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1. INTRODUCTION

There exist several papers dealing with the con-
cept of Lyapunov function in the context of hybrid
systems. See for instance, (Branicky, 1998), (Ye,
Michel and Hou, 1998), (Chellaboina, Bhat and
Haddad, 2003) or more recently (Goebel, Hes-
panha, Teel, Cai and Sanfelice, 2004). Although
more restrictions have been assumed (see for in-
stance (Ye, Michel and Hou, 1998+)), the first
and most simple idea is the following one : in the
context of hybrid systems, the Lyapunov function,
which is discontinuous at the resetting times, has
a negative derivative outside the resetting times
(as usual) and decreases at the resetting times.
The main disadvantage of such characterization
is that it enables to check if a given function V is
a Lyapunov function for an impulsive system but
it does not give the way to design the Lyapunov
function. In the classical (non hybrid) case, the
problem is the same: it is not always possible to
design Lyapunov functions but it is possible to
design Lyapunov functions and controllers for spe-
cific classes of non linear systems (see for instance

(Krstic, Kanellakopoulos and Kokotovic, 1995)):
however, it seems difficult to extend such ideas in
the hybrid case since the system is submitted to
discrete inputs (jumps, changes of dynamics). One
way to try to recover the known techniques is to
”catch the global behavior” of the hybrid system
by partitioning the state space.

Viability theory is particularly well adapted for
this purpose : (in the case of switching sys-
tems, see for instance (Burlion, Ahmed-Ali and
Lamnabhi-Lagarrigue, 2004)). As we shall see
(thanks to an introductive example), partitioning
the state space is the crucial point to design a
Lyapunov function for an hybrid impulsive system
and we here propose to use viability theory to
solve this problem.

The paper is organized as follows: we first present
the class of system we address. We then give an
introductive example to present the problem. Af-
terwards, we provide the reader with some math-
ematical tools before proving our results. We con-
clude by numerical computations and additional
remarks.



2. MOTIVATION

First, let us consider the following class of impul-
sive dynamical systems

{

ẋ(t) = f(x(t)) , x(t) /∈ J
∆x(t) = x(t+) − x(t−) , x(t−) ∈ J

(1)

where J (the jumping set) is a subset of the state
space. For example,

ẋ =

{

−x , x ∈ ] −∞,−2[ ∪ [−1,+∞[
x , x ∈ ] − 2,−1[

4x(t) =
3

2
, x(t) = −2

Fig. 1. An example of an impulsive system

It is easy to check that starting from any initial
point, there is at most one switching time and the
following Lyapunov function satisfies the classical
theorems. (V̇ decreases almost everywhere and V
is discontinuous and decreases at the switching
points)

V (x) =

{

x2 , x ∈ [−1,+∞[
| x + 2 | +1 , x ∈] −∞,−1[

The idea is the following one: starting from any
point of ]−∞,−1[ we go in finite time toward −2
because it is the point from which it is possible to
jump into the ”good interval” which is [−1,+∞[.
We call it ”good” because this is the interval which
contains 0 and on which we can use the classical
tools (we mean non hybrid) to design a Lyapunov
function. Therefore, the design of the Lyapunov
function consists of

i) designing a Lyapunov function (valid on
[−1,+∞[) as usually

ii) designing another Lyapunov function (valid
on ] − ∞,−1[) which enables to reach −2 in
finite time. (This means this Lyapunov function
cancels at the point −2)

iii) concatenating these functions

In this paper, we are going to consider the control
of impulsive systems of the form







ẋ(t) = f(x(t), uc(t)), x(t) /∈ J
∆x(t) = r(x(t−), ud(t

−)) − x(t−)
x(t−) ∈ J

(2)

As illustrated in the above example, the idea is
here to identify also for this class of systems, the
”good” region of the state space which contains
the origin and then the regions from which we
can jump into the good ”one”. Then, the design
of the Lyapunov function will consist of

i) partitioning the state space
ii) choosing a Lyapunov function in the ”good”
region

iii) extending the first function by finding other
Lyapunov functions which cancel on the switch-
ing points and tend to 0 in finite time.

In the next parts we are going to see not only that
viability theory is an adapted tool that enables us
to find a partition of the state space but also that
it allows to obtain (numerically) the Lyapunov
functions on each region.

