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Abstract:  When dealing with distributed control systems, the notions of nodes, messages, 
timetables, etc. are usually not transparent from the control application designer view. For 
that reason, in the IFATIS platform, the distributed shared memory model has been 
introduced to decouple the control application design from the issues of the hardware 
implementation. 
To cope with that, for the control application, the underlying communication system and 
peripheral devices are only exposed as a set of data cells. Two processes can use such a 
cell to communicate with each other regardless of their current location.  If they reside in 
different nodes, data written to a cell is transparently distributed through the system by 
means of statically scheduled TTCAN messages. For automatic data transformation and 
fault detection, each data cell can be associated with a validation and/or transformation 
routine. 
To utilize this approach control application development tools (Matlab/Simulink and 
ControlBuild) have been adapted. Copyright © 2005 IFAC 
 
Keywords: distributed control systems, local area networks, CAN, time triggered, 
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1. INTRODUCTION 

 
The ever-increasing complexity of the control 
systems today calls for distributed implementations. 
Control applications are executed over a set of 
distributed processing nodes that cooperate among 
themselves, with sensors, actuators, plant devices, 
etc. The fault-tolerant requirements of some of those 
systems additionally increase the complