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Abstract: In this paper we consider the following problem. An Uninhabited Aerial
Vehicle (UAV), modeled as a vehicle moving at unit speed along paths of bounded
curvature, must visit stochastically-generated targets in a convex, compact region
of the plane. Targets are generated according to a spatio-temporal Poisson process,
uniformly in the region. It is desired to minimize the expected waiting time between
the appearance of a target, and the time it is visited. We present algorithms
for UAV routing, and compare their performance with respect to asymptotic
performance bounds, in the light and heavy load limits. Simulation results are
presented and discussed. Copyright c©2005 IFAC
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1. INTRODUCTION

One of the prototypical missions for Uninhabited
Aerial Vehicles, e.g., in environmental monitoring,
security, or military setting, is wide-area surveil-
lance. A UAV in such a mission must provide
coverage of a certain region and detect, locate,
and investigate events of interest (“targets”) as
they manifest themselves. In particular, we are in-
terested in cases in which close-range information
is required on the targets, i.e., cases in which the
UAV must proceed to the location of the targets
to gather on-site information.

Variations of problems falling in this class have
been studied in a number of papers in the recent
past, e.g., (Schumacher et al. 2003, Beard et al.
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2002, Richards et al. 2002, Gil et al. 2003). In
these papers, the problem is set up in such a way
that the location of targets is known a priori; a
strategy is computed that attempts to optimize
the cost of servicing the known targets. In (Li
and Cassandras 2003) a stable receding-horizon
strategy is proposed, but its performance in not
characterized. In (Frazzoli and Bullo 2004), we
addressed the case in which new targets are gen-
erated continuously by a stochastic process: we
provided algorithms for minimizing the expected
waiting time between the appearance of a target
and the time it is serviced by one of the vehicles. A
limitation of the results presented in (Frazzoli and
Bullo 2004) is the fact that omni-directional vehi-
cles were considered in the problem formulation:
as such, the results are not applicable to many
vehicles of interest, including aircraft and car-like
robots.

In this paper, we wish to extend the results avail-
able in the literature to address non-holonomic
vehicle dynamics. In particular, we will consider



paths with bounded curvature, which provide a
good approximation of feasible trajectories for
aircraft. The main contributions of the paper are:
(i) the design of a UAV control policy achieving a
level of performance in light load that is provably
within a constant additive factor from optimality,
and (ii) the establishment of a new lower bound
for the achievable performance in heavy load. Fi-
nally, we present simulation results that suggest
that a greedy policy can approximate the optimal
policy in heavy load.

2. PROBLEM FORMULATION

The basic version of the problem we wish to
study in this paper is known as the Dynamic
Traveling Repairperson Problem (DTRP), and
was introduced by Bertsimas and van Ryzin in
(Bertsimas and van Ryzin 1991). Our problem
is different from the original DTRP since we
consider a vehicle that is constrained to move
at unit speed along paths of bounded curvature,
i.e., we impose a non-holonomic constraint on
the vehicle’s dynamics. In the remainder of the
section, we define the details of the problem and
its components.

Let the environment Q ⊂ R2 be a convex, com-
pact set with unit area, and let ‖ · ‖ denote the
Euclidean norm in R2. Consider a single UAV,
modeled as a nonholonomic vehicle constrained
to move at unit speed along a path with bounded
curvature, and let 1/ρ be the maximum curvature.
In other words, let the configuration g ∈ SE(2) of
the vehicle be given in coordinates by g = (x, y, θ),
where x, y are respectively the projections of the
vehicle’s position along fixed orthogonal axes, and
θ is the orientation of the vehicle’s longitudinal
axis with respect to the y = 0 axis; then the
dynamics of the vehicle are described by the dif-
ferential equations

ẋ = cos(θ),
ẏ = sin(θ),
θ̇ = ω, ω ∈ [−1/ρ, 1/ρ].