Indeed, the above class of controlled impulsive
systems (2) can be reformulate by setting

F (x) := {f(x, uc) ; uc ∈ U}

R(x) := {r(x, ud) ; ud ∈ V}

Then, we deal with following equivalent impulsive
differential inclusion

{

ẋ(t) ∈ F (x(t)) , x(t) /∈ J
x(t+) ∈ R(x(t−)) , x(t−) ∈ J

(3)

The control law is hybrid in the sense it has
discrete and continuous components: the discrete
control law ud is a discrete event input which acts
on the reset value of the state at a jump. The
continuous control law uc is defined as usually.
When uc (resp. ud) belongs to a set U (resp. V),
this amounts to consider differential inclusions.

Before showing our main result, let us recall
some mathematical backgrounds on differential
inclusions and on impulsive differential inclusion
(3).

3. MATHEMATICAL BACKGROUND AND
NOTATIONS

In the present paper, we are concerned with
finite-dimensional dynamical systems with state-
dependent impulse effects. Here, the state space
is a normed vectorial space (X, ‖.‖) (usually, X
is R

n). d denotes the distance associated to the
norm ‖.‖.

Given (X, d), A and ∂A denote the closure and the
boundary of the subset A ⊂ X. Given two subsets
B and C, B \ C is the set of elements of B which
do not belong to C. Evolutions are continuous
functions x(.) : t ∈ R

+ 7→ x(t) ∈ X describing the
evolution of the state x(t) of a dynamical system.



The basic definitions dealing with set-valued maps
also called multivalued functions or correspon-
dences can be found in (Aubin, 1991)(chap.2).

The graph Graph(F ) of a set-valued map F :
R

n −→ 2R
n

(usually noted F : R
n
 R

n)
is the set of pairs (x, y) ∈ R

n × R
n satisfying

y ∈ F (x). The domain of F , Dom(F ) is the subset
of elements x ∈ R

n such that F (x) is not empty.

F is called lower semi-continuous at x ∈ R
n if for

all y ∈ F (x) and for all sequences xn converging to
x, there exists a sequence yn ∈ F (xn) converging
to y. The inverse image of a subset K ⊂ X under
a set-valued map R : X  X is defined by

R−1(K) := {x ∈ X, R(x) ∩ K 6= ∅}

We say that a set-valued map F is Marchaud if

- Graph(F ) and Dom(F ) are non empty and
closed

- the values F (x) of F are convex
- the growth of F is linear i.e ∃c > 0 such that

∀x ∈ X,

‖F (x)‖ := supv∈F (x)‖v‖ ≤ c(‖x‖ + 1)

The epigraph of a function V : X −→ R is defined
by

Epi(V ) := {(x, y) ∈ X × R, V (x) ≤ y}

Let us consider the following differential inclusion

ẋ(t) ∈ F (x(t)) (4)

where F is Marchaud.

A solution to this differential inclusion starting
at x0 ∈ X is an absolutely continuous function
x : R

+ −→ X such that x(0) = x0 and almost
everywhere ẋ(t) ∈ F (x(t)). For any x0 ∈ R

n,
S(x0) denotes the set of evolutions x(.) governed
by (4) starting from x0.

Let K, C ⊂ X. The viability kernel of K with
target C under S is the subset V iabS(K,C) of
initial states x0 ∈ K such that (at least) one
evolution x(.) ∈ S(x0) is viable in K for all t ≥ 0
or viable in K until it reaches C in finite time.

V iabS(K,C) = {x0 ∈ K, ∃T ≥ 0, ∃x(.) ∈ S(x0),

∀t ∈ R
+, x(t) ∈ K or ∀t ∈ [0, T [, x(t) ∈ K

and x(T ) ∈ C}

When the target C = ∅, it is said that V iabS(K) =
V iabS(K, ∅) is the viability kernel of K. The cap-
ture basin of C viable in K under S is the subset
CaptS(K,C) of initial states x0 ∈ K such that
(at least) one evolution x(.) ∈ S(x0) is viable in
K until it reaches C in finite time.

