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Abstract: Modal, decoupled models of linear systems have easily interpreted parameters: 
gains and poles for independent rate processes, hence time constants and damping 
ratios. Time-varying modal models can fit a wide range of time-invariant, non-linear 
systems, and the time variation shows the effects of non-linearity. Modal parameters 
can be estimated via an ARMAX model, but the calculation is ill conditioned, so direct 
estimation of time-varying modal parameters is examined. The modal components of 
the output cannot be observed so must be estimated along with the parameters, a non-
linear estimation problem. It is treated as state estimation, using the extended Kalman 
filter (EKF) and optimal smoothing. The capabilities and limitations of the EKF are 
investigated by simulation. With care, good results can be obtained even in difficult 
cases, e.g. with abrupt change in an input or output offset. Coypright � 2005 IFAC 
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1.  INTRODUCTION 

In the identification of non-linear systems, linear but 
time-varying (LTV) models can act as a half-way step 
to non-linear, time-invariant models. The idea is to 
examine the time variation of the LTV model 
parameters to see how the model structure must be 
modified to produce a time-invariant model. For 
example, a gain found to vary in sympathy with the 
input indicates an input non-linearity. There exist long-
established recursive algorithms to estimate the 
parameters of LTV models (Mayne, 1963; Lee, 1964; 
Norton, 1975, 1976; Young, 1984; Norton, 1986; 
Niedzwiecki, 2000). 

Time-varying parameters may be handled efficiently in 
identification by representing them as random walks. 
The extent of variation of individual parameters can 
then be controlled selectively through the variances of 
their increments, with flexibility not afforded by 
forgetting factors or deterministic trend models. A wide 
range of behaviour can be accommodated by a simple 
random walk (SRW) (Norton, 1975) or integrated 
random walk (IRW) (Norton, 1976) model for each 
time-varying parameter. Each requires only a single 
number to be specified. For an SRW, the variance of its 
zero-mean, wide-sense-stationary increments controls 
the extent of its variation. For an IRW, the variance of 
the second differences controls the smoothness. The 
range of variation of an IRW is insensitive to its 
variance, so a parameter can be estimated initially, 
without fine tuning, as an IRW to find its range of 
variation, which is then used to give the variance of an 

SRW model (Norton, 1976). Alternatively the 
variances can be treated as meta-parameters, found by 
maximum-likelihood estimation (Young et al., 1991). 

Parameters modelled as random walks are effectively 
state variables. Along with sampled earlier inputs and 
outputs, they determine the model output through an 
observation equation. Formulating LTV parameter 
estimation as state estimation has the advantage of 
allowing the parameter estimates to be improved by 
fixed-interval optimal smoothing (Bryson and Ho, 
1975; Norton, 1975). The sequence of estimates from a 
“filtering” run through the input-output records is 
refined by reverse-time “smoothing” which exploits the 
information about the parameters present in later output 
samples. This is essential with short records, to 
distinguish genuine parameter variation from the 
convergence transient. Optimal smoothing also 
removes the lag between parameter variations and their 
estimates incurred by filtering. 

LTV identification with optimal smoothing is long 
established and has been found effective in a range of 
applications (Norton, 1975, 1976; Young et al., 1991; 
Evans et al., 2001; Chanat and Norton, 2003; Norton 
and Chanat, 2005). This paper examines modifications 
to extend its scope. Specifically, the technique is 
extended to cover decoupled modal models, moving-
average noise models independent of the plant model, 
and records with constant or time-varying offsets in 
input or output.  

Section 2 compares autoregressive-moving average-



 

exogenous (ARMAX) and modal model structures and 
finds several reasons for replacing the linear pseudo-
regressions often employed for parameter estimation by 
models containing products of unknowns. Section 3 
recalls an algorithm for identifying LTV ARMAX 
models by extended least squares and optimal 
smoothing, and suggests an alternative to handle 
products of unknowns while retaining enough linearity 
to allow optimal smoothing. In Section 4 the procedure 
is used on very demanding examples to test the 
performance obtainable. Section 5 draws conclusions.  

2.  ARMAX AND MODAL MODELS 

Approximate minimum-variance, linear, unbiased 
recursive parameter estimation often employs the 
pseudo-regression ARMAX model 
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where the subscripts t-i indicate discrete time, u and y 
are observed input and output, the regressor and 
unknown parameter vectors are  
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and {e} is zero-mean, white noise. Operator q-1 is a 
one-sample delay and A(q-1), B(q-1), and C(q-1) are 

polynomials. Including teqC )1( −  in 
t

T
t

xh  makes the 

“ noise”  term 
t

e  in (1) uncorrelated with th , avoiding 

estimation bias in tx  but requiring approximation of 

the unknown e’s in th  by estimates from earlier 
updates. The variances of the white, zero-mean 
increments in the random-walk model 

11 −
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−
=
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 (user-supplied, zero for constant parameters) define the 
diagonal covariance matrix 1−tQ  of 

1−t
w . 

As (1) is linear in tx , “ optimal”  filtering and 

smoothing can be applied, as described in Section 3. 

