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Abstract: This contribution presents the control of a certain kind of mechanical
systems based on energy considerations. The plants under investigation are
underactuated lumped and distributed parameter systems, which consist of two
masses and an elastic element. After a brief introduction of the used mathematical
objects, the proposed controller design method is applied to a simple introductory
example - the Mass-Spring-Mass system. After that, an infinite dimensional
system - the Mass-Beam-Mass system - is under consideration. In this case,
the elastic element is given by a Bernoulli-Euler beam. Finally some simulation
results demonstrate the improvements gained by the introduced control structure.
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1. INTRODUCTION

The tendency to use lightweight constructions in
mechanical engineering opens up a huge field of
applications for control engineers. Especially eco-
nomic reasons force the use of lightweight con-
structions, because the acquisition and operating
costs of such plants are reduced dramatically. An-
other consequence of the reduction of masses in
a construction is normally an increased elasticity.
Thus rigid body approximations do not apply any-
more for such structures and appropriate control
strategies are needed.

In the following a control structure designed for
rigid body systems is assumed. This structure
consists of a trajectory planning unit, which sup-
plies a planned position w1

plan and a planned force
Fplan. The deviation of the actual and the planned
trajectory is fed into a standard PD-controller,
whose output Fe is also applied to the plant.

1 Supported by the EU-Project GEOPLEX IST-2001-
34166

This configuration is depicted in Fig. 1. In this
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Fig. 1. Assumed control structure

contribution a design of an add-on controller Ro

is presented, whereby the oscillations of the plant
are absorbed and no additional modification of the
control structure is necessary.



The treated plants are two mechanical structures
with significant elasticity. It will be shown, that
the rigid body motion and the oscillations of the
plant can be decoupled by means of a coordinate
transformation. The decoupled representation al-
lows to introduce a controller, which acts purely
on the oscillation part of motion. In a second
design step, the stability of a desired position of
the overall system is achieved by an extension of
the control law.

In the first chapter a brief definition of some math-
ematical objects, which will be used throughout
the upcoming analysis, is given. After that, the
lumped parameter Mass-Spring-Mass system is
under investigation. This simple plant serves as
an illustrative example for the proposed controller
design. In the following chapter the distributed
parameter Mass-Beam-Mass system is considered.
Here the decoupling of the motion is extended to
the infinite dimensional case. Consequently it is
again possible to construct a controller, which acts
only on the unmeant oscillations of the structure.
Some additional investigations concerning the sta-
bility of the original system close this chapter.
The proposed controller design is tested in several
simulations and the achieved improvements are
visualized. Finally this contribution closes with
some concluding remarks on the controller imple-
mentation.

2. SOME NOTATIONS

The modelling of the investigated mechanical sys-
tems will be done by the use of Hamilton’s prin-
ciple. The description will be carried out on a
smooth, trivial bundle E = (E , pr1,B) with the
reference manifold E = B ×MC , the configura-
tion manifold B = Z ×MR and the projection
pr1. The local coordinate of Z represents the
system time and is denoted by X1 = t. The local
coordinates corresponding to MR are given by
Xi, i = 2, . . . , p. These coordinates will represent
the independent coordinates of a physical system.
The local coordinates uα, α = 1, . . . , q correspond
to the manifold MC and equal the dependent
coordinates of the system. Derivatives of the de-
pendent coordinates with respect to the indepen-
dent coordinates are the local coordinates of the
corresponding jet bundles JnE (Saunders, 1989)
denoted by uα

[J]. Here, the partial derivatives are
written in the multiindex notation, where the kth

order partial derivatives of the function γα are
denoted by

γα
[J] =

∂k

∂ X1 j1 · · · ∂ Xp jp
γα ,

[J ] = [j1, . . . , jp] , k = #J =
p∑

i=1

ji.

A computer algebra support for Hamilton’s princi-
ple in this framework is provided by the Maple9 c©
package “JetVariationalCalculus” (H. Ennsbrun-
ner, 2003).

