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1. INTRODUCTION

Control theory deals with mathematical models of
real systems called the abstract control systems. A
control system consists of a plant model Σ1 and a
controller model Σ2. A system theoretic approach
was given in (Žampa, 2004). If Σ1 contains some
algebraic dependencies, that is, if some inputs
propagate to the outputs at the same time instant,
a thorough determination of admissible controllers
is a complex problem and its solution provides
the richest possible class for choosing the optimal
control strategy.

Well-posedness of the closed loop system implies
that Σ must be free of algebraic loops (Žampa,
2004; Zhou et al., 1996). Optimality, however, asks
for a minimum number of delays in the control
system to maximize information available for con-
trol. This leads to a new term of a sequential
control strategy introduced together with opti-
mal control problem formulation in Section 2. In
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Section 3, an efficient determination of the set
of admissible strategies with minimal number of
delays is proposed. An extension of the standard
optimizing recursion (Bertsekas, 2000) is provided
in Section 4 and an example in Section 5.

Notation. The field of real numbers is denoted by
R. Sets are denoted by calligraphic upper charac-
ters, e.g. T . Vectors are written in bold, matrices
as bold capitals. For a matrix S, S[i, j] denotes
its entry at position (i, j) and S[:, j] stands for
the j-th column of S. Furthermore, S′ denotes
transposition of S and the same applies to vec-
tors. For u = (u1, . . . , um)′ being a vector, ũζ =
(uζ1 , . . . , uζm)′ denotes a vector with permuted
elements. To indicate time dependence, indexing
uk, ui,k and ũζ,k is used and k is reserved for
denoting time to avoid confusion.

2. PROBLEM FORMULATION

2.1 Discrete stochastic control system

The control system is defined on a finite set of
time instants T := {0, 1, . . . , F}, where F is the



control horizon. At the time instant k, xk ∈ Rn,
yk ∈ Rp denote the vector of non-measurable and
observed (output) variables of Σ1, respectively,
and uk ∈ U ⊂ Rm is the control. For i, j ∈ T , i <
j, xj

i is a shorthand description of the sequence
(xi, . . . , xj). The same applies for other variables.

Behavior of the plant Σ1 is for all k ∈ T com-
pletely described by a probability distribution
function (pdf)

fk(xk, yk:xk−1, yk−1, uk−1, ūk), (1)

where fk is a pdf of (xk, yk) parameterized by its
complete and immediate cause

(xk−1, yk−1, uk−1, ūk).

Such pdf is called causal pdf (Žampa, 2004).
Parameter ūk represents control variables ui,k ∈
uk that propagate to the output at time k, i.e.
without delay.

2.2 Batch control strategy

Let G denote the set of admissible stochastic con-
trol strategies γ for the system Σ1. The aim of op-
timal control system synthesis is to find a control
strategy γ∗ ∈ G in a form of a conditional pdf that
for the given plant Σ1 guarantees the best quality
behavior of Σ. Such quality is usually evaluated by
a criterion J(γ) : G 7→ R. Considering the usual
case of a criterion with an additive loss function
and noting that the value of loss function is a
random variable, it follows that

J(γ) = E
{ F∑

k=0

Lk(xk
0 ,yk

0 , uk
0); f, γ

}
(2)

γ∗ = argmin
γ∈G

J(γ), (3)

where E{·; f, γ} stands for the operator of ex-
pected value parameterized by the behavior of the
controlled system Σ1 and controller Σ2 realizing
control strategy γ.

Problem formulation 1. For a given controlled
subsystem Σ1, determine a set of admissible
strategies G. Then, find a control strategy γ∗ ∈ G.

Determination of G is trivial in SISO systems, be-
cause there exist only two boundary cases, ū = ∅
and ū = u. Their respective G contains either
all strategies γk(uk|uk−1

0 , yk
0 ) or is restricted to

γk(uk|uk−1
0 , yk−1

0 ). MIMO systems require much
more care and thus it became a routine to con-
strain the optimization to the set of control strate-
gies γ(uk|uk−1

0 ,yk−1
0 ) as soon as ū in (1) is not an

empty set. The result, however, may not exhibit
the best possible behavior since the control strat-
egy does not use all information available at time

k. It may thus be desirable to design a system
with the least number of delays (Willems, 1991).