Statistical efficiency of the estimates is reduced by use 
of estimated e’s in th ; minimum covariance and zero 
bias are not generally achieved. This may not be 
significant, as ideal statistical properties are 
unachievable since (1) and its associated assumptions 
idealise the behaviour of the records, neglecting 
unmodelled high-order dynamics, non-linearity and 
non-stationarity. Only if the errors in the e’s dominate 
such systematic modelling errors are they of concern. 
However, (1) raises other practical issues. 

First, writing (1) in output-error form 
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the noise submodel is not parsimonious, as 1+C must 
cancel 1-A unless all noise is affected by all the plant 
poles. Conversely, if the parsimonious model  
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is rewritten as a pseudo-regression, the noise model 
(1+C)e is multiplied by 1-A. The products of 
parameters in CA then spoil the linearity needed for the 
optimal filtering and smoothing algorithm. 

Second, a linear model such as (1) or (4) commonly 
describes small-signal behaviour, about given input and 
output values, of a system with some non-linearity 
between total input and total output. Common practice 
is to refer the input and output to their sample means, 
subtracting the mean from each record before 
parameter estimation. If the total input-total output 
relation is )(ufy =  and *uuu −≡′ ,  *yyy −≡′ , 
then for small changes about *)*,( yu  
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which is valid only if *)(* ufy = , i.e. about mutually 
compatible input and output values. Taking a mean does 
not commute with a non-linear relation f(.), so the 
sample means ),( yu  are generally incompatible. If 

yufy ~)( += , the small-signal relation about ),( yu  is 

yuugyyy ~)( −′≅−=′ , not uugy ′≅′ )( . As f is 

unknown, so is bias y~ . The solution is to write the 
model explicitly for deviations from nominal: 
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It may be desirable to allow the nominal values to vary 
with time, to allow for drift and abrupt changes: 
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The u*’ s and y*’ s cannot be supplied from earlier 
updating steps like the unknown e’ s in (1), so (8) is 
bilinear in its unknowns. 

The third practical issue is the uninformative nature of 
ARMAX parameters. Their credibility and the 
implications of their time variation are best assessed by 
transforming them into poles ip and gains ig  in the 

modal model  
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Each igip  and  relates directly to the time constant 

and gain coefficient of an underlying rate process. For 
complex modes igip ∠∠  and relate to the frequency 

and initial phase of an oscillatory process. The snag is 
that the transformation from (8) to modal model (9) is 
ill conditioned. For instance, for n=2 the normalised 
sensitivities of 1g  to  

 ,211 ppa −−= , 212 ppa =  211 ggb += and 

12212 pgpgb −−=  are  
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Some are large if the poles are close and the gains 
comparable in magnitude. The alternative of directly 
identifying the modal model entails writing (9) as 
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which has unknowns 
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Again products of unknowns occur in the pseudo-linear 

t
e

t
T
tty += xh  resulting from (11) and (12). 

All three practical considerations thus give rise to 
models containing products of unknowns. The 
remainder of the paper discusses application to model 
(11) of an optimal-smoothing-based estimator which 
covers all three situations. 

3.  PARAMETER ESTIMATION ALGORITHMS 
FOR LTV MODELS 

The filtering pass  producing  ,...,2,1 ,ˆ Ntt =x is 
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where Pt is cov  2/ˆ
ett σx and ]2[2

teEet =σ . In th , 1−te  

to cnte −  are approximated by earlier residuals 

it
T

itityite −−−−=− xh ˆˆ . The smoothing pass over 

t=N, N-1,…,1 is 
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This algorithm is computationally cheap and stable, 
unlike some algebraic equivalents (Norton, 1975), but 
requires storage of all filtered P’ s. For an ARMAX 
model with SRW models of time-varying parameters, 

IF =t  and a simpler version requiring inversion of tF  
can be used (Norton, 1975). 

The non-zero diagonal elements of Q are tuned to keep 
the ratio ρ NteNt |̂  m.s./|  m.s. ν=  not far above 1 with 

Nte |̂  m.s.  small and credible parameter variations. Too 

much or too little parameter variation causes larger m.s. 
prediction error, raising ρ well above 1. This tuning 
technique requires no assumptions about distribution or 
stationarity. 

With SRW models for all time-varying parameters, 
model (11) can still employ optimal filtering and 
smoothing if linearised about the latest state estimate: 

[ ]Tcnccct-n.eteTT
t  0  1  ...1  ..1   −≡ 10h  (15) 

and transition matrix tF  is identity except for a unit-
downward-shift matrix for the e’ s as partition (4,4); 

),,...,,1( tnytydiag  and ),,...,,1( tnptpdiag as 

partitions (3,1) and (3,3); and T
th−  as row 2n+nc+1. 

The modal gains can alternatively be assigned to the 
output, simplifying tF  but complicating th . As in any 
extended Kalman filter (EKF), linearisation errors may 
dictate performance and even prevent convergence 
from poor initial estimates.  

