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Abstract: A novel two-thermocouple sensor characterisation method for use in 
variable velocity flow environments is described.  A difference equation method, 
recently developed by the authors for constant velocity flow applications, is 
extended to accommodate variable velocity flows using polynomial parameter 
fitting on a sliding data window.  In particular, by using a novel difference equation 
formulation the invariance of time-constant ratio with respect to flow velocity is 
exploited to produce an efficient unbiased and consistent time-constant estimator. 
Monte-Carlo simulation studies show that the new algorithm outperforms 
alternatives in the literature without the restrictive requirement of a priori 
knowledge of thermocouple time constant ratios.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

Dynamic measurement of exhaust gas temperature 
(EGT) gives valuable insights into car engine 
performance, particularly during transient 
operation. As manufacturers strive to design more 
fuel efficient, low emission cars EGT is likely to 
become a desirable input in next generation 
electronic engine management systems (EEMS) 
(Kee, et al., 1999).  However, performing accurate, 
reliable and cost-effective measurement of rapidly 
changing gas temperature is a challenging problem.  
 
Fast response temperature measurement can be 
performed using sensors based on techniques such 
as Coherent Anti-Stokes Spectroscopy (CARS), 
Laser-Induced Fluorescence, and Infrared 
Pyrometry, but these are expensive, difficult to 
calibrate and maintain and therefore not practical 
for wide scale deployment. The use of a 
thermocouple as an instrument for temperature 
measurement is common because of its simplicity, 
robustness, relatively low cost, ease of manufacture 
and installation. Unfortunately, their design, a 
compromise between robustness and speed of 

response, poses major problems when measuring 
high frequency temperature fluctuations. From 
thermodynamic considerations it can be shown that 
the bandwidth of a thermocouple )( Bw  is dependent 

on its diameter according to the equation 
 

mm
B vdw 2−= κ  (1) 

 
where κ  and m  are constants, d  is the diameter of 
the thermocouple wire and v  is the velocity of the 
gas. Thus, we require large diameters for the harsh 
environments presented by engine exhausts, but 
small diameters to follow the rapid temperature 
fluctuations. One solution to this problem is to 
employ robust large diameter thermocouples and 
then utilise software techniques to reconstruct the 
true temperature from the attenuated and phase 
shifted measurements. Before such reconstruction 
can take place, however, a model of the 
thermocouple must be determined, a process 
referred to as sensor characterisation.   
 
If certain criteria regarding the mechanical 
construction and placement of thermocouples are 
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met (Forney and Fralick, 1994) they can be 
adequately modelled as having first order dynamics 
with time constant τ  and unity gain.   
 

)()()( tTtTtT mmg
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Here )(tTg

 is the true gas temperature and )(tTm
 is 

the measured temperature.  
 
In theory, using this model )(tTg

 can be 

reconstructed from the measured temperature and 
its derivative.  In practice this approach is infeasible 
as measurements are generally corrupted by noise, 
making )(tTm

&  difficult to compute accurately.  

Furthermore, τ , a function of the bandwidth 

)2( 1−= BB ww πτ , varies with gas flow velocity (1) 

and is generally unknown a priori.   
 
Thus, a single thermocouple provides insufficient 
information to determine sensor characteristics in 
situ.  Data fusion can be used to help with sensor 
characterisation and it is quite common to use two 
thermocouples for this purpose.  There are 
numerous publications on the problem of time 
constant estimation and subsequent temperature 
reconstruction on the basis of measurements taken 
from two or more thermocouples with different 
time-constants. (e.g. Kee, et al., 1999; Tagawa and 
Ohta, 1997; Forney and Fralick, 1994).  These two-
thermocouple probe (TTP) methods rely on the 
restrictive assumption that the ratio of the 
thermocouple time constants α  ( 1<α  by 
definition) is known a priori. They are also subject 
to singularities and sensitive to noise.  
 
Hung, et al. (2003 and 2004) developed difference 
equation methods for TTP characterisation that do 
not require any a priori assumptions about the time 
constant ratios. However, to date the methods have 
mainly focused on single-valued time constant 
estimation, where the gas flow velocity is kept 
relatively constant.  Unfortunately, this is not 
always applicable in practical situations such as 
engine exhausts where gas velocity varies 
continuously.   
 
To tackle the issue of sensor characterisation under 
varying gas flow conditions, this paper proposes a 
novel difference equation algorithm that exploits 
the invariance of time constant ratio with respect to 
gas flow velocity (Hung, et al., 2004). This reduces 
the problem to one where only a single time-
varying parameter needs to be tracked and allows 
efficient sliding data window and polynomial 
parameter fitting techniques to be used to obtain 
unbiased time-constant estimates. The proposed 
algorithm gives improved performance in terms of 
time constant estimation accuracy and noise 

tolerance compared to existing sliding window 
methods.   
 