3. THE MASS-SPRING-MASS SYSTEM

This system consists of two masses m1,m2 linked
by a spring csys and a damper dsys, as shown on
the left hand side of Fig. 2. The lower mass m1 is
moved by a horizontally acting force F . The right
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Fig. 2. Mass-Spring-Mass System

hand side of Fig. 2 presents the rigid body model,
which is taken into account by the trajectory
planning unit and the deviation controller in the
control structure sketched in Fig. 1.

3.1 Modelling

Throughout the modelling we will use the de-
pendent coordinates u1 = q1, u2 = q2 and the
independent coordinate X1 = t. The equations
of motion can be derived by means of Hamilton’s
principle from the functional

L=
∫ t2

t1

l dt (1)

=
∫ t2

t1

(
1
2
m1

(
q1
[1]

)2

+ m2

(
q2
[1]

)2

−csys

(
q2 − q1

)2
+ Fdq

1 − Fdq
2 + Fq1

)
dt

resulting in

m1q
1
[2] − csys

(
q2 − q1

)− dsys

(
q2
[1] − q1

[1]

)
= F (2)

m2q
2
[2] + csys

(
q2 − q1

)
+ dsys

(
q2
[1] − q1

[1]

)
= 0,

where Fd = dsys

(
q2
[1] − q1

[1]

)
is used. The equation

of motion for the rigid body system is given by
(m1 + m2) qd

[2] = F .



3.2 System Decoupling

To enable the design of an add-on controller, as
requested in the introduction, the decoupling of
the rigid body motion and oscillations is needed.
This splitting can be achieved by the introduction
of a coordinate map f : MC → M̄C defined by
the two maps

φd : qd =
m1q

1 + m2q
2

m1 + m2
, (3)

and φo : qo = q2 − q1. Here the new local coordi-
nates qd and qo according to M̄C are introduced.
The physical interpretation of the coordinate qd

is the center of gravity of the original system.

Consequently the linear transformation f allows
us to transform the function l, defined in (1),
to l̄ =

(
j1f−1

)∗
l, where the first prolongation

of the inverse mapping f−1 is used. Finally this
procedure results in the functional

L̄=
∫ t2

t1

l̄dt

=
∫ t2

t1

(
m1 + m2

2

(
qd
[1]

)2

+ Fqd

)
dt +

∫ t2

t1

(
1
2

(
−c (qo)2 +

m1m2

m1 + m2

(
qo
[1]

)2
)

−Fdq
o − Fqo m2

m1 + m2

)
dt,

on J Ē = J
(B × M̄C

)
. Thus the necessary de-

coupling of the oscillation and desired system is
realized.

3.3 Controller Design

Based on the modelling of this simple system, we
are able to develop a controller by means of energy
considerations. The stored energy function of the
Mass-Spring-Mass system is given by

Hsys =
m1

2

(
q1
[1]

)2

+
m2

2

(
q2
[1]

)2

+
csys

2
(
q2 − q1

)2
.

The energy stored in the oscillation motion –
the motion between the desired and the original
system – can be stated as

Ho = Hsys − m1 + m2

2

(
qd
[1]

)2

︸ ︷︷ ︸
H̄d

◦j1φd,

where the prolongation j1φd of the previously
defined map φd is used. The controller is aimed to
decrease the energy Ho along the solution of the
system. This demand makes sense, if the function
is smooth on JE and bounded from below. In fact
the resulting function

Ho =
csys

2
(
q2 − q1

)2
+

m1m2

(
q2
[1] − q1

[1]

)2

2 (m1 + m2)
, (4)

is smooth and positive semi-definite. This result
enables us to define a control law, that extracts en-
ergy from the unmeant oscillation motion, which
is equivalent to a decrease of Ho.

Oscillation System: The derived oscillation en-
ergy (4) has to be minimized by a control law.
Therefore we consider its time derivative along the
trajectories of the system

d
dt

Ho = −dsys

(
q2
[1] − q1

[1]

)2

−
m2

(
q2
[1] − q1

[1]

)

m1 + m2
F .