Definition 1. Let fi,k(yi,k : xk−1, yk−1, uk−1, ūk),
k ∈ T , denote the pdf of yi,k, derived from (1).
The output variable yi,k is said to algebraically
depend on input uj,k if for all k holds that

fi,k(yi,k : xk−1,yk−1,uk−1,
u1,k, . . . , ûj,k, . . . , um,k)

6= fi,k(yi,k : xk−1, yk−1, uk−1,uk),

where ûj,k denotes that uj,k is deleted.

Definition 2. The adjacency matrix of Σ1 at time
k ∈ T is a (p × m) matrix Sk, such that
Sk[i, j] = 1 if yi,k algebraically depends on uj,k

and Sk[i, j] = 0 if it does not. The matrix Sk

determines the structure of algebraic input-output
dependencies (SAIOD) of Σ1 at time k.

Remark 1. SAIOD of Σ1 can generally vary with
time as apparent from Definition 1 and Defini-
tion 2. Thorough this paper, however, only control
systems with time-invariant SAIOD are consid-
ered. Thus Sk = S. Control at time k is stan-
dardly generated at once, as a vector uk. Such
control strategy is said to be a batch control strat-
egy. Maximum information (Data) available for
control at time k will be denoted Dk.

Lemma 1. Dk available for generating the control
vector uk consists of all uk−1

0 , yk−1
0 and all yi,k

not algebraically dependent on any uj,k, j =
1, 2, . . . ,m, that is, of all such yi,k that S[i, j] = 0,
∀j.

Proof. Data from the time instants 0, . . . , k − 1
as well as observed variables at time k, which
are not algebraically dependent on any uj,k, can
not cause an algebraic loop within the control
system Σ. Hence they belong to Dk. To show
that all algebraically dependent output variables
must be excluded, assume yi,k belongs to Dk and
simultaneously yi,k algebraically depends on some
uj,k. Algebraic dependence implies that uj,k must
have already been generated. This contradicts the
definition of Dk. 2

Corollary 1. Assume that the set G contains only
batch control strategies and that all batch deter-
ministic strategies are also contained in G. Then,
from (Žampa et al., 2004), the solution of optimal
control synthesis is given by the following opti-
mizing recursion

Vk(Dk) = min
uk∈U

E{Vk+1(Dk+1) + Lk(·)|Dk),uk}
u∗k = argmin

uk∈U
E{Vk+1(Dk+1) + Lk(·)|Dk, uk)}

J∗ = E{V0(D0)},



where Vk(Dk) is a Bellman function, VF+1(·) = 0
and k = F, . . . , 1, 0.

2.3 Sequential control strategy

The optimizing recursion in Corollary 1 solves the
optimal synthesis problem if only batch control
strategies are considered. Nevertheless, relaxing
the assumption on a batch generation of uk may
allow utilization of more information than Dk for
control. On the other hand, it will also require
careful analysis of the admissible structures.

Definition 3. Let

(v(1)′
ζ , . . . , v

(q)′
ζ )′ = ũζ

be a disjoint grouping of a ζ-th permutation of
the control variables u, where dim(v(i)

ζ ) 6= 0.
Furthermore, let

(z(0)′
η ,z(1)′

η , . . . , z(q)′
η )′ = ỹη

be a disjoint grouping of an η-th permutation of
the observed variables y. A control strategy γζ =
(γ(1)

ζ , . . . , γ
(q)
ζ ) that generates uk sequentially at

time k, such that

γ
(i)
ζ,k

(
v

(i)
ζ,k|D(i)

ζ,k

)
,

where D
(i)
ζ,k = D

(i−1)
ζ,k ∪{v(i−1)

ζ,k , z
(i)
η,k}, i = 1, . . . , q,

and D
(0)
ζ,k = {uk−1

0 ,yk−1
0 }, is called sequential

control strategy. Moreover, if dim(v(i)
ζ ) = 1 for all

i = 1, . . . , m, γζ is said to be strictly sequential.

Sequential control strategy realizes the vectors
v

(i)
ζ,k sequentially at the time instant k. Each γ

(i)
ζ,k

uses all information available for γ
(j)
ζ,k, j < i, plus

data that may be contained in z
(i)
η,k. As there are

no restrictions on the dimension of z
(i)
η,k, some

z
(i)
η,k may be empty. The group z

(0)
η,k thus contains

observed variables yηi,k ∈ ỹη,k that are not used
for control at time k.

