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Abstract: A method for a fuzzy hierarchical structure design is presented. The proposed
method uses data to design a structure of the fuzzy subsystems. The fuzzy structure is
designed level by level from data thus developing an initial fuzzy model is avoided. The
methods is tested on one real-world application - the daily gas consumption prediction.
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1. INTRODUCTION

A rule explosion is a fundamental limitation of fuzzy
systems because the number of rules increases expo-
nentially as the number of input variables increases.
Suppose that we haven inputs andm fuzzy sets de-
fined for each of them then the number of the rules
of the standard fuzzy system ismn. A rule base with
many input variables and the huge number of rules
tends to lose all good features - transparency, ability
to generalize, accuracy etc. Hierarchical organization
of fuzzy rule bases is the way how to reduce the com-
plexity of the fuzzy system and improve the insight
into the system behaviour. Also design, transparency,
tuning etc. become easier for the system consisting of
smaller fuzzy systems.

The idea of using hierarchical fuzzy systems has been
reported by many authors (Wang, 1998; Gegov and
Frank, 1995; Joo, 2003; Wang, 1999). In (Wang, 1998)
it is proved that the hierarchical fuzzy system is an
universal approximator and the number of rules in
a hierarchical system is linearly proportional to the
number of input variables. For the structure depicted
in Fig. 7 it can be shown that the number of rules is
minimal.

1 This work was in part supported by the Ministry of Education of
the Czech Republic under Project 1M6840770004.

Fig. 1. An example of a hierarchical system withn-
inputs which consists of two-input fuzzy systems

Several approaches lead to the design of the hierar-
chical fuzzy system. Usually the large fuzzy system is
decomposed into several fuzzy systems whose struc-
ture is simple see (Joo, 2003; Gegov and Frank, 1995).
The small fuzzy systems are interconnected according
to the given topology. This approach still need to de-
velop a large complex fuzzy system. The performance
and generalization of this model can be poor thus the
splitting process should fail. Usually some kind of the
rule base analysis is used to split the large rule base.
In (Wang, 1999) Wang proposes the learning gradient
descent algorithm for designing the hierarchical fuzzy
system from the input-output data. But some assump-
tions on the inner structure of the subsystems (number



and positions of fuzzy membership functions) are nec-
essary concerning also inner variables. Our goal is to
create a hierarchical fuzzy system layer by layer from
the data in order to avoid developing the large fuzzy
system without using prior information about internal
structures of fuzzy subsystems.

The paper is organized as follows: the structure of
fuzzy hierarchical systems is discussed in the next sec-
tion. The algorithm of the fuzzy hierarchical system
design is presented in following sections. The section
3 presents the example and the basic analysis. The
problem of inner fuzzy connections is discussed in the
section 4. After creating the hierarchical structure, the
rule bases can be simplified. This step is described in
the section 5. The real-world example is shown in the
section 6.

2. STRUCTURE OF HIERARCHICAL FUZZY
SYSTEMS

In general the hierarchical fuzzy system consists of
more then one rule base where an output of one rule
base serves as an input to another rule base. Let denote
inputs of subsystemsU , U consists of real inputsxi or
inner connectionszi.

Fig. 2. The structure design

Choosing internal structure of fuzzy systems is cru-
cial. Usually there is a set of available inputs and the
aim is to propose a suitable structure (Fig. 2). Despite
the fact that the structure in Fig. 7 has the minimal
number of rules it is not suitable for modelling real
systems. Such a structure is not well-arranged with re-
spect to the physical meaning of simple fuzzy subsys-
tems. Thus the better way is to define the structure of
the fuzzy system based on knowledge of the modelled
system. Inputs with the same background or related to
the same output should be connected to the same fuzzy
subsystem. It is supposed in this work that the internal
structure is given at the beginning.

Passing information from the rule base I to the rule
base IV in Fig. 3 can be realized either using defuzzi-
fication of the output of the rule base I and subsequent
fuzzification at the input of the rule base III or passing
fuzzy sets from the output of the rule base I at the
input of the rule base IV directly. Defuzzification and

fuzzification need to define fuzzy membership func-
tions for variablez1 and it is more time consuming
than passing fuzzy sets. If there are no data set for
z1 then the properties of the variablez1 can not be
verified. This method should be used if it is necessary
to get crisp values at the output of the rule base I,
e.g. z1 is a state of the dynamic system or it is one
of the crisp outputs of the hierarchical fuzzy system.
Passing fuzzy sets has some advantages comparing to
the previous approach. No special knowledge about
inner variables are required.