The introduction of the control law F = Fo =
do

(
q2
[1] − q1

[1]

)
admits the injection of additional

damping into the oscillation motion. This control
law is applied to the original system by the con-
troller Ro and thus both systems – the oscillation
system and the desired system – are affected.
Consequently we have to analyze the stability of
the original system.

Original System: The asymptotic stabilization
of the original system (2) will be achieved by

F = −c q1 − d q1
[1] + do

(
q2
[1] − q1

[1]

)
,

which represents the simple PD controller ex-
tended by Ro, which is depicted in Fig. 1. As a
Lyapunov function we will use the adapted stored
energy function H = Hsys + c

2 q1 2. The total
time derivative of the positive definite function H
results in

d
dt

H =−dsys

((
1 +

do + d

dsys

)
q1
[1]

2

−
(

2 +
do

dsys

)
q2
[1]q

1
[1] + q2

[1]

2
)

,

which is negative semi-definite, if d ≥ do
2

4 dsys
is

met. By taking LaSalle’s invariants theorem into
account, it can be shown, that the closed loop
system is asymptotically stable.

4. THE MASS-BEAM-MASS SYSTEM

The Mass-Beam-Mass system (see Fig. 3) consists
of a mass m1, a vertically fixed Bernoulli-Euler
beam (Meirovitch, 1967) – with a cross sectional
area A, geometrical moment of inertia Jy and
Young’s module E – and a mass m2 on the tip
of the beam.
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Fig. 3. Mass-Beam-Mass system
4.1 Modelling

The assumptions of linear elasticity and the
Bernoulli-Euler beam theory allow us to formulate

the kinetic energy density Tb = Aρ
2

(
w1

[10] + w[10]

)2

and the potential energy density Vb = EJy

2

(
w[02]

)2

in order to extract the partial differential equation
of motion for this distributed parameter system.
A possible functional for Hamilton’s principle is
given by

L =
∫ t2

t1

∫ L

0

l dX ∧ dt = (5)

∫ t2

t1

∫ L

0

(Tb − Vb +
m1

2L
w1

[10] +
F 1

L
w1 +

F 2

L
w|L

+
m2

2L

(
w1

[10] + w[10]

∣∣
L

)2

+Fdw) dX ∧ dt.

The forces Fd and F 2 are used for the introduc-
tion of internal damping. Finally the system is
described by the partial differential equation

ρA
(
w1

[20] + w[20]

)
+ EJy w[04] = −dsysw[10],

where Fd = −dsysw10 is applied. Additionally the
boundary conditions are determined by

F 1 +dm2

(
w2

[10] − w1
[10]

)
+

∫ L

0

dsysw[10]dX

= m1w
1
[20] + Q (t, 0) = m1w

1
[20] + EJy w[03]

∣∣
0

at X = 0, and

−dm2

(
w2

[10] − w1
[10]

)
= m2w

2
[20] −Q(t, L)

= m2w
2
[20] − EJy w[03]

∣∣
L

at X = L, where F 2 = −dm2

(
w2

[10] − w1
[10]

)
is

used. The only interaction of the system with the

surrounding is given by the force F 1 horizontally
acting on the mass m1.

4.2 System Decoupling

As shown in the introductory Mass-Spring-Mass
example, the design of an add-on controller re-
quires a decoupled representation of the investi-
gated system.

The Lagrangian l of the Mass-Beam-Mass system
is formulated on J2E of the bundle

(
R2 ×MC ,

pr1, R2
)

as shown in (5). The local coordinates of
the configuration manifold R2 ×M are given by
X1 = t, X2 = X, u1 = w1, u2 = w. The local
coordinates X1 = t, X2 = X are used for the
reference manifold B = R2.