Note that any batch control strategy is a special
case of sequential control strategy, consider, for
example, the case q = 1. Hence allowing the use of
sequential strategies can not decrease the control
quality. This reasoning leads to an alternative
problem formulation.

Problem formulation 2. For a given controlled
subsystem Σ1, find a set of admissible sequential
control strategies G. Then, find a control strategy
γ∗ ∈ G.

The only condition for a strategy γ to belong to
G is that the control system composed of Σ1 and
of Σ2 does not contain algebraic loops. Only the

SAIODs of the plant and of the control strategy
are needed for a check for algebraic loops within
the control system.

Definition 4. Let γi,k(ui,k|uk−1
0 ,yk−1

0 , ȳk) be a
control strategy for ui,k. The control variable ui,k

is said to algebraically depend on yj,k at time
k ∈ T if

γi,k(ui,k|uk−1
0 , yk−1

0 , y1,k, . . . , ŷj,k, . . . , yp,k)
6= γi,k(ui,k|uk−1

0 ,yk−1
0 ,yk),

where ŷj,k denotes that yj,k is deleted.
Structure of algebraic input output dependencies
of the control strategy γ is described by an adja-
cency matrix R of the control strategy. Matrix R
of dimension (m× p) is such that R[i, j] = 1 if ui

algebraically depends on yj and R[i, j] = 0 if it
does not.

There is a class of control strategies with a partic-
ular SAIOD that is of interest during the optimal
control synthesis. This follows from the fact that
in order to use all information available at each
stage of the sequential control strategy, its SAIOD
should be as rich as possible.

Definition 5. Consider the SAIOD of an admissi-
ble control strategy described by R. The structure
is said to be maximal, if the closed loop loses well-
posedness by a change of its arbitrary zero entry
to one. With an abuse of notation, the correspond-
ing control strategy will be called maximal as well.
The set of all maximal strategies is denoted GM .

Clearly, since a maximal strategy is defined as
admissible, so is any other strategy with a SAIOD
that is contained in the maximal one. This leads
to the final problem formulation.

Problem formulation 3. For a given controlled
subsystem Σ1, determine a set of control strategies
with maximal structure GM . Then, find a control
strategy γ∗ ∈ GM .

Retrieval of all maximal structures from the set
of all possible structures is not a trivial prob-
lem. One option is to use graph theory. Then,
one analyzes whether the directed graph resulting
from feedback connection of SAIOD of the plant
and of the control strategy is acyclic, e.g. by the
use of Floyd’s algorithm (Gibbons, 1999). Acyclic
directed graphs need to be checked for maximal-
ity. Complexity of such a solution is obviously
exponential and thus unsuitable for systems with
higher numbers of inputs and outputs. The solu-
tion presented in the next section takes advantage
of special features of the strategy synthesis and
significantly reduces the computational complex-
ity.



3. DETERMINATION OF MAXIMAL
STRUCTURES

3.1 Basic algorithm

Recall that any sequential (and hence also batch)
control strategy can be realized as a strictly se-
quential control strategy. This implies that there
is no need to check all admissible SAIOD for
maximality. Indeed, there are only at most m!
possible permutations ũζ to be analyzed.

Let ũζ be a permutation of u. Let γζ be an
admissible strictly sequential control strategy re-
alizing ũζ such that changing any zero entry of
its corresponding Rζ to one either validates ad-
missibility of γζ or requires a change in ũζ , then
γζ is said to have maximal SAIOD conditioned
by permutation ζ. Such control strategy is called
conditioned maximal strategy.

Proposition 1. Let ũζ be the ζ-th permutation of
the elements of u and let γζ be the conditioned
strictly sequential control strategy realizing ũζ as

uζ1 → · · · → uζi → · · · → uζm

Then Rζ describing SAIOD of γζ can be com-
puted by the following algorithm.

Rζ := ¬S′

for i = m− 1, . . . , 1
Rζ [ζi, :] := Rζ [ζi, :] ∧Rζ [ζi+1, :];

end

where the symbols ¬ and ∧ denote logical opera-
tors of negation and AND, respectively.