CaptS(K,C) = {x0 ∈ K, ∃T ≥ 0, ∃x(.) ∈ S(x0),

∀t ∈ [0, T [, x(t) ∈ K and x(T ) ∈ C}

Let us now consider the class of dynamical sys-
tems of the form

{

ẋ(t) ∈ F (x(t)) , x(t) /∈ J
x(t+) ∈ R(x(t−)) , x(t−) ∈ J

where

• x(t−)
∆
= lim

s−→t−
x(s)

• the set J ⊂ X is compact
• FX  X is Marchaud
• RX  X is upper semi continuous with

compact images we call it the reset map
• R also verifies R(∂J) ∩ J = ∅

The collection (F,R, J) is called an impulse differ-
ential inclusion. Throughout this paper, we only
interest us to evolutions starting outside J . This
means that all the initial conditions belong to the
complement of the subset J in X. The state x
is instantaneously reset when it belongs to the
jumping set J . We note τ1, . . . , τk, . . . the reset
times. In the hybrid terminology, an evolution x(.)
is defined in the following way:

Definition: (see (Aubin, Lygeros, Quincampoix,
Sastry and Seube, 2002), or (Cruck, 2002)) x(.) :
R

+ −→ X is a solution of the above impulse
differential inclusion if and if only it is absolutely
continuous on some intervals [τk, τk+1[ having left-
side limits, with (τk)k∈N∗ an increasing finite or
infinite sequence of R

+∗ ∪ {+∞} such that

x(0) = x0 ∈ X\J

and

x(t) ∈ { x0} +
∑

τk≤t

S(x(τk)) +

∫ t

0

F (x(s))ds

where

S(x) = {z ∈ X / ∃y ∈ R(x) , z = y − x}.

Let Cm denotes the set of right-continuous func-
tions having left-side limits. We note

S : R
n\J −→ Cm(R+, Rn)

the evolution solution map associated with the
impulsive dynamical system.

Remark: The condition R(∂J) ∩ J = ∅ guaran-
tees that there is a lower bound on the transition
times i.e ∀k ∈ N

∗, such that τk is finite,

τk+1 − τk > 0

Proof of the remark : By definition, since F
is Marchaud, there exists c ∈ R

+ s.t : ∀x ∈
X, ‖F (x)‖ ≤ c(‖x‖ + 1).
Thus, ∀k ∈ N

∗, ∀t ∈ [τk, τk+1[



‖x(t) − x(τk)‖ ≤

∫ t

τk

‖F (x(y))‖dy

≤

∫ t

τk

c(‖x(y)‖ + 1)dy

≤

∫ t

τk

c(‖x(τk)‖ + 1

+‖x(y) − x(τk)‖ + 1)dy

By Gronwall’s inequality

‖x(t)−x(τk)‖ ≤ c(τk+1−τk)(1+‖x(τk)‖)ec(τk+1−τk)

Since, R(∂J) and J are closed the condition
R(∂J) ∩ J = ∅ yields

∃δ > 0, ∀(x, y) ∈ J × R(∂J), ‖x − y‖ > δ

Thus,

c(τk+1 − τk)(1 + ‖x(τk)‖)ec(τk+1−τk) > δ

Hence, τk+1 − τk > 0.2

4. MAIN RESULTS

4.1 Preliminaries

Statement of the problem: We consider a compact
subset K ⊂ X such that J ⊂ K. For ε > 0 fixed,
we also consider Bε = {x ∈ X, d(x, 0X) ≤ ε}.
We suppose that

• Bε ∩ J = ∅
• B ⊂ K
• Bε is not a repeller i.e V iabS(Bε) 6= ∅

We notice that V iabS(Bε) is defined for a ”non
impulsive differential inclusion” because Bε ∩J =
∅.

The problem we consider here is to reach the
target Bε and to deduce function which enjoys
a Lyapunov property (the terminology will be
defined further) for hybrid impulsive systems.

4.2 Partition of the state-space

Let us denote R(∂J) by RJ and V iabS(Bε) by
∂J0. We now recursively define the following sets

C0 = CaptS( K\J, ∂J0 )

and

∀i ≥ 1, Ci = CaptS( (K\J)∪∂Ji, ∂Ji ∪
j<i

Cj )

where

∂Ji = (∂J ∩ R−1(Ci−1 ∩RJ ))\( ∪
j<i

∂Jj).