Again we introduce a coordinate transformation
f : MC → M̄C defined by the two maps

φd : wd =
m1 w1 + m2 w2 +

∫ L

0
ρA

(
w1 + w

)
dX

msys
,

where msys = m1 + m2 +
∫ L

0
ρA dX is used, and

φo : wo = w. Also in this case, the new coordinate
wd equals the center of gravity of the original
system.

Now the second prolongation of f−1 allows us
to transform the Lagrangian l from equation (5).
Consequently the following functional

L̄ =
∫ t2

t1

∫ L

0

(
j2f−1

)∗
(l) dX ∧ dt =

∫ t2

t1

(msys

2
wd

[10]

2
+ F 1wd

)
dt +

1
2

∫ t2

t1

∫ L

0

(
m2m1

2Lmsys

(
wo

[10]

∣∣∣
L

)2

+
m1ρA

2msys

(
wo

[10]

)2

+
m2ρA

2msys

(
wo

[10]

∣∣∣
L
− wo

[10]

)2

− E Jy

(
wo

[02]

)2

+
ρ2A2

2msys


L

(
wo

[10]

)2

− 1
L

(∫ L

0

wo
[10]dX

)2



− F 1

L msys
m2 wo|L +

F 2

L
wo|L

+Fdw
o − F 1ρAwo

msys

)
dX ∧ dt,

is generated. Thus the splitting of the motion in
a rigid body motion and oscillations is shown.

4.3 Controller Design

In the introductory Mass-Spring-Mass example a
control law, consisting of a classical PD com-
ponent extended by an oscillation damping con-
troller, was introduced. This procedure is now
extended to the infinite dimensional case.



The stored energy function of the system is given
by

Hsys =
m1

2

(
w1

[10]

)2

+
m2

2

(
w2

[10]

)2

+

1
2

L∫

0

(
ρA

(
w1

[10] + w[10]

)2

+ E Jy

(
w[02]

)2
)

dX,

where w2 = w1 + w|L is used. As in the introduc-
tory example, the desired system is a rigid body
system. Thus the energy stored in the desired
system is given by H̄d = msys

2 wd
[10]

2. Further-
more the oscillation energy can be formulated as
Ho = H̄o ◦ j2φo = Hsys− H̄d ◦ j1φd and results in

Ho =
1
2

∫ L

0

E Jy

(
w[02]

)2 dX +
m2m1

2msys

(
w[10]

∣∣
L

)2

+
m1ρA

2msys

∫ L

0

(
w[10]

)2 dX

+
m2ρA

2msys

∫ L

0

(
w[10]

∣∣
L
− w[10]

)2 dX

+
ρ2A2

2msys


L

L∫

0

(
w[10]

)2 dX −



L∫

0

w[10]dX




2

 .

By applying the Cauchy-Schwarz and triangle
inequality it follows, that

L

∫ L

0

(
w[10]

)2 dX ≥
(∫ L

0

w[10] dX

)2

is met and consequently it is shown, that Ho is
smooth and bounded from below.

Oscillation System: If the time derivative of the
positive semi-definite function Ho along the solu-
tion of the distributed parameter system is nega-
tive semi-definite and some further conditions are
met, then it can be assumed, that the oscillations
vanish.

With the boundary conditions w[01]

∣∣
X=0

= 0 and
w[02]

∣∣
X=L

= 0 it follows, that the derivation of
Ho can be stated in form of

dHo

dt
= −dm2

(
w2

[10] − w1
[10]

)2

−
L∫

0

dsys

(
w[10]

)2
dX

+
F 1

msys


m2

(
w1

[10] − w2
[10]

)
−

L∫

0

ρAw[10] dX


 .

One immediately realizes, that the function Ho

is invariant under a solution of the corresponding
autonomous, undamped system.

A choice of the input force

F 1 = Fo = − do

msys

(
m2

(
w1

[10] − w2
[10]

)
(6)

−
∫ L

0

ρAw[10] dX
)

guarantees, that additional damping is injected
into the oscillation motion. The application of
the developed control law causes the vibrating
structure to converge to the desired rigid body
motion. The measurement of

∫ L

0
ρA w[10] dX can

be realized by applying a piezoelectric film along
the Bernoulli-Euler beam.