Proof. Idea of the proof was suggested by Pešek
(1997). From Definition 3, a strictly sequential
control strategy at time k is given by

γζ,k =
(
γ

(1)
ζ,k(v(1)

ζ,k|D(1)
ζ,k), . . . , γ(m)

ζ,k (v(m)
ζ,k |D(m)

ζ,k )
)
.

(1) The admissibility condition implies that D
(i)
ζ,k

in γ
(i)
ζ,k(v(i)

ζ,k|D(i)
ζ,k) must not contain any ele-

ment of yk that will acquire their values after
application of at least one v

(j)
ζ,k, j ≥ i on Σ1.

(2) The maximality condition, on the other
hand, requires D

(i)
ζ,k to contain all elements

of yk that have already acquired their values
after realization of all v

(j)
ζ,k, j < i.

It is advantageous to start the algorithm by de-
termining yr,k ∈ yk that belong to D

(m)
ζ,k . By

Definition 2, information on such observed vari-
ables is contained in S′[ζm, :]. In the next step,
D

(m−1)
ζ,k can be to found readily from S′[ζm, :]

and S′[ζm−1, :]. The calculation proceeds towards
D

(1)
ζ,k.

The actual computational algorithm follows from

the fact that since both S′ and R are defined over
{0, 1}m×p, logical operations can be applied. 2

Note that only such yr,k that S′[ηr, i] = 0, ∀i =
1, . . . , m may belong to D

(1)
ζ,k, which complies with

Lemma 1. Proposition 1 assigns to each permuta-
tion ũζ a maximal conditioned control strategy.
To obtain a set of maximal control strategies,
all strategies whose SAIOD is a strict subset
of SAIOD of another control strategy should be
eliminated. In particular, consider maximal con-
ditioned control strategies γη and γζ . If

Rη[i, j] = 1 ⇒ Rζ [i, j] = 1, ∀i, j,
then Rη is said to be a subset of Rζ and denoted
Rη ⊂ Rζ . Moreover, if also Rη ⊃ Rζ , which
implies Rη = Rζ . Then, γη and γζ are called
equivalent. Otherwise, Rη 6⊃ Rζ and γη is not
maximal. It follows that if Rη ⊂ Rζ holds for a
pair of maximal conditioned strategies, then γη

can be omitted from construction of GM .

3.2 Reducing computational complexity

At most m! strictly sequential control strategies
need to be constructed. Computational complex-
ity can be reduced by analyzing the plant adja-
cency matrix S before generating ũi.

(1) Assume there exist r elements of u such that
S[:, i1] = S[:, i2] = · · · = S[:, ir] for some
i1, i2, . . . , ir . Then, without loss of gener-
ality, {ui1 , ui2 , . . . , uir} can be grouped to-
gether and considered as one control variable
when searching for control strategies with
maximal SAIOD.

(2) By the proof of Proposition 1, if there are i, j
such that S[:, i] ⊂ S[:, j], then any strictly
sequential control strategy where ui precedes
uj is either not maximal or there exists
an equivalent maximal control strategy that
differs only by the order of ui and uj . Hence,
no control strategy is constructed for such
permutation.

(3) If there are s elements of u such that
S[j, i1] = · · · = S[j, is] = 0, ∀j, then, by
the maximality condition, these variables can
be aggregated and applied as a batch after
all other control variables have already been
calculated and applied.

4. OPTIMIZING RECURSION

At this stage, maximal control strategies that
constitute GM have been determined in the form
of strictly sequential strategies. While the strict
sequential strategies have proved useful in con-
structing GM , they may unnecessarily complicate
the optimizing recursion.



Agregation of elements of u using analysis of
S, was discussed in previous section. Another
grouping relies on analysis of Rζ and may be done
after GM had been constructed. Namely, if

Rζ [ζr, :] = Rζ [ζs, :], r < s,

then Rζ [ζr, :] = Rζ [ζi, :], i = r, . . . , s. Assume,
moreover, that the relation is not true for r−1 nor
for s+1. By construction, uζr

, uζr+1 , . . . , uζs
are in

the given permutation ζ ordered subsequently and
D

(r)
ζ,k = D

(r+1)
ζ,k = · · · = D

(s)
ζ,k. From Definition 3, it

follows that

v
(i)
ζ = (uζr , . . . , uζs)

′

for some i. Subsequential regrouping the elements
yields ũζ =

(
v

(1)′
ζ , . . . , v

(q)′
ζ

)
, q ≤ m, which is the

desired input form for optimizing recursion.