The remainder of the paper is organised as follows.  
Difference equation based sensor characterisation 
formulations and associated unbiased parameter 
estimation algorithms are described in Section 2. 
The new sliding window formulation incorporating 
polynomial parameter fitting is then introduced in 
Section 3. Simulation results demonstrating the 
operation and performance of the new algorithm are 
given in Section 4 and finally Section 5 provides 
some conclusions.   
 
 

2. DIFFERENCE EQUATION SENSOR 
CHARACTERISATION 

 
 
2.1 Difference Equation Thermocouple model 
 
The equivalent discrete time representation for the 
thermocouple model (2) is: 
 

)1()1()( −+−= kbTkaTkT gmm
,  (3) 

 
where a  and b  are difference equation ARX 
parameters and k  is the sample instant.  Assuming 
ZOHs and a sampling interval 

sτ , the parameters of 

the discrete and continuous time thermocouple 
models are related by  
 

aba s −=−= 1,)exp( ττ .   (4) 
 
 
2.2 Three-parameter ARX model (Gamma model) 
 
The discrete parameters a  and b  cannot be 
identified using (3) alone because 

gT  is unknown.  

However, using two thermocouples that are subject 
to the same environmental conditions (i.e. the same 
gas temperature 

gT  and gas velocity v ), 
gT  can be 

eliminated to produce the following 3-parameter 
ARX representation: 
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Here subscripts 1 and 2 are used to distinguish 
between signals from different thermocouples. The 
3 gamma parameters are introduced to convert the 
non-linear 2-parameter (

21,aa ) model into a linear-



in-the-parameter ARX formulation (Fig. 1) that can 
be solved using linear least-squares techniques. 
 

Analysis of the gamma model formulation shows 
that conventional least-squares identification leads 
to biased parameter estimates because noise is 
present on both the model input and output signals.  
Hung, et al. (2003) showed that unbiased parameter 
estimates can be achieved using total least squares 
(TLS), provided the variance of the noise on both 
thermocouple measurements is the same. However, 
Monte-Carlo simulation studies showed that TLS 
was only effective for low noise levels as the 
variance of the estimates grew rapidly with noise 
level. This is partly a feature of TLS, which is 
known to yield higher variances than conventional 
least squares (Van Huffel and Vandewalle, 1991), 
and partly due to the extra degree of freedom 
introduced by having a 3-parameter model for a 
system with only two unknowns. 
 
 
2.2 Two-parameter ARX model (Beta model) 
 
The 3-parameter model can be reduced to a linear 
two-parameter formulation by defining a new 
parameter 

12 bb∆β  and expressing (5) in terms of 

β  and 
2b  only. This gives 
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where k

mT 1∆ , k
mT 2∆ , and 1

12
−∆ k

mT  are composite 

variables defined as 
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For an M-sample data set (7) can be expressed in 
vector-matrix form as 
 

X
θ

Y = ,  (9) 
 
with .][and],[, 2

1
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Here k
m1T∆ , k

m2T∆  and 1
12
−∆ k

mT  are vectors containing 

M-1 samples of the corresponding composite 
signals k

mT 1∆ , k
mT 2∆ , and 1

12
−∆ k

mT .   

 
Due to the form of the composite input and output 

signals, the noise terms in the X  and Y  data 
blocks are no longer independent with the result 
that conventional least-squares and TLS both 
generate biased parameter estimates even when the 
measurement noise on the thermocouples is 
independent. Generalised total least squares 
(GTLS) on the other hand, which employs 
generalised singular value decomposition (GSVD), 
can produce unbiased parameter estimates under 
these conditions provided the noise covariance 
matrix, C  of the augmented data matrix ][ YX  is 

known to within an arbitrary scalar, that is 

0CC µ= , µ  an arbitrary scalar (Van Huffel and 

Vandewalle, 1991).     
 
Hung, et al. (2004) showed that for the 2-parameter 
Beta model (9) 

0C  can be expressed as  
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where φ  is the ratio of the thermocouple noise 

variances which is typically unity. 
 
Given 

0C , the GTLS parameter estimates are 

obtained by computing the GSVD of the matrix 
pair ][ YX  and W , where W  is the Cholesky 

decomposition of 
0C :  

 
),()],([ G
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and evaluating 
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Here 

G

Σ
 is the )13( ×  vector of generalised 

singular values, G is the )33( ×  matrix of 

corresponding singular vectors, 
3g  is the third 

column of G  and 
3,3g  is the third element of 

3g .   