We obtain the following result:

Theorem: ∀i ∈ N
∗ fixed, ∀x0 ∈ Ci, there exists

at least one evolution starting from x0 which

jumps at most i times and then is stabilized in
a neighboring of 0 in finite time.

Proof: The algorithm first computes C0. By
definition, C0 = CaptS(K\J, ∂J0) is the set of
all initial states (of K) from which it is possible
to stay in K\J (so without any jumps) before
reaching the target in finite time. To extend the
set of initial points from which one can reach the
target, we then consider that the state can jump
one time in this case, this amounts to searching for
initial conditions from which it is possible to reach
J in finite time and then to jump in C0. Then,
the target becomes the intersection of the inverse
image of C0 by R and ∂J . We also add to the
target the previous set C0 we get C1 which is the
set of initial conditions from which it is possible
to reach the target ∂J0 in finite time without
jumping more than 1 time (more precisely, if the
initial condition is in C1\C0 it exactly jumps 1
time). We repeat the following procedure to take
into account two jumps and so on...2

From now on, we are only interested with a finite
number N of jumps. This means that the ”working
space” will be

Ω =
⋃

i∈{0,··· ,N}

Ci

4.3 Resulting control strategy for controlled impulsive
systems

Let us now consider again the control of impulsive
systems (2) of the form







ẋ(t) = f(x(t), uc(t)), x(t) /∈ J
∆x(t) = r(x(t−), ud(t

−)) − x(t−)
x(t−) ∈ J

(5)

One can easily check that if

• f is continuous in both variables, affine with
respect to u, has linear growth, and U is
nonempty convex and compact.

• r is continuous, and V is nonempty and
compact

the reformulation of system (2) into an impulsive
differential equation is such that F is Marchaud
and R is upper semi continuous with compact
images. In this case, one can apply the previous
result.

Theorem: Starting from any initial condition of
Ω ⊂ K, the hybrid controller

∀i ∈ {1, · · · , N}, ∀x ∈ Ci \

(

∂Ji ∪
j<i

Cj

)

,

uc(x) ∈ UCi
(x) (6)

∀x ∈ ∂Ji

ud(x) ∈ {v ∈ V \ r(x, v) ∈ Ci−1} (7)



∀x ∈ V iabS(Bε),

uc(x) ∈ RV iabS(Bε) (x) (8)

where RK(x) denotes the set of viable controls
associated to each element x of a given viability
domain K (for more details, see (Aubin, 1991),
chap 6 and 7, RK is given by the viability theorem)
and where UC(x) denotes the set of controls asso-
ciated to each element x of a given capture basin C
(UC is given by the numerical computation of the
capture basin which is computed thanks to the via-
bility kernel of an augmented system (for numer-
ical methods, see (Saint-Pierre, 1994))) enables
the state x to reach the viability kernel V iabS(Bε)
in finite time without jumping more than N times.
Then, the state remains inside this kernel.

Proof: This theorem is a direct application of
the previous theorem. Indeed, the state space has
been partitioned such that inside each capture
basin Ci there exists at least one feedback which
enables to reach ∂Ji and to jump into the next
capture basin Ci−1 and so on, until the state
reaches the target C0 = V iabS(Bε). The discrete
feedback is simply chosen such that the state
jumps into Ci−1 when x ∈ ∂Ji and the continuous
feedback is given numerically in each capture
basins. Inside the target V iabS(Bε), the use of
viable feedbacks (given by the viability theorem
due to (Ye, Michel and Hou, 1998) ) obviously
prevents the state from escaping it. 2

4.4 Design of a Lyapunov Function

Another application of the partition of the state
space is the design of Lyapunov functions for
impulsive systems.

Taking into account state constraints while search-
ing for a Lyapunov function amounts to giving up
some smooth properties of the Lyapunov function
by using viability tools, we obtain Lyapunov func-
tions which are no longer continuous but lower
semi continuous ; moreover, they are no longer
differentiable but contingently epidifferentiable.