Proposition 2. Let GM contain (possibly non-
strictly) sequential control strategies with maxi-
mal SAIOD together with their deterministic ver-
sions. Let Vk(Dk) be the Bellman function at time
k defined by

Vk(Dk) = min
γF

k
∈(GM )F

k

E
{ F∑

i=k

Li(·)|Dk; f, γF
k

}
,

where γF
k is the control strategy applied from the

time instant k until the final time F , (GM )F
k =

GM × · · · × GM and VF+1(xF
0 , yF

0 ,uF
0 ) = 0. Fur-

thermore, let V
(i)
ζ,k denote the Bellman function

corresponding to application of v
(i)
ζ,k. To obtain

the optimal control strategy minimizing (2), the
following optimizing recursion must be calculated
for each γζ ∈ GM at time k:

V
(i)
ζ,k(D(i)

ζ,k) = min
v

(i)
ζ,k
∈U

E
{
V

(i+1)
ζ,k (·)|D(i)

ζ,k,v
(i)
ζ,k

}
(4)

D
(i)
ζ,k = Dk∪

( ∪i
j=1 z

(j)
η,k

) ∪ ( ∪i−1
j=1 v

(j)
ζ,k

)
(5)

v
(i)∗
ζ,k = argmin

v
(i)
ζ,k
∈U

E
{
V

(i+1)
ζ,k (·)|D(i)

ζ,k,v
(i)
ζ,k

}
, (6)

where i = q, q − 1, . . . , 1, the initial condition at
time k is given by

V
(q+1)
ζ,k (Dk+1) = Vk+1(Dk+1) + Lk

(
yk

0 ,xk
0 ,uk

0

)

D
(q+1)
ζ,k = Dk+1

and D
(1)
ζ,k = Dk. The optimal control strategy at

time k is given by

Vk(Dk) = min
ζ

{
V

(1)
ζ,k (Dk)

}
(7)

ζ∗(Dk) = argmin
ζ

{
V

(1)
ζ,k (Dk)

}
. (8)

Proof. The proposition follows from the result
in (Žampa et al., 2004) adapted to the notion
of a sequential control strategy. At a time k,

the optimal control strategy γF
k+1 for the time

segment k + 1, . . . , F is assumed to be known.
Since each γζ,k ∈ GM comes with a different
SAIOD, control values for each structure must
be found by recursion (4)–(6). Clearly, ∪i

j=1z
(j)
η,k

is determined by nonzero entries of Rζ [ζi, :]. At
i = 1, the recursion generates V

(1)
ζ,k (Dk), which

is the value of Bellman function at time k for the
strategy

(
γζ,k, γF

k+1

)
. Selecting ζ that provides the

smalles value of V
(1)
ζ,k (Dk) in (7), (8) concludes the

control strategy design at time k. 2

5. ILLUSTRATING EXAMPLE

Let the plant Σ1 be described by

Σ1 : y1(k) = u1(k) + 2x(k)

y2(k) = u2(k) + x(k),

y3(k) = u1(k) + u3(k) + 3x(k),

x(k + 1) = αx(k) + ξ(k)

where ξ is a white noise with N (0, σ2) and the
usual notation is used for time dependence. The
given quality criterion is

J = E
{ F∑

k=0

Lk

(
y(k)

)}
= E

{ F∑
k=0

3∑
i=1

yi(k)2
}
. (9)

All yi(k) are algebraically dependent on at least
one uj(k) and hence Dk =

(
uk−1

0 , yk−1
0

)
. More-

over, thanks to simplicity of Σ1 estimation of x(k)
can be solved trivially as

E
{
x(k)|Dk

}
= α(y1(k − 1)− u1(k − 1))/2

var
{
x(k)|Dk

}
= σ2, (10)

E
{
x(k)|Dk, u1(k), y1(k)

}
= (y1(k)− u1(k))/2

var
{
x(k)|Dk, u1(k), y1(k)

}
= 0, (11)

E
{
x(k)|Dk, u2(k), y2(k)

}
= y2(k)− u2(k)

var
{
x(k)|Dk, u2(k), y2(k)

}
= 0, (12)

depending on information available at the given
stage of control generation. Note also that the
solution (10) of E

{
x(k)|Dk

}
is not unique.