 
 
3. SLIDING WINDOW CHARACTERISATION 

 
The sensor characterisation methods described in 
the previous section are intended for situations 
where thermocouple time constants are relatively 
constant over the interval of interest.   They can, 
however, be easily extended to variable time-
constant scenarios by introducing a sliding data 
window. Then, provided the time constants are 
changing sufficiently slowly to be almost constant 
over the length of the data window, accurate time 
constant estimates can be obtained.  
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Fig. 1. Equivalent ARX model for TTP sensor 
characterisation. 

 



The choice of data window length (N) is a critical 
parameter in the performance of these methods. 
Since the variance of least-squares parameter 
estimates and the bandwidth of the estimator (with 
respect to time-constant variation frequency) are 
both inversely proportional to N it follows that 
choosing N becomes a trade-off between robustness 
to measurement noise and tracking performance.  In 
practice, the sensitivity of sensor characterisation 
methods to noise severely limits the bandwidth that 
can be achieved.   
 
In the next section a sliding window algorithm is 
presented that extends the bandwidth that can be 
achieved by relaxing the requirement that time 
constants are invariant over the data window.  
 
 
3.1 Beta model with polynomial parameter fitting 
 
Recalling that the β  parameter in (7) is defined as 

12 bb∆β  and using the relationships in (4) it can 

be shown that 
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Provided .1ττ <<s

The significance of this 

relationship is that since α  is known to be 
invariant with respect to gas flow velocity (Kee, et 
al., 1999), it follows that β  is also approximately 

invariant and can therefore be assumed to be 
constant over large data windows even if the time 
constants are not.   
 
In light of this property of the β  model (7), the 

following generalisation is proposed as a means of 
relaxing the constraint on time constant invariance 
over the sliding data window: 
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where 

jb2
 is the polynomial coefficient of the jth 

power term.   
 
Here the constant 

2b  is replaced by a 3rd order 

polynomial, )(2 kb  to capture the parameter 

variation within the data window. A low order 
polynomial is chosen in preference to other 
function approximators such as neural networks as 
it provides a reasonable compromise between 
algorithm complexity and approximation accuracy.   

Given β  and )(2 kb , the most reliable sliding 

window time-constant estimates can be obtained by 
evaluating )(2 kb  at the centre of the sliding data 

window, i.e. at =k N/2.  Alternatively if the 
resulting N/2 sample delay cannot be tolerated the 
estimates can be computed for =k N.   
 
Modifying the matrix-vector representation (9) to 
incorporate )(2 kb  gives 

 

ppp

θ
XY = ,  (16) 

 
where 
 

][ 1
12

31
12

21
12

1
121

−−−− ∆∆∆∆∆= k
m

k
m

k
m

k
m

k
mp TkTkTkTTX  

T
p

k
mp bbbb ][, 232221202 β=∆= θTY  (17) 

 
with the products 1
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m
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In order to apply generalised total least squares 
(GTLS) to obtain unbiased parameter estimates 
with this extended model the corresponding noise 
covariance matrix must be computed as follows.  
 
 
3.2 Computing the noise covariance matrix 
 
Due to the introduction of the )(2 kb  polynomial the 

noise covariance matrix of the augmented data 
matrix ][ pp YX  contains terms of the form 
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a ηηηηη  are the random 

noise components of the composite signals defined 
in (8). If the noise components on the thermocouple 
measurements, )(1 kTm

 and )(2 kTm
, are assumed to 

be zero mean, white noise sequences with variances 

1v and 
2v respectively, then k

b
k
aηη  will be 

independent of the deterministic signal jk , hence 
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Taking into account the correlations between the 
composite noise signals it can be shown that 
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where 

21 / vv=φ  and is typically unity.   



][ jkE  can be computed over the N-sample sliding 

window as 
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where S  is the Stirling number of the second kind 
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Using these expressions the noise covariance 
matrix can be computed as 
 



























=

210

1

02

),(

321

365433

254322

143211

321

321

0

DDD

DDDDDD

DDDDDD

DDDDDD

DDD

DDD

Np

φφφφφ
φφφφφ
φφφφφ
φφφφφ
φφφφφ

φC
 

 (24) 
 
where 
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4. SIMULATION RESULTS 
 
A MATLAB® simulation of a two-thermocouple 
probe system (Fig. 2) was used to evaluate the 
performance of the proposed sliding window sensor 
characterisation algorithm. The thermocouples were 
modelled according to (1) and (2) with κ  and m  
set to 4.9x105 and 0.415, respectively. Wire 
diameters 1d  and 2d  were chosen to be 12.5 µm 

and 25 µm so as to yield time constants (Fig. 3) of 
the order of 2.5 and 7 milliseconds, respectively.  
The simulated gas temperature and velocity were 
varied sinusoidally according to the equations:  
 

)5.12sin(2530)(

)63sin(4575)(

ttv

ttTg

+=

+=
 (26) 

 
and the resulting temperature measurements 
sampled every 2 milliseconds. 
 