(1)

The vehicle has unlimited range and target-
serving capacity. In the following, we will indicate
by p = (x, y) the position of the vehicle. We note
that the above kinematic model of an airplane’s
dynamics is very common in the literature on
UAV motion planning; the model is very similar
to the one studied in (Dubins 1957), with the dif-
ference that the vehicle we consider is constrained
to move at constant speed. Results in terms of
minimum-length paths for Dubins’ vehicle hold
for our model, where they assume an additional
connotation of being minimum-time paths as well.
In the following, we will often use the expressions
“Dubins vehicle” and “Dubins paths” to indicate

a vehicle modeled by (1) and paths that are fea-
sible with respect to the same model.

Information on outstanding targets—the demand—
at time t is summarized as a finite set of target
positions D(t) ⊂ Q, with n(t) := card(D(t)).
Targets are generated, and inserted into D, ac-
cording to a homogeneous (i.e., time-invariant)
spatio-temporal Poisson process, with time inten-
sity λ > 0, and uniform spatial density. In other
words, given a set S ⊆ Q, the expected number
of targets generated in S within the time interval
[t, t′] is

E [card(D(t′) ∩ S)− card(D(t) ∩ S)] =

= λ(t′ − t)Area(S).

Servicing of a target ej ∈ D, and its removal from
the set D, is achieved when the UAV moves to the
target’s position.

A static feedback control policy for the system is
a map π : SE(2) × 2Q → [−1/ρ, 1/ρ], assigning
a control input to the vehicle, as a function of
the current state of the system, i.e., ω(t) =
π(g(t), D(t)). The policy π is stable if, under its
action,

nπ := lim
t→+∞

E [n(t)|ṗ = π(p, D)] < +∞,

that is, if the UAV is able to service targets at a
rate that is—on average—at least as fast as the
rate at which new targets are generated.

Let Tj be the time that the j-th target spends
within the set D, i.e., the time elapsed from the
time ej is generated to the time it is serviced. If
the system is stable, then we can write the balance
equation (known as Little’s formula (Larson and
Odoni 1981))

nπ = λTπ,

where Tπ := limj→+∞ E [Tj ] is the steady-state
system time under the policy π. Our objective is
to minimize the steady-state system time, over all
possible static feedback control policies, i.e.,

T ∗ = inf
π

Tπ.

In the following, we are interested in designing
control policies that provide constant-factor ap-
proximations of the optimal achievable perfor-
mance. In particular, as done in (Bertsimas and
van Ryzin 1991), we will analyze the asymptotic
cases of light load, as λ → 0, and heavy load,
as λ → ∞; in the light load case, we will de-
rive lower and upper bounds on the achievable
system time T ∗. The upper bound is given in
terms of system times achieved by an explicit,
readily implementable algorithm, and is therefore
constructive. In the heavy load case, we present a
novel lower bound for the system time, and show
simulation results showing that a greedy policy



provides a good approximation to the achievable
performance.

2.1 Some preliminary results

Before we address the design of control policies, let
us state a few preliminary results on the length of
minimum-length Dubins paths, which we will use
in the following. Note that a full characterization
of optimal paths is given in (Dubins 1957); a fur-
ther classification is given in (Shkel and Lumelsky
2001); our purpose in this section is to provide
bounds on the length of optimal paths given the
boundary conditions.

Let us consider first the problem of point-to-point
steering with the heading angle fixed both at
the initial and final condition. Let d : SE(2) ×
SE(2) → R+ be a function returning the Eu-
clidean distance between vehicles in two given
configurations, i.e.,

d : (x1, y1, θ1, x2, y2, θ2) 7→
√

(x1 − x2)2 + (y1 − y2)2.

Define Lρ(g) : SE(2) × SE(2) → R+ as the
function returning the cost of the minimum-length
Dubins path between two configurations.

Proposition 1. For any g1, g2 ∈ SE(2), the mini-
mum length Lρ(g1, g2) of a path steering a Dubins’
vehicle with maximum curvature 1/ρ from g1 to
g2 satisfies:

d(g1, g2) ≤ Lρ(g1, g2) ≤ d(g1, g2) + κπρ, (2)

with 7/3 ≤ κ ≤ 2.658.

