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Abstract: This paper studies the problem of letting an autonomous mobile robot
negotiate obstacles in an optimal manner. In particular, a multi-modal control
problem is addressed, where different modes of operation control the robot at
different locations in the state space. The specification of the optimal discrete
event dynamics is pursued through the design of optimal, parametrized switching
surfaces, using results on switching surface optimization. Copyright c©2005 IFAC
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1. INTRODUCTION

Consider a switched system with autonomous
continuous dynamics,

ẋ(t) = fq(t)(x(t)), (1)

q+(t) = s(x(t), q(t)). (2)

where (1) describes the continuous dynamics of
the state variable x ∈ X ⊆ R

n and (2) describes
the discrete event dynamics of the system. Consid-
ering an initial condition x0 := x(t0), the switch-
ing law (2) determines the switching instants ti,
i = 1, 2, . . ., and thus the intervals where a certain
modal function is active, as well as the initial
condition for the o.d.e. which defines the evolution
under the next mode. The discrete variable q is
piecewise constant in time and belongs to a finite
or countable set Q, hence, it can be expressed in

terms of the index i as q(i). In terms of such index
the dynamics of a switched system is:

ẋ(t) = fi(x(t)), t ∈ (ti−1, ti] (3)

i+ = s(x(t), i, t). (4)

with the understanding that fi := fq(i), for a given
map q(i), i.e., in this case (4) only expresses the
occurrence of the ith switch, the specification of
the next active mode being given by the map q(i).

Since the continuous modes are autonomous, the
evolution of the system is determined by the
active modes, according to (4). When the function
s does not depend by the (continuous) state
variable x, the switching instants are determined
as exogenous inputs, and the system is controlled
in open loop (timing control); when s is dependent
only on the state variables, the switching law is
given in a feedback form, and it may be defined by



switching surfaces in the state space. To illustrate,
assume the system is evolving under mode i until
the switching condition gi(x(t)) = 0 is satisfied,
for some t = ti, the ith switching instant, and at
the ith switching state xi := x(ti) (see figure 1).

ẋ = f1(x)

ẋ = f2(x)

g(x, a) = 0

Fig. 1. Transition between discrete modes at a
switching surface.

For such a system, to be able to design the switch-
ing surfaces amounts to design a feedback control
law, which may be pursued for specifications of
stability or optimal control. In the latter case,
Refs. (Boccadoro et al., 2004; Wardi et al., 2004)
addressed the problem of the optimal design of
parametrized switching surfaces, i.e., where the
generic ith condition is expressed by:

gi(x(t), ai) = 0 (5)

and determined the derivative of a given cost
functional J(x(·)) with respect to the switching
parameters a1, a2, . . . This derivative allows for
gradient descent methods to be applied resulting
in locally optimal solutions.

In the literature on robot navigation, two dis-
tinctly different approaches have emerged. The
first approach is generally referred to as the re-
active approach, where the robot switches be-
tween different behaviors, or modes of operation,
as changes in the environment are encountered.
This approach has the general advantage in that
the design process becomes modular in the sense
that different modes of operation can be designed
for very specific tasks. The other approach is
generally referred to as the deliberative approach,
where elaborate, optimal paths may be planned.
The obvious disadvantage with such an approach
is that the computational burden may be too high.
On the other hand, optimality considerations can
be addressed explicitly already at the design stage.

The point of view taken here is that a reactive
navigation system is useful but optimality may
still have an important role to play. In particular,
the issue of designing optimal switching laws,
given a set of behaviors, is taken in consideration.
These behaviors will be given by an approach-
goal behavior and an avoid-obstacle behavior, and
the optimal, parametrized surface around a given
obstacle has to be designed to determine where to
switch between these two behaviors. Previously
proposed such switching laws typically involve a

safety distance ∆. The robot should thus switch to
obstacle-avoidance when it is closer to the obstacle
than ∆. However, finding the optimal ∆ or even
to establish if such a circular switching surface is
to prefer has not been attempted, to the authors’
knowledge.