Fig. 3 shows the performance of the proposed β  

model polynomial parameter fitting sliding window 
algorithm (Beta PF) for noise free data and a 

window size of 100 samples (0.2 seconds). Also 
included, for comparison purposes, are results for a 
constant parameter β  model algorithm (Beta C). 

Note that while the velocity profile was chosen to 
be sinusoidal, the time constant profiles are not 
because of the non-linear relationship between gas 
flow velocity and time constant value (1).   
 
The results clearly show the superiority of the Beta 
PF approach, which gives consistently good time 
constant estimates over the complete profile while 
the Beta C algorithm performs very poorly 
throughout.   
 
The advantage of using polynomial rather than 
constant parameter fitting is further highlighted in 
Fig. 4. This shows the variation of 

2b  over a typical 

data window together with the )(2 kb  polynomial 

and constant parameter estimates of this variation.   
  
A series of 100 run Monte Carlo simulations were 
also performed to evaluate the performance of Beta 
PF in the presence of additive white measurement 
noise.  The percentage noise level, K , defined as 
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Fig. 2. Block diagram of the simulated two-

thermocouple measurement system. 
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Fig. 3. Beta PF and Beta C sliding window time 
constant estimates for noise-free data with 
sinusoidal flow velocity fluctuations.   

 



is used to quantify the amount of noise introduced. 
Here 

jη  is the measurement noise added to the jth 

thermocouple signal.   
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Fig. 4. Performance comparison of the Beta PF and 

Beta C models for a typical sliding window. 
 
The GTLS based Beta PF results are benchmarked 
against a conventional least squares (LS) Beta PF 
implementation to illustrate the effect of bias. In 
addition results are presented for the constant 
parameter Beta algorithm (Beta C) and a 
benchmark time domain reconstruction (TDR) 
technique that relies on a priori knowledge of the 
time constant ratio, α . For details of the latter, 
refer to Kee, et al. (1999). In each case a sliding 
window of 100 samples is used.   
 
Algorithm performance is measured in terms of the 
mean and standard deviation of 

jeτ , the percentage 

time constant estimation error defined as 
 

%
)(

)](ˆ)([100
)(

k

kk
ke

j

jj
j τ

ττ
τ

−
= ,  (28) 

 
averaged over 1.4 seconds of data (700 samples) 
and both time constants.  Here 

jτ  and 
jτ̂  are the 

true and estimated values respectively.  

 
The results (Table 1) clearly show that the GTLS 
Beta PF sliding window algorithm outperforms 
constant parameter alternatives at all noise levels. 
While TDR performs reasonably well, it does so by 
virtue of a priori knowledge of the time constant 
ratio, α , which allows parameter estimation to be 
reduced to a 1-dimensional search. This is reflected 
in the lower standard deviations observed with 
TDR. Allowing for the error that exists under noise 
free conditions (due to the limited approximation 
capabilities of cubic polynomials), a comparison of 
LS and GTLS Beta PF also shows that the later 
generates unbiased parameter estimates.   

 

 
 

5. CONCLUSIONS 
 

A novel sliding window difference equation based 
two-thermocouple sensor characterisation algorithm 
has been presented for variable velocity flow 
applications. By adopting a formulation that can 
exploit the time-constant ratio invariance property 
of such systems an efficient, unbiased polynomial 
parameter fitting method is developed to track time-
constant variation within the sliding window. 
Simulation results confirm the superiority of the 
new algorithm over alternatives that assume fixed 
time constants over the sliding window.   
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Table 1 Mean and (standard deviation) of the 
percentage estimation errors obtained with various 
sliding window sensor characterisation algorithms 

 
K (%) 

Methods 
0 1 2 4 8 

TDR (α) 
2.57 

(0.00) 
2.80 

(0.53) 
3.54  

(1.11) 
6.40  

(2.42) 
18.62 
(6.30) 

Beta C (GTLS) 
19.52  
(0.00) 

20.12 
(1.34) 

21.70 
(2.86) 

27.72 
(7.44) 

46.31 
(27.18) 

Beta PF (GTLS) 
1.73  

(0.00) 
1.23 

(1.74) 
0.08 

(3.57) 
3.45 

(7.47) 
9.30 

(13.38) 

Beta PF (LS) 
1.75  

(0.00) 
2.54 

(1.79) 
4.66 

(3.80) 
10.05 
(8.00) 

16.90 
(13.17) 

*Values in brackets are the mean percentage standard deviations 