PROOF. The lower bound is trivial, as it is
the Euclidean distance between the two config-
urations. The proof of the upper bound can be
found in (?) and is not reported here for lack of
space. 2

Now consider a slightly different problem. Instead
of requiring the vehicle to have a prescribed head-
ing at the final condition, we will require it only
to move to a certain position, leaving the final
heading unconstrained. Without loss of generality,
choose the initial configuration as the identity
of SE(2), i.e., g1 = e = (0, 0, 0). We have the
following result, that can be verified numerically.
(We omit the details for lack of space.)

Proposition 2. The minimum length Pρ(x, y) of a
path steering a Dubins’ vehicle with maximum
curvature ρ from the identity in SE(2) to a
point(x, y) ∈ R2 satisfies the following inequality:

Pρ(x, y) ≤ c1ρ + ‖(x, y)− (0, c2ρ)‖, (3)

with c1 ≈ 3.77, and c2 ≈ 2.93.

3. THE LIGHT LOAD LIMIT

We begin our analysis by looking at the light-
load asymptotic case, i.e., at the system times
achievable as λ → 0.

3.1 Lower bound on the system time

In order to study optimal policies in the light
load case, we need to introduce a problem from
geometric optimization.

Given a set Q ⊂ Rd and a point p ∈ Q, the
expected distance between a random point q,
generated according to a uniform distribution over
Q, and p is given by

H(p,Q) := E [‖p− q‖] =
∫
Q
‖p− q‖dq. (4)

The function H is known as the continuous We-
ber function or the continuous median function;
see (Agarwal and Sharir 1998, Drezner 1995) and
references therein. The median of the set Q is the
global minimizer

p∗(Q) = argmin
p∈Q

H(p,Q).

It is straightforward to show that the map (4) is
differentiable and strictly convex on Q. Therefore,
computing the global minimizer is a simple task.

The following lower bound was derived in (Bertsi-
mas and van Ryzin 1991) for the Euclidean case;
since the length of a Dubins path between two
configurations is no less than the Euclidean dis-
tance between the points, the same results holds
in our case.

Theorem 3. The system time for the problem
stated in Section 2 is lower bounded as:

T ∗ ≥ H(p∗,Q) (5)

Theorem 3 holds for any policy, and any value of
λ. However, it is most useful in the light-load case
and as such it is reported in this section.

3.2 A constructive upper bound

Consider the following control policy, which we
call the Offset Median (OM) policy. Let p∗ be
the median of Q, and define the loitering station
for the UAV as a circular trajectory of radius c2ρ
centered at p∗. In the OM policy, the UAV visits
all targets in a greedy fashion: in other words,
it always pursues the closest target in a Dubins’
distance sense. When no targets are available, it
returns to its loitering station; the direction in
which the orbit is followed is inconsequential, and
can be chosen in such a way that the station is
reached in minimum time.



Theorem 4. An upper bound on the system time
of the Offset Median policy in light load is

TOM ≤ T ∗ + c1ρ as λ → 0 (6)

PROOF. Consider a generic initial condition for
the UAV configuration in Q and for the outstand-
ing target positions D(0), with n0 = card(D(0)).
An upper bound to the time needed to service all
of the initial targets is n0(diam(Q) + κπρ). When
there are no targets outstanding in the target
set D, the vehicle moves at unit speed toward
its loitering station, which is reached in at most
diam(Q) + κπρ units of time.

The time needed to service the initial targets and
go to the median is hence bounded by tini ≤ (n0 +
1) [diam(Q) + κπρ]. The probability that at the
end of this initial phase the number of targets is
reduced to zero is

P [n(tini) = 0] = exp(−λtini)
≥ exp (−λ(n0 + 1)(diam(Q) + κπρ)) ,

that is, P [n(tini) = 0] → 1− as λ → 0. As a
consequence, after an initial transient, all targets
will be generated with the vehicle in its loitering
station, and an empty demand queue.