Let us explain a little more what we mean by Lya-
punov functions. We will say that the nontrivial
extended function

V : X −→ R
+ ∪ {+∞}

enjoys a Lyapunov property if and if only for any
initial state x0, there exists at least one solution
x(.) to the impulsive differential inclusion (??)
satisfying

∀t ≥ 0, V (x(t)) ≤ y(t)

where the time dependent function yR −→ R
+ ∪

{+∞} is governed by the ordinary differential
equation

ẏ(t) = φ(y(t))

where φ is continuous with linear growth. In
many cases, y(t) goes to 0 when t −→ +∞, so
V(x(t)) converges also to 0. For more details, see
(Aubin, 1991)(Chap.9).

We consider a finite number N ∈ N which rep-
resents the maximum number of jumps. Let us
consider

{

ẋ(t) ∈ F (x(t)) , x(t) ∈ C0

ẏ(t) = −ay(t)
(9)

where a ∈ R
+∗

We also consider ∀i ∈ {1, · · · , N}

{

ẋ(t) ∈ F (x(t)) , x(t) ∈ Ci

ẏ(t) = φ(y(t))
(10)

where φ : R −→ R is continuous with linear
growth (in this case, one can easily check that

(

F
φ

)

X × R X × R

is Marchaud ) such that ∀y(0) > 0, y(t) = 0 in
finite time. For instance, we choose φ = −1.

By noting

vi(x) = d(x, ∂Ji) , x ∈ Ci

Ep(vi) = {(x, y) ∈ Ci × R
+\vi(x) ≤ y}

gives

Theorem: The extended nontrivial function V
such that

Dom(V ) =
⋃

i∈{0,··· ,N}

Ci

λvi
(x) = inf

(x,y)∈V iab(10)Ep(vi)
y

V (x) = λvi
(x) , x ∈ Ci \

(

∪
j<i

Cj

)

.

exponentially decreases after a finite time T ≥ 0
which depends on the initial condition x(0).

Proof:

Step 1:

Given x(0) we first search for k such that x(0) ∈
Ck and x(0) /∈ Ck−1. In this case, x stays in
Ck\Ck−1 until it reaches ∂Jk and jumps. (if
it reached Ck−1 without jumping before, there
would be a contradiction because it would prove
that x(0) ∈ Ck−1 since it would be possible to
reach it without jumping). We call τk the jumping
time. By definition of the epigraph, for t ∈ [0, τk],
V (x(.)) verifies

0 ≤ d(x(t), ∂Jk) ≤ V (x(t)) ≤ y(t)

Moreover, to say that (x, y) belongs to the viabil-
ity kernel of Ep(vk) under auxiliary system (10)



for all t ∈ [0, τk] amounts to saying that for all
t ∈ [0, τk],

0 ≤ d(x(t), ∂Jk) ≤ V (x(t)) ≤ y(t)

with

y(t) = y(0) +

∫ t

0

φ(y(τ))dτ

= y(0) − t

Then, limt−→τ
−

k

V (x(t)) = 0. At t = τk, V is

discontinuous and x jumps into Ck−1. We then
set t = 0 and repeat the step 1 until we jump into
C0.

Step 2:

At a time τ , x belongs to C0. To say that (x, y)
belongs to the viability kernel of Ep(v0) under
auxiliary system (9) at the time t = τ amounts
to saying that for all t ≥ τ ,

0 ≤ d(x(t), ∂J0) ≤ V (x(t)) ≤ y(t) = y(τ)e−a(t−τ)

which is the property of an exponential lyapunov
function.

Step 3: conclusion of the proof

We then designed a function V which decreases to
0. First, according to the initial condition, V may
decrease to zero and jump a finite number of times
(at most N times). After a finite time, x belongs
to C0 and the function V decreases exponentially
to 0. 2

5. CONCLUSION

In this paper, we presented a new approach to
design controllers and Lyapunov functions for im-
pulsive dynamical systems. This new approach re-
lies heavily on Viability theory which is a powerful
tool in control its main drawback is the numerical
difficulty of computing the capture basins and
viability kernels for high-dimensional systems. To
combine ”more classical” control techniques with
viability when numerical computations are too
huge could also be a key to control such systems
for instance, viability could be use to partition the
state space and one could use other techniques
to deduce the control laws inside the different
basins since the extraction of the control laws with
given properties requires computation in higher
dimensional state spaces.
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