3. DESIGN OF HIERARCHICAL FUZZY
SYSTEMS FROM DATA

Fig. 3. The simple structure of the hierarchical fuzzy
system

Suppose the simple structure of the hierarchical fuzzy
system according to the Fig. 3. The fuzzy system
has three input variablesx1, x2, x3 and one output
y. It consists of two subsystemsS1, S2 having the
rule base I and the rule base II . The outputz of the
subsystemS1 is used as an input to the subsystemS2.
We would like to create the hierarchical fuzzy system
using fuzzy clustering algorithms from the measured
data set. The algorithm starts to create the subsystems
at the lower level, it means the subsystem which inputs
are the real (measured) inputs. Then the results from
the first level are passed as the inputs to the next one.
In conventional fuzzy hierarchical systemsz is a fuzzy
variable described by a fuzzy set. The rule base of the
fuzzy systemS1 is given by

R1
i : IF x1 is A1

i AND x2 is A2
i THEN z is Ci (1)

and the rule base of the fuzzy systemS2 is

R2
i : IF x3 is A3

i AND z is Ci THEN y is Bi (2)

The problem is that the properties and values of the
output variablez are unknown. Thus neither the fuzzy
clustering in the product space nor the fuzzy clustering
in the input space with the output parameter fitting can
be directly used. Subsystems at the first level have
defuzzification procedure for all inputs, a rule base
with a inference mechanism. The subsystem at the last
level has a defuzzification block, a fuzzification block
for inputs that are not input from subsystem at lower
levels and a rule base with an inference mechanism.
The internal structure of the simple hierarchical fuzzy
systems is in Fig. 4. The fuzzy system implementation
uses two sided Gaussian membership function. The
two side Gaussian function is smooth, continuously



Fig. 4. The internal structure of the hierarchical fuzzy
system

differentiable and the support of the Gaussian function
is also infinitely large. The singleton model is used
with the following inference mechanism

y(x) =

∑M
i=1 yiβi(x)∑M
i=1 βi(x)

(3)

whereyi is the position ofith singleton,βi is the firing
strength ofith rule.

The solution described below has been used to over-
come mentioned problems. The presented approach is
shown on the following example:

Example 1.Consider the non-linear functiony =
x1(1− x2) + x3. Training set contains 1500 samples,
the inputsx1, x2 andx3 are randomly generated val-
uesxi ∈ 〈0, 1〉, i = 1, 2, 3. Testing set has also 1500
but in order to illustrate the methodxi, i = 1, 2, 3 are
mutually independent sinus functions.

Let analyze this nonlinear function from the fuzzy
point of view. Consider that all inputs can reach two
fuzzy terms -small and large. There are three fuzzy
terms at the output -small, medium and large. The
conventional fuzzy system proposed by Wang algo-
rithm which cover the whole product space would
have23.3 = 24 rules. The non-linear function can be
decomposed into two parts.

y = x1(1− x2) + x3 (4)

y = z + x3 z = x1(1− x2)

It corresponds to the mathematical operation se-
quence, at first the multiplication then the addition.
Analyzing the first part of the non-linear function
x1(1− x2) the following rule base is to be most natu-
ral: Tab. 1 shows the fuzzy notation of the multiplica-
tion on universe〈0, 1〉. The subsystemS2 represents
additionz + x3, its fuzzy notation is in Tab. 2. Rule
bases in Tab. 1 and 2 are the fuzzy notation of the
system in the example 1. Such a fuzzy system would
probably choose a fuzzy expert to model the non-
linear function and this is a reason why the structure

Tab. 1. Fuzzy systemS1 - rule base I

IF x1 is AND x2 is THEN z is
R1 small small small
R2 small large small
R3 large small large
R4 large large small

of the hierarchical fuzzy system depicted in Fig. 3 has
been chosen.

Tab. 2. Fuzzy systemS2 - rule base II

IF x3 is AND z is THEN y is
R1 small small small
R2 small large medium
R3 large small medium
R4 large large large

4. INTERCONNECTIONS

The output of the subsystemS1 is used as the input
thus is necessary to pass results to the next layer. Two
method has been tested

- winner takes all
- weighted winner

”Winner takes all” is the method where the input pat-
tern is passed through the subsystemS1 then the mem-
bership to all output groups is measured. The number
of the output groups with the highest membership is
used as a result in the next layer. The inner variablez
and the mapS1 have following meaning

design: (5)

S1 : R2 −→ Z , z = f(x1, x2)

z = arg max
k

(Ak(xi))

simulation: (6)

S1 : R2 −→ Rm , z = f(x1, x2)

z = [A1(xi), . . . , Am(xi)]

wherexi is a particular datum,m is the number of
clusters at the output of the subsystemS1 and Ai

are membership functions represented by multidimen-
sional clusters. In our casez ∈ (1, 2, 3, 4). This ap-
proach supposes that a clustering algorithm used in
the next layer is able to deal with crisp value in this di-
mension because the groups can not be ordered. These
four clusters represent some consequent terms (e.g.
low, medium, big) but need not. At the second layer
the pattern belongs to the cluster with the membership
equal to one.