4.  RESULTS 

Records of 2560 input-output pairs were generated with 
,3

2
,4

1
,6.02 ,8.01 ,2 −===== ggppn  

 ,2=
c

n 3.02 ,8.01 ,2 === cc
c

n  in (11). In some 

runs 1g  varied sinusoidally about 4 with peak 

amplitude 2 and, and/or offsets 2 ,2.0 =−= yu  
reversed signs instantaneously for certain periods. The 
input record and noise-generating sequence {e} were 
white and u.d. over (-0.5, 0.5).The m.s. output SNR 
was 10. To get insight into the behaviour of time-
varying estimates, a large number of single realisations 
were examined. A small selection, illustrating generic 
conclusions, are discussed below.  

Identifiability analysis via state observability would 
give data-dependent results, as the linear operators 
relating state at any instant to succeeding observations 
are the results of linearisation about current estimates. 
The simulation runs reported focus on identifiability, 
the effectiveness of smoothing, the influence of  initial 

estimates and variances, and tuning of Q. For brevity 
results are by default for initial estimates 0.9, 0.5 for 
the poles with normalised variances 0.4 (to avoid risk 
of instability); 1, -1 for the modal gains (unequal to 
impose a definite order and avoid repeated poles, the 
unequal initial pole values being insufficient to ensure 
this); 0 for the modal outputs with variances normally 
106; 0 for the c’ s and e’ s, with variances 10 and 1 (the 
latter by definition, as (13), (14) are normalised by the 
variance of e);  0 for u  and y  with variance 106. 

As expected, constant yu ,  are found not to be 
separately identifiable, varying greatly with the 
specified error variances of their initial estimates but 
influencing the m.s. value νs of the output 1-step 

prediction error by only a few percent. Fixing either at 
its correct value allows the other to be identified, 
mostly to well within 1%, over a range of initial 
variances from 100 to 106 for the g’ s, modal outputs, 
and whichever of u  and y  is free. Estimates of 1p  

range from 0.816 to 0.842, 2p  0.459 to 0.547, 1g  

2.46 to 3.19 and 2g  –1.68 to –2.17. Even so, νs  

varies only by 8% and the steady-state gain G by 4%, 
with all but one G within 1% of the actual value 12.5. 
The EKF is thus reasonably robust and captures the 
main features of the dynamics, but with accuracy which 
might be inadequate. 

Figure 1 shows estimates obtained after crude tuning of 
Q when y  reverses sign from t=450 to t=850 while 

1g varies sinsoidally between 2 and 6. 
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Figure 1(a)  Smoothed estimates: top to bottom 
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Figure 1(b) Smoothed estimates: y  (varying), u  

Similar mean errors to the previous case are evident, 
and the variation of 1g  is underestimated (even with its 

increment variance larger), but the variation in y  is 
captured well and at the same time the timing and 
nature of that in 1g  are well caught. 

In the next example u  reverses sign from t=850 to 
t=1650, a severe test as the algorithm has to distinguish 
the effects of these changes on the output from those of 
a change in one or both modal gains. The first graph of 
Figure 2(a) shows that, with the variances of the 
increments in 1g  and 2g  specified as zero, optimal 

smoothing cannot quite remove the spurious variation 
in 1g  and 2g  (because of linearisation error), but 

Figure 2(b) confirms that it has reduced it very 
considerably. Figure 2(c) shows excellent estimation of 
u .  
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Figure 2(a)  Smoothed estimates; order as in Fig. 1(a) 
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Figure 2(b)  Filtered and smoothed estimates 
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Figure 2(c)   Smoothed estimates of u  

Other broad conclusions from the cases investigated so 
far are that the biases cannot be removed by tuning of 
Q, the initial estimates or their specified variances, or 
by elaborating the noise model or allowing extra 
process noise terms to account for linearisation errors; 
the m.s. 1-step output prediction error is a reliable 
guide to model quality; the estimated covariance of the 
parameter errors is not a reliable guide; the specified 
variances of the initial estimates of the noise-model (c) 
parameters must not be too large (as is reasonable, as 
the noise model should not be allowed the freedom to 
interact with the time-varying model of the dynamics); 
convergence is slow compared with that for the 
equivalent ARMAX model; the values; optimal 
smoothing diverges in some cases (with relatively large 
initial errors and Q) where filtering does not; and the 
relation between Q and the variation of the parameter 
estimates is straightforward and consistent enough to 
make tuning Q fairly easy. 

 

5.  CONCLUSIONS 

A combination of a modal model, modelling of time-



 

varying parameters as random walks, extended Kalman 
filtering and optimal smoothing can give useful results 
in demanding cases including abruptly changing input 
or output offset (but not both) and/or strongly time-
varying modal gain. In contrast to ARMAX models 
treated by extended least squares and optimal 
smoothing, the noise model is decoupled from the plant 
dynamics. However, there remains doubt over how 
much of the bias found in the poles and modal gains is 
reducible in principle by an improved algorithm, and 
how much is intrinsic to the form of the model. 
Insensitivity of the prediction performance to these 
biases suggests that they are largely intrinsic.  
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