hilbert-Schmidt operators. How-
ever, the appropriate family of operators should be
clear from the context.

The following result verifies that the processes in
L;; are integrable and Ly is a natural family of
integrands because the stochastic integral satisfies an
isometry.

Theorem 1. If X € L3;°([0,1], Lo(U, D?)), then X
is integrable with respect to BH | so the stochastic
integral fol XdB*f is a well defined zero mean V-
valued random variable in L?({)). Furthermore, if
X,Y € Ly, then

1 1
IE</ XdBH7/ YdBH> = (X,Y), 12,
0 0 v H

In applications of stochastic integration, a change of
variables or It6 formula is especially useful. An It
formula is given here for a smooth function of a V-
valued process that is defined by an equation that
contains a stochastic integral of a standard cylindrical
fractional Brownian motion.

Let (X(t), 0 <t < 1) be a V-valued process with
continuous sample paths that satisfies the stochastic
equation

X(t) = X(0) + /0 a(r)dr + /O B(r)dBE(r) as.

for t € [0,1], where X(0) € V is deterministic,
the stochastic integral is defined by Definition 5 and
the V-valued process (a(t),0 < ¢t < 1) and the
Lo(U,V)-valued process (b(t),0 < ¢t < 1) are
o(BH(t), 0 < t < 1) measurable and furthermore
satisfy

1 1 q
¢ /0 /0 /0 la(p) [} dpér(q — r)drdg

1 1 q
Jr/0 /0 /0 |D7’a(p)|%2dp¢H(T*q)drdq

and

1 1
E / / 1b(@) %, dr1 (r — q)drdg

+/1 /1 /1 /1|Drb(p)|%2¢H(p—t)

X ¢ (r — q)dpdgdrdt

S L L oo,

X ¢H(T — t)
x ¢u(B—p)
X ¢p(a—q)

X dadﬂdpdqdrdt]
< o0.

Theorem 2. Let (X(t), 0 < ¢ < 1) be the process
given above that satisfies the associated integrability
assumptions above. Let F' : V — V be a twice
continuously differentiable function with F’ and "
uniformly bounded in the operator norms. Then the
process (F(X(t)), 0 <t < 1) satisfies the stochastic
equation

FX(1))
= F(X(0)) +/0 F'(X(r))a(r)dr
" / F(X (r)b(r)dB" (r)

/ / / tr F” (X (p)) (Dyga(r), b(p))

X ¢g(p — q)drdqdp

v t / 1 [ o

x ((Dgb(r))dB™ (r),b(p))
X ¢r(p — q)dqdp

. / /op“”F"(X P)(b(a), b(p))

X ¢u(p—q)dgdp as.,

where I’ and I are the first and the second deriva-
tives respectively.

These stochastic calculus results are proved in (Duncan
et al., 2005b).

A (strong) solution is explicitly given to a stochastic
differential equation in a Hilbert space that can be used
to model some stochastic partial differential equations
(cf. (Duncan et al., 2005a) for some examples). The
stochastic differential equation is one with a multi-
plicative fractional Gaussian noise that is given by

= AX (t)dt + i Co X (t) {1, dBH (1)) (1)

dX(t)
n=1
X(O) =X
where z9, X (t) € V, H € (1/2,1), (Ip, n € N)isa

complete, orthonormal basis of V and (C,, n € N) is
an L£(V)-valued sequence.



The following assumptions are used to obtain a solu-
tion.

(A1) The linear operator A with domain Dom(A)
generates a strongly continuous semigroup (7'(t),
t>0).

(A2) The family of linear operators (A, C,,, n € N)
is a commuting family on D(A) and

o0
D |G < o0
n=1

Definition 7. A strong solution of the equation (1) is
a B(]0, 1]) ® F measurable and D(A)-valued process
(X (t), t € ]0,1]) such that

P ( / (X (8)] 4 JAX (5) s < oo) _1,

the V-valued process (Y .-, C,X(t),t € [0,1])
satisfies a.s. Definition 6 (iii) without the expectation
so that the stochastic integral in (1) is well defined and
foreach t € [0, 1]

X(t)=z0+ /t AX(s)ds
/ ZC X (8){ln,dB (s)) a.s.

The following main result gives an explicit expression
for a strong solution of (1).

Proposition 1. If (A1) and (A2) are satisfied and x( €
Dom(A), then there is a strong solution of (1) that is
given by

o0

) =exp Z (L, BE (1)) — HtZH_liCEL

n=1 n=1

T(t)zo

A proof of this result is given in (Duncan et al.,
2005b). The proof is a direct application of the It6
formula in Theorem 2 given there.

These stochastic differential equations can be used to
model stochastic partial differential equations with a
multiplicative noise. Some examples are described in
(Duncan et al., 2005a).
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