Original System: The derived control law (6)
is now applied to the original system and does
obviously not guarantee the stability of a desired
position of the whole structure. Thus this control
law must be extended in order to achieve asymp-
totic stability. In this case the modified storage
function H = c

2

(
w1

)2 + Hsys will be used as
Lyapunov function and we have to analyse its
total time derivative
dH

dt
= cw1w1

[10] + w1
[10]F

1 − dm2

(
w2

[10] − w1
[10]

)2

−
∫ L

0

dsys

(
w[10]

)2 dX.

With the input force F 1 = −c w1 − d w1
[10] +Fo

the derivative results in
dH

dt
=−

(
d + de

m2

msys
+ dm2

)
w1

[10]

2−dm2 w2
[10]

2

+
(

m2 de

msys
+ 2dm2

)
w1

[10]w
2
[10] +

de

msys
w1

[10]

∫ L

0

ρA w[10] dX −
∫ L

0

dsys w[10]
2 dX.

In order to obtain a negative semi-definite func-
tion d

dtH, we have to fulfill

d≥ dm2

(
m2 de

2msysdm2

+ 1
)2

− de
m2

msys
− dm2

+
1

dsys

(
deρA

2msys

)2

.

The positive definiteness of the function H and
the negative semi-definiteness of its time deriv-
ative Ḣ along the solution of the system is a
necessary condition for stability. The derivation
of a sufficient condition will be part of future
investigations.

5. SIMULATION

In the following simulations we consider plants,
where m1 À m2 is met. This condition implies
a bad convergence of the oscillations as shown
in Fig. 4 for a simple PD controller. In contrary
to this result, the introduced oscillation rejection
controller Ro causes the trajectories w1 and w2

depicted in Fig. 5. As mentioned before, the
oscillation controller Ro with the output force Fo

(6) does not provide the stabilization of a certain
position of the plant. Thus Fig. 6 shows the
results achieved with the combination of the PD
controller and the oscillation controller Ro. The
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Fig. 4. PD controller without extension
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Fig. 6. PD controller with oscillation controller

final combination of PD and oscillation rejection
controller Ro meets the requested stabilization of
a desired position and fast fading oscillations.

6. CONCLUSIONS

This contribution presents a controller design
method based on energy considerations. Thereby
no approximations of partial differential equations
by means of ordinary differential equations are

necessary. The presented modelling leads to a sys-
tem of partial and ordinary differential equations.
The goal of the controller design is the asymptotic
stabilization of the whole structure with respect to
a desired reference position.
The control problem is solved by considering the
stored energy of a desired system and the stored
energy of the original elastic system. The analysis
of the energy difference between the desired and
actual motion yields a positive semi-definite func-
tion, if the position of the desired system is chosen
as the center of gravity of the original system. The
corresponding time derivative of the oscillation
energy Ḣo supplies the collocated output to the
input force F . Hence it is possible to define a con-
trol law, which extracts only the oscillation energy
from the system. From physical observations one
is able to assume, that this energy evolution is
equivalent to the stabilization of the meant rigid
body motion.
In a second step it is shown, that by the intro-
duction of an extended control law, the original
system can be stabilized towards a desired posi-
tion. The used method represents only a necessary
condition for stability in the infinite dimensional
case. A rigorous proof of stability with respect to a
certain norm of the closed loop Mass-Beam-Mass
system will be a part of further investigations.
Taking the practical application of this control
law into account, one immediately realizes the
problem to determine the integral term by means
of measurements. The application of a distrib-
uted piezoelectric sensor in order to overcome
this problem is actually under investigation. This
types of sensors provide intrinsically the required
integration along the beam structure.
Finally some simulation results, where the impact
of the controller on the motion of the system is
presented, close this contribution.
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