The second method is similar but the resulting clus-
ter is passed with the weight which is equal to the
membershipAk(xi) of the ith data sample to thekth

cluster. The clustering in the second layer is processed
in the same way, e.g. the crisp value representing
the number of the cluster is used as an input. But



real memberships fire corresponding rule propositions
during the model simulation. While in the previous
method only rules containing the rule proposition with
the excited cluster are fired so in this method all rules
can be fired.
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Fig. 5. Inputs ofS1 with centers of clusters (big
asterisks)

The input space of the subsystemS1 is divided to
several groups using a fuzzy clustering algorithm.
Any fuzzy clustering algorithm can be used at this
stage (e.g. see (Bezdek, 1981; Höppner and Runkler,
1999)). Thus the variablez is represented by several
clusters, in our case four clusters with the centers
marked in Fig. 5. Because there is no knowledge
on the variablez the clusters can not be lined up to
create the standard universe of the variablez. The
output of the subsystemS1 is not a single value but
at least two values - cluster and membership. The
complete information is represented by memberships
to all clusters, 4 membership in our example. This
information is passed from the subsystemS1 to the
subsystemS2. The basic structure of the rule base of
the subsystemS1 is in the Tab. 3. Data from the first

Tab. 3. Fuzzy rule base, subsystemS1, ba-
sic structure - example

IF x1 is AND x2 is THEN z is
R1 small small cluster I
R2 small large cluster III
R3 large small cluster II
R4 large large cluster IV

Tab. 4. Fuzzy rule base, subsystemS2, ba-
sic structure - example

IF z is AND x3 is THEN y is
R1 cluster I large medium
R2 cluster II large large
R3 cluster III small small
R4 cluster II small medium
R5 cluster IV large medium
R6 cluster I small small
R7 cluster III large medium
R8 cluster IV small small

layer are passed to the second layer and a new data set
is clustered and the rule base II of the subsystemS2

is established. This structure is summarized in Tab. 4.
Now the proposed hierarchical model has four rules in
the subsystemS1 at the first layer and eight rules in
the subsystemS2 at the second layer. Both rule bases
could be analyzed and simplified. The next section
addresses this problem.

5. RULE BASE SIMPLIFICATION

As mentioned in the previous sections, the meaning
of clusters at the connectionz is unknown, clusters
could not be denoted by fuzzy terms and ordered. But
we can presume that clusters have some meaning, e.g.
clusters I and II mean small and clusters III and IV
mean large. Merging clusters in the rule base would
simplify the structure but the consistency of rules must
be retained. By merging the cluster I with the cluster II
the inconsistent rule base arises because rulesR1 and
R2 have the same premise ”IF z IS new clusterAND
x3 IS large” but different conclusions (R1 - medium,
R2 - large). If the cluster I is joined with the cluster
III and the cluster IV (new one is denoted as cluster
V) then the rule base has only four rule given by Tab.
5. Comparing tables Tab. 1 to 3 and 2 to Tab. 5 it

Tab. 5. Fuzzy rule base, subsystemS2, after
simplification - example

IF x1 is AND x2 is THEN y is
R1 cluster V large medium
R2 cluster II large large
R3 cluster V small small
R4 cluster II small medium

is clearly seen that the cluster II represents fuzzy term
large while the cluster V (it is clusters I,III and IV)
means small. In such a case the assumed fuzzy rules
are the same as rules obtained by fuzzy clustering
method from data.

The graphical results of this algorithm with the
”weighted winner” connection between subsystems
are depicted on Fig. 6. The resulting hierarchical struc-
ture has eight rules (4 at the first stage + 4 at the second
stage)

The rule base simplification is the reason why the
topology of the fuzzy hierarchical system is restricted
to tree. In the case of branching of the variablez1

in Fig. ?? there could be problems with meanings
of clusters. Assume that there are four clusters at the
output of the rule base I. After the simplification of
the rule bases III and IV two possible interpretation
of clusters would be established. For instance in the
case of the rule base III three of four meansmall and
the remaining meanslarge while in the case of the
rule base IV one half meanlarge, the rest meansmall.
Both specific rule bases are consistent but the whole
hierarchical fuzzy system is not.

Algorithm - model design
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Fig. 6. The example with ”weighted winner” approach, training data set - left (zoom) and test data set - right

Set the structure of the fuzzy hierarchical system,
Sij is ajth subsystem inith layer. The structure
hasm layers andni subsystems atith layer. For
the sake of simplicity MISO system is supposed.
Let denote inputsx and outputsy, Uij is the input
matrix, it can contain inputsxi or inner variables
zij which is the output of the subsystemSij .
An input membership functionAj

i is ith mem-
bership function ofjth input, Bi are output sin-
gletons,Ck

ij is kth cluter inith inner layer atjth
output.
for i = 1 : m− 1

for j = 1: ni − 1
Generate clusters at theith level using
the matrixUij

Create the rule base of the fuzzy sub-
systemSij

Generatezij according to

zij(x) = arg max
k

(Ck
ij(x)) (7)

end
Prepare data inputs for the next level regard-
ing to the given structure. Symbolic descrip-
tion

Ui+1 = [x, zi] (8)

end
Seti = m
Use any clustering algorithms to generate sub-
systems at the highest level
AdjustSm1

Algorithm - model simulation

Suppose the fuzzy hierarchical system built ac-
cording to the previous algorithm.
for i = 1 : m− 1

for j = 1: ni − 1
If there are input from lower levels
then particular propositions of fuzzy
rules are excited by

Ri
2 : IF x3 is Ai

1AND z is Ci︸ ︷︷ ︸
Ci−1(x)

THEN y is Bi (9)

Computezij

zij = [C1(x), . . . , Ck(x)] (10)

wherek is the number of the output
clusters.

end
Prepare inputs for the next level regarding to
the given structure. Symbolic description

Ui+1 = [x, zi] (11)

end
Seti = m
Use inference mechanism of the subsystem at the
last level to compute the system output.

6. EXAMPLES

This section presents the use of the described method
in the prediction of the gas consumption. The goal of
the fuzzy model is to predict the daily gas consump-
tion for a year in the Czech Republic for different
weather scenarios (hot summer, middle summer, very
cold winter etc.). The more detailed description of this
project can be found in (Šindeĺǎr and Pavĺık, 2003).

In this project two groups of inputs are available. The
first group consist of measured weather information as
the normal temperature and the average temperature.
The calendar information are in the second group.
Such information as day of a week (Monday, ..., Sun-
day), holidays, days and months etc. can be found
here. Using the input selection algorithm proposed
in (Šindeĺǎr and Vľcek, 19-21 September 2002), the
following inputs have been chosen

• temperatures in dayk, k − 2, k + 2
• day of a week
• temperature normal in dayk

The attribute to be predicted in terms of above six
inputs is the daily gas consumption in the Czech
Republic. Available data sets are divide into two sets -



Tab. 6. Fuzzy models comparison

fuzzy model number of rules MAPE zone error
[%] class I class II class III

conventional FM 60 6.41 47.1 30.4 22.5
hierarchical FM I 5 + 15 6.89 46.2 30.8 23.0
hierarchical FM II 18 + 35 6.38 53.9 24.5 21.6

training set and testing set. The training set is used to
develop a fuzzy model while the testing set is used to
verify the quality of the fuzzy model.

To compare the model quality two criteria are applied.
The mean average percentage error is defined by

MAPE =
1
N

N∑

i

|yi − ŷi|
yi

100% (12)

whereyi is the measured output and̂yi is the model
output. The second criteria is the zone error which
counts the sample belonging to classes defined by

(1) class I- |xi−x̂i|
xi

100 ≤ 5 %

(2) class II - 5 %< |xi−x̂i|
xi

100 ≤ 10 %

(3) class III - |xi−x̂i|
xi

100 > 10 %

Developing the conventional fuzzy model lead to re-
sults shown in the first row of Tab. 6. The internal
structure of the hierarchical system is given by the
nature of inputs, see Fig 7. The measured temperatures
are inputs to the subsystemS1 at the first stage. The
output of this subsystemz together with the calendar
information are inputs to the subsystemS2. In the
rows 2 and 3 of Tab. 6 the results of two different
hierarchical models are shown. The fuzzy model I has
20 rules in total, the subsystemS1 contains 5 rules
and the subsystemS2 contains 15 rules. The numeri-
cal quality is comparable with the conventional fuzzy
model but the total number of the rule is three times
lower. The hierarchical fuzzy system II has the lower
number of rules as the conventional system but 8%
more samples have MAPE lower than 5% which the
most favourable in this case because the errors over
5% are penalized.

Fig. 7. Internal structure of fuzzy model for gas con-
sumption prediction

7. CONCLUSIONS

The very simple method for fuzzy hierarchical sys-
tems design is proposed in this paper. Most of meth-

ods start from the analyze of the conventional fuzzy
model. This approach requires developing the initial
fuzzy model that is usually large and very complex.
The presented method overcomes this problem by the
sequential generating layer components of hierarchi-
cal fuzzy system from data. The most problematic
part of the hierarchical fuzzy system are connections
between layers because data sets are not available for
these variables. To get the data set for fuzzy clus-
tering algorithm at higher levels, inputs entering to
lower level are clustered in the input space using an
clustering algorithm,it means the data are divided in
the desired number of groups. Each data sample is
assigned to some of these groups and this information
is passed to next levels. Interconnections during the
model design are the weak point of the method. The
future research should be focused on a better coding
of inner variables.
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