This paper is organized as follows: In Section 2
is introduced the problem at hand. In Section 3
the results relative to the switching surface op-
timization are presented. Section 4 addresses the
problem of discontinuities in the system trajec-
tories which are encountered in the optimization
procedure. In Section 5 various obstacle avoidance
strategies are discussed according to the experi-
mental results obtained.

2. PROBLEM FORMULATION

Consider a mobile robot modeled as an unicy-
cle, which moves, in the plane, toward a target
point xg while avoiding an obstacle located at
xo. Assume such a robot is given two behaviors
Q = {g, o}: mode g steers toward the goal point;
mode o steers in the direction opposite to the
obstacle. More in detail, the dynamics of the robot
are described by:

ẋ1 = v0 cos φ (6)

ẋ2 = v0 sinφ (7)

φ̇ = fq(φ, x1, x2) (8)

where q ∈ Q and

fg(x, φ) = kg(φ − φg),

fo(x, φ) = −ko(φ − φo),

with kg, ko positive constants, and x = (x1, x2),
φ, the state variables, denote the current coordi-
nates in the plane, and current direction of the
robot; φg, φo denote the directions from robot’s
current position to the target and to the obstacle,
respectively. It is assumed the robot moves with a
constant velocity v0, and incurs a cost expressed
by:

J =
1

2

∫ tg

t0

‖x(t) − xg‖
2 + ρe−σ‖x(t)−xo‖

2

dt (9)

where tg may be either the time instant that the
robot reaches the goal or a fixed final time, and ρ,
σ are given constants. Notice that the first term
of the cost function penalizes trajectories getting
close to the target too slowly; the second term
penalizes proximity to the obstacle.

Starting with mode g from x0 with direction
φ0, assuming that the respective locations of the
starting point, the obstacle and goal are chosen
so that the problem is not trivial (e.g. it can
be assumed that x0, xo and xg are aligned),
the system has to be controlled by defining the



”boundaries” of each behavior, which is achieved
through the design of switching surfaces.

Referring to the general framework introduced in
the previous Chapter, the dynamics of the system
are (here x is state variable and not a planar
position):

ẋ(t) = fi(x(t)) (10)

i+(t) =

{

i x /∈ Gi(ai)
i + 1 x ∈ Gi(ai)

(11)

and the switching surfaces Gi are defined as the
solution sets of the equations

gi(x(t), ai) = 0, (12)

where ai ∈ Rh is the control parameter of the
ith switching surface, and gi : Rn × Rh → Rm

are given functions differentiable in the x and a
variables. In general, m < n, but typically m =
1; the switching surfaces are n − 1 dimensional
manifolds.

For this type of dynamics it has to be taken into
account that more than one switch may occur
at the same surface, and that a single surface
parameter may be the argument of more than one
switching surface. The ”indicial” notation intro-
duced to label continuous modes, by which fi is
a simple convention to denote fq(i), for a given
map q(i), was implicitly extended, in (11), also
to the switching surfaces and their parameters,
i.e., Gi represents Gqg(i), for a given map qg(i),
which is in general different from q, and qg ∈ Qg,
the set of labels of the switching surfaces. Also
the case of different surfaces dependent on the
same parameter must be considered. To this end,
represent by the ”vector” 1 a the set of indepen-
dent parameters, and introduce the function qa

defining the argument of the ith switching surface
as ai = qa(a, i) (here, the image of qa is not a set
of labels).

To illustrate, consider the switching surfaces given
by two concentric circles Gr and GR with radius r
and R, r < R, centered on the obstacle. The inner
circle determines the switch from the approach-
goal behavior (g mode) to the avoid-obstacle (o
mode); the outer circle the switch from mode o to
mode g. Assume that the optimization parameters
are the radii of the two circles with the constraint
R = 2r, and consider an evolution starting with
mode g, switching to mode o at surface Gr, then
to mode g at GR, and again to mode o at Gr (the
figures in Section 5 illustrate similar situations).
In this case, Qg = {r, R} and the indicial notation
reads: f1 = f3 = fg, f2 = f4 = fo, and
G1 = G3 = Gr, G2 = GR; the maps q and qg

are defined accordingly, and choosing a = [r], it
results, qa([r], 1) = qa([r], 3) = r; qa([r], 2) = 2r.

1 Since each parameter is in R
h, a is a matrix of appropri-

ate size

Notice that the optimal solution is constrained to
the initial choice of a certain functional form for
the switching surfaces (in this case, two circular
shapes); this issue is going to be discussed later,
at the light of the experimental results presented
in Section 5.

3. ENABLING RESULTS

This Section presents the gradient formulae to be
used for the optimization of the switching surfaces
as derived in (Boccadoro, 2005), which hold under
the following transversality assumption.

Assumption 1. For an execution 2 of (3,4) with N
switches Li 6= 0,∀i = 1, . . . , N.

where Li ∈ R is the Lie derivative of gi along fi,
i.e.,

Li :=
∂gi

∂x
(xi, ai)fi(xi), (13)

Here the vector fields fi in (3) are Lipschitz in
R

n, and the switching surfaces are determined
by continuously differentiable functions g : R

n ×
R

h 7→ R, hence h is the number of parameters
in the switching functions. Some shorthand nota-
tions is introduced next. Define Λi ∈ R

h as

ΛT
i :=

∂gi

∂a
(xi, ai)

1

Li

; (14)

Γi ∈ Rn as,

ΓT
i :=

∂gi

∂x
(xi, ai)

1

Li

, (15)

and let Rk := fk+1(xk) − fk(xk). The derivative
of the cost function J w.r.t. the switching surface
parameter ai is given by:

dJ

dai

= −

N−1
∑

k=i

pT (t+k )RkΛT
k

dak

dai

(16)

where the costate variable is given by the back-
ward o.d.e.

ṗT = −pT ∂fk

∂x
−

∂L

∂x
; t ∈ [tk−1, tk) k = 1 . . . N

(17)

with terminal conditions

pT (tN ) = 0 (fixed final time)

pT (tN ) = −L(x(tN ))ΓT
N (terminal manifold)

(18)
and reset conditions:

pT (t−k ) = pT (t+k )(I − RkΓT
k ) (19)

2 An execution of a switched system is defined as the
trajectory followed in the continuous and discrete state
space, for a given dynamic evolution of the system, which
depends on the initial condition x(t0) := x0, on the
switching events, and on a terminating condition.



Inspection of the gradient formula (16) shows that
the set of switching states xk is needed, in order
to compute the terms Rk and Λk, as well as the
costate, evaluated at the switching instants. Such
quantities can be computed by two numerical
integrations; the first, forward, of the dynamics
of the system, and the second, backwards, for
the costate. Notice that the boundary condition
(18) for the costate, and its resets (19) also need
quantities computed in the forward integration.

4. DISCONTINUOUS TRAJECTORIES

The gradient formulae presented in the previous
section (16) can be exploited in a gradient de-
scent algorithm which allows to find local optimal
solutions for the switching surfaces optimization
problem.

Such formulae were derived under the condition
that the switching surfaces were reachable by the
continuous trajectory in a transversal fashion (As-
sumption 1). This guarantees that infinitesimal
variations in the switching surface parameters,
while inducing infinitesimal variations in the con-
tinuous state space trajectory, does not change the
trajectory in the discrete state space (Broucke and
Arapostathis, 2002). In other words, the trajec-
tory is deformed continuously by a change in the
surface parameters, and its ”qualitative” struc-
ture, i.e., the cardinality and the ordering of the
active discrete modes, is invariant. Such continu-
ity of the solutions of (3,4) implies continuity for
the cost function J(a), hence, a first order approx-
imation of J(â + ∆a) in a small neighborhood of
â, can be computed as

J(â + ∆a) = J(â) +
dJ

da
(â)∆a + o(∆a), (20)

where a = (a1, a2, . . .).

However, while proceeding in the optimization
by a gradient descent algorithm, it may happen
that non transversality of the trajectory and a
switching surface may be approached 3 , for some
value ã, in whose neighborhood both the system
trajectory and the cost function are discontinuous.
In such critical cases, taking a step in the direc-
tion of the gradient is likely to ”jump over” the
discontinuity, since the first order approximation
(20) holds as long as ∆a is sufficiently small to
guarantee that the discrete trajectory remains the
same, and the direction opposite to the gradient
is not guaranteed to be a descent direction.

The optimization of discontinuous functions has
been addressed in (Moreau and Aeyels, 2000) by

3 Since numerical integrations of the o.d.e’s (10) and
numerical evaluations of the switching conditions (11) are
performed, a perfect tangentiality of the trajectory and
switching surfaces cannot be verified.
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Fig. 2. Finding the stepsize of a gradient de-
scent algorithm according to Armijo’s crite-
rion (21). In the discontinuous case a para-
meter value, if it satisfies the criterion, may
be chosen, regardless that it lies over the
discontinuity.

introducing the constructs of the semigradient. As
a first attempt to tackle this problem from the
standpoint of numerical methods, in this paper a
gradient descent algorithm with Armijo stepsize
is adopted, which provides a criterion to check
that a sufficient decrease in the objective func-
tion is obtained at each optimization step. Since
by such method the actual decrease in cost is
also guaranteed, the gradient is set, even close to
critical values of parameters, as an ”exploration”
direction. According to this strategy, the opti-
mization procedure follows ”ordinarily” on those
subsets of the parameter space yielding the same
discrete trajectories; the algorithm passes from
one such subset to another (and the system jumps
to a qualitatively different trajectory), only if a
decrease in the objective function is checked by
the Armijo algorithm, presented next.

4.1 Gradient descent algorithm with Armijo stepsize

The general gradient descent algorithm is based
on the following basic iteration: at each step the
gradient dJ/da is computed for the current value
for the parameters, ac, and the parameters value
for the next iteration set to:

an = ac − λ
dJ

da
(ac)

Here, λ determines the stepsize, in the direction of
the gradient, for the current iteration. The Armijo



gradient descent algorithm is characterized by a
criterion for choosing an optimal stepsize, in a
feedback fashion (see e.g., (Polak, 1997)). Given
two scalars α, β ∈ (0, 1), the stepsize λ is de-
termined, at each iteration of the optimization
procedure, by an algorithm which computes the
least index i ∈ {0, 1, . . .} such that the following
(Armijo’s) condition is satisfied:

J(an(i)) < J(ac) − αβi dJ

da
(ac), (21)

where an(i) = ac − βi dJ
da

(ac). The stepsize at
the current iteration is then set as λ = βi for
such a minimum index i. As a rule of thumb, the
parameters of the Armijo stepsize algorithm are
usually set to α = β = 0.5.

To illustrate Armijo’s criterion, consider figure
2(a), which shows the plot of a cost functional
J(a), and two lines from the point (ac, J(ac)), set
as the origin, one with slope equal to the gradient,
and the second with slope αdJ

da
(ac). The various

an(i) and the corresponding evaluations of J are
depicted, showing as J(an(i)) lies above the line
passing through (ac, J(ac)) with slope αdJ

da
for

i < i∗, whereas for i = i∗, J(an(i)) lies below
such a line.

The feedback mechanism of the Armijo algorithm
makes it possible to proceed without chattering
along the gradient direction until convergence to
some local minima, at the cost of greater com-
putational burden, with respect to an ordinary
gradient descent algorithm. Indeed, in order to
check condition (21) the cost function J must be
sampled each time a stepsize λ(i) is attempted,
until (21) is satisfied.

Since Armijo’s algorithm checks the effective de-
crease in cost for the current step of optimization,
this algorithm may be adopted also when the cost
function J features discontinuities. To illustrate
this, assume that during Armijo’s algorithm the
stepsize currently being checked is such to jump
over a discontinuity of the cost function J . In such
a case, if the region ”sensed” is characterized by
a lower cost, then a point sampled according to
the Armijo’s algorithm is likely to satisfy criterion
(21), and the next value of parameter a can be
changed accordingly (see figure 2(b)).

To define a terminating condition for the proposed
algorithm, consider that no condition may be im-
posed in terms of a small norm of the gradient
(typical of convex continuous problems); hence,
the algorithm may be stopped when a given itera-
tion yields no substantial change in the parameter
values together with no substantial decrease in the
cost function.
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Final surfaces and corresponding trajectory solid.
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Fig. 3. Optimization for two circular switching
surfaces: fast robot (v0 = 0.7).
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Fig. 4. Optimization for two circular switching
surfaces: slow robot (v0 = 0.3).

5. EXPERIMENTAL RESULTS

Some experimental results obtained for different
choices of the switching surfaces structure are
illustrated next. First, the optimization algorithm
was run for two independent concentric circles,
showing that for several choices of the system
parameters v0, ρ and α, and for different initial
conditions the two radii converge to the same
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Fig. 5. Optimal navigation determined by a sin-
gular switching surface.

value. Examples of such phenomenon is shown
in figures 3 and 4. This indicates that ”smooth”
navigation during obstacle avoidance is preferable.

According to such emerged hint, other optimiza-
tion runs were carried out constraining the two
radii to have a constant and very small differ-
ence. As the optimization algorithm relies on a
numerical integration for the system and costate
dynamics, as discussed in previous Section, the
constraint R = r + Kv0∆T was chosen, where
∆T is the integration time step, so that the dis-
tance between the two surfaces could be covered
in no less than K steps in discretized evolution
of the robot, for some small integer K. Adopting
two switching surfaces very close to each other
may be viewed as a regularized version (see e.g.
(Johansson et al., 1999)) of a dynamics defined by
a single switching surface. An example of single
parameter optimization is given in figure 5.

Notice how in all such examples the executions
undergo qualitative changes (e.g., in figure 3 the
initial execution switches twice, the final execu-
tion four times) which are reflected in jumps in
the cost functions.

The choice of a circular switching surface models
a reactive strategy by which the robot’s behavior
is changed when a critical distance is reached, as
mentioned above. Although such strategy presents
an advantage in terms of implementation, there
is no evidence for considering optimal a circular
shape for the obstacle avoidance problem. An-
other choice for switching surfaces may be ellipses
with the two semiaxis as free parameters. Accord-
ing to the ”sliding hint” (i.e., the observation that
two distinct switching surfaces tend to collapse in
one), an optimization is performed for two ellipses,
constrained to be close each other. The orientation
of the ellipse is such that one of the semiaxis is
aligned with the obstacle and the goal. More in
detail x0 = (0, 0.1), xo = (2, 0), xg = (4, 0), and
the switching surface given by

g(x, a, b) =
x2

1

a2
+

x2
2

b2
− 1 = 0.

A local optimal value for the ellipse parameters is
a = 1.8, b = 1.6, to which correspond a trajectory
with cost J∗

e = 130.6. For the same system,
the optimality for the case of two close circular
surfaces, computed by brute force, is achieved for
r = 1.97 yielding a trajectory with cost J∗

c =
133.2.

6. CONCLUSIONS

In this paper, a general solution to the problem of
optimizing parametrized switching surfaces with
respect to the free surface parameters, is pre-
sented. The resulting solution consists of a gra-
dient computation in combination with a numer-
ically straightforward algorithm for obtaining the
locally optimal parameters.

The proposed method is moreover applied to the
problem of autonomous robot navigation, where
a robot has to switch between different behaviors
as it is negotiating cluttered environments. Pre-
liminary simulation results show the feasibility of
the proposed approach that constitutes a first step
toward understanding how to design switch laws
in the active area of behavior based robotics.
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