After the initial transient, when the next target
arises, say the jth target at location ej , will then
require Tj ≤ ‖ej−p∗‖+c1ρ. The system time can
be computed as

TOM = lim
j→+∞

E [Tj ] = H∗(Q) + c1ρ. 2

In other words, we have shown that the system
time achieved by the OM policy is within a con-
stant additive factor from the optimal. The addi-
tive factor, which can be considered as a penalty
due to the non-holonomic constraints imposed on
the vehicle’s dynamics, depends linearly on the
minimum turn radius ρ. At this time, neither the
lower bound nor the upper bound are known to
be tight.

In Figure 1 we show simulation results that con-
firm our theoretical predictions. When the mini-
mum turn radius is very small, the performance
of the OM policy approximates the lower bound
valid for a vehicle without kinematics constraints,
i.e., as ρ → 0, TOM → H∗(Q). As ρ increases, the
penalty associated to the bounded curvature con-
straints dominates, and the system time increases
linearly with ρ.

4. THE HEAVY LOAD LIMIT

In this section, we turn our attention to the heavy-
load limit, in which λ →∞.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

T*

Simulation Data
Upper Bound

Fig. 1. Performance of the OM policy in light load:
the system time grows at most linearly with
ρ, as suggested by the upper bound (6).

4.1 Lower bound on the system time

In the heavy load case, the nature of optimal con-
trol policies is related to the well-known Traveling
Salesperson Problem (TSP). We will first discuss
some well-known results for the Euclidean version
of the TSP, then derive a lower bound on the
asymptotic cost of TSP problems for bounded-
curvature vehicles. Based on this result, we will
provide a lower bound on the system time in the
heavy load limit.

4.2 The Euclidean Traveling Salesperson Problem

The Euclidean TSP (ETSP) is formulated as fol-
lows: given a set D of n points in Rd, find the
minimum-length tour of D. Let ETSP(D) denote
the minimum length of a tour through all the
points in D; by convention, ETSP(∅) = 0. The
asymptotic behavior of stochastic ETSP problems
for large n exhibits the following interesting prop-
erty. Assume that the locations of the n targets
are independent random variables, uniformly dis-
tributed in a compact set Q; in (Beardwood et
al. 1959) it is shown that there exists a constant
βTSP,2 such that, almost surely,

lim
n→+∞

TSP(D)√
n

= βTSP,2. (7)

In other words, the optimal cost of stochastic
ETSP tours approaches a deterministic limit, and
grows as the square root of the number of points
in D; the current best estimate of the constant in
(7) is βTSP,2 = 0.7120 ± 0.0002, see (Percus and
Martin 1996, Johnson et al. 1996).

5. THE TRAVELING SALESPERSON
PROBLEM FOR A DUBINS VEHICLE

While the ETSP has attracted a great deal of in-
terest from the scientific community, its bounded-
curvature counterpart (which we will call DTSP)



has not been studied extensively. Some initial
work has been done in (Savla et al. 2005a) mainly
in terms of upper bounds for worst-case tours.
Here we present a new result, which can be seen as
a first step in the search of deterministic bounds
similar to those available for the ETSP.

Theorem 5. The expected cost of a stochastic
DTSP visiting a set D of n randomly-generated
points in Q satisfies the following inequality:

lim
n→∞

E [DTSP(D, ρ)]
n2/3

≥ 3
4
(3ρ)1/3 (8)

PROOF. Choose a random point pi ∈ D as
the initial position of the vehicle on the tour,
and choose the heading randomly. We would like
to compute a bound on the expected distance,
according to the metric induced by the length of
Dubins’ paths, to the closest next point in the
tour; let us call such distance δ∗.