A batch control strategy minimizing (9) follows
from Corollary 1 and its realization is

γ0 :u∗1(k) = −α
(
y1(k − 1)− u1(k − 1)

)

u∗2(k) = −α
(
y2(k − 1)− u2(k − 1)

)

u∗3(k) = −α
(
y3(k − 1)− u3(k − 1)− y1(k − 1)

)
.

The corresponding value of (9) is J(γ0) = 14Fσ2.

Considering sequential control strategies, it fol-
lows from

S u1 u2 u3

y1 1 0 0
y2 0 1 0
y3 1 0 1



that no control strategies need to be constructed
for permutations, where u3 precedes u1. Thus
only 3 strategies are to be determined, defined
by permutations ũζ as ũ1 = (u1, u2, u3)′, ũ2 =
(u1, u3, u2)′, ũ3 = (u2, u1, u3)′ and their respec-
tive adjacency matrices

R1 y1 y2 y3

u1 0 0 0
u2 1 0 0
u3 1 1 0

,

R2 y1 y2 y3

u1 0 0 0
u2 1 0 1
u3 1 0 0

,

R3 y1 y2 y3

u1 0 1 0
u2 0 0 0
u3 1 1 0

.

Let k = F , then, since VF+1(xF
0 , yF

0 , uF
0 ) = 0, the

optimal control for γ1, defined by ũ1 and R1, is
obtained by

V
(3)
1,F = min

u3(F )∈U
E

{
LF (·)|DF , u(F ), y1(F ), y2(F )

}

= y1(F )2 + y2(F )2

u∗3(F ) = 3(u2(F )− y2(F ))− u1(F )

V
(2)
1,F = min

u2(F )∈U
E

{
V

(3)
1,F |DF , u1(F ), u2(F ), y1(F )

}

= y1(F )2

u∗2(F ) = (u1(F )− y1(F ))/2

V
(1)
1,F = min

u1(F )∈U
E

{
V

(2)
1,F |DF , u1(F )

}

u∗1(F ) = α(u1(F − 1)− y1(F − 1))

and V
(1)
1,F = V1,F = 4σ2. Formulae (12), (11) and

(10) were used for estimation of xk. The remaining
optimal conditioned control strategies γ∗2,F , γ∗3,F ,
obtained by similar calculations, are given by

γ2,F :u∗1(F ) = α(u1(F − 1)− y1(F − 1))
u∗3(F ) = (3y1(F )− u1(F ))/2
u∗2(F ) = (u1(F )− y1(F ))/2,

γ3,F :u∗2(F ) = α(u2(F − 1)− y2(F − 1))
u∗1(F ) = 2(u2(F )− y2(F ))
u∗3(F ) = 3(u2(F )− y2(F ))− u1(F )

and the corresponding values of Vζ,F are

V2,F = 4σ2, V3,F = σ2.

Since

VF (DF ) = min
ζ∈{1,2,3}

Vζ,F = V3,F = σ2

is a constant, the optimal strategy for all time
instants is γ3 and that the value of (9) becomes
J(γ3) = Fσ2. In this example, a sequential control
strategy illustrated its higher control quality over
a batch strategy.

6. CONCLUSION

Optimal control problem was a motivation for
considering connection of systems with algebraic
dependencies. Instead of the usual (and tedious)
search for admissible maximal control strategies

within the set of all possible structures of the
strategies, the causality property was invoked.
Namely, the notion of a sequential strategy was
defined and then utilized in an efficient algorithm
that provides maximal structures of admissible
strategies. This may be seen as the main result
of the paper. As its consequence, the standard
optimizing recursion was extended.

The permutation number ζ∗ may be thought of
as a switching parameter determining which of the
possible structures of a controller ought to be used
at time k. This falls into the framework of hybrid
or, more precisely, switched systems (Hespanha
and Morse, 2002).

The problem can be extended to systems that
may switch between control strategies γζ,k during
generation of the control sequence ũζ,k at each
time k. This poses a nontrivial problem, where a
suboptimal solution is possible using an open-loop
feedback. Finally, a more practical modification
of the proposed optimal control design consists in
fixing the control strategy for the whole control
horizon, i.e., ζ∗ is constant for all k ∈ T . The
choice of optimal ζ∗ by (7) and (8) is then carried
out only once, at k = −1.
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