To this purpose, consider the set Rδ of points that
are reachable from a Dubins’ vehicle with an arc
of length δ ≤ ρ; the area of such a set is

Area(Rδ) =
δ3

3ρ
. (9)

In other words, the area of the set Rδ decreases
faster than the area of a circle of radius δ as δ → 0.

Given a distance δ, the probability that δ∗ > δ is
no less than the probability that there is no other
target reachable with a path of length at most δ;
in other words,

Pr[δ∗ > δ] ≥ 1− nArea(Rδ) = 1− n
δ3

3ρ
.

In terms of expectation, defining c = n/(3ρ),

E [δ∗] =
∫ ∞

0

Pr(δ∗ > ξ) dξ

≥
∫ ∞

0

max{0, 1− n
ξ3

3ρ
} dξ

=
∫ c−1/3

0

(1− cξ3) dξ

=
3
4

(
3ρ

n

)1/3

The expected total tour length will be no smaller
than n times the expected length of the shortest
path between two points, i.e.,

E [DTSP(D, ρ)] ≥ 3
4

(
3ρn2

)1/3 − o(n2/3).

Dividing both sides by n2/3 and taking the limit
as n →∞, we get the desired result. 2

Note that the dependency of the optimal DTSP
cost on the number of points in the tour is with the
power 2/3; in the Euclidean case the dependency
was on the power 1/2.

5.1 Lower bound on the system time

At this point we can state the desired result in
terms of a lower bound on the system time for
any policy in the heavy load case.

Theorem 6. The system time for the problem
stated in Section 2, satisfies the following inequal-
ity, for λ →∞:

T ∗ ≥ 81
64

ρλ2 (10)

PROOF. Let us assume that a stabilizing pol-
icy is available. In such a case, the number of
outstanding targets approaches a finite steady-
state value, n∗, related to the system time by
Little’s formula, i.e., n∗ = λT ∗. In order for the
policy to be stabilizing, the average time needed
to visit the next target must be no greater than
the average time interval between the appearance
of new targets, i.e., δ∗ ≤ 1/λ. But we know
that δ∗ ≥ 3/4(3ρ/n∗)1/3; rearranging, and using
Little’s formula, we get the desired result. 2

Note that the system time depends quadratically
on the parameter λ, whereas in the Euclidean case
it depends only linearly on it. As a consequence,
bounded-curvature constraints make the system
time much more sensitive to increases in the target
generation rate.

5.2 Towards an upper bound on the system time

A tight upper bound on the DTRP for a Dubins’
vehicle is not yet available, as the DTSP problem
is still largely unexplored. Very recently, a new
algorithm for the stochastic DTSP was discovered
(Savla et al. 2005b), which provides a tour with
cost O(n2/3(log n)1/3). While this cannot provide
a tight bound, it guarantees a sub-linear increase
of the cost with the number of targets, and would
ensure stability of the DTRP for a Dubins’ vehicle.
The investigation of this algorithm in the context
of the DTRP problem is the subject of current
work.

In the meantime, we present simulation results
(Figure 2) that suggest that a simple greedy policy
does stabilize the system for any λ, and provides a
(multiplicative) constant-factor approximation of
the optimal system time. In the greedy policy, the
vehicle always moves towards the closest (accord-
ing to the Dubins’ distance) outstanding target.

6. CONCLUSIONS

In this paper, we have considered the problem
of steering a UAV in order to minimize the ex-
pected waiting time between the appearance of
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Fig. 2. Performance of the greedy policy in heavy
load with ρ = 0.05: for fixed ρ, the system
time grows quadratically with λ, as suggested
by the lower bound (10).

randomly-generated targets and the time they are
visited by the UAV. We have proposed a control
policy that achieves a system time that is provably
within a constant additive factor from the opti-
mal, in the light load case. In the heavy load case,
we have developed a lower bound on the system
time, showing that it depends at least quadrati-
cally on the target generation rate, and linearly
on the minimum turn radius. Future work will
aim at achieving tighter bounds on the achievable
performance in both cases, and in extending the
present work to the multiple-vehicle, decentralized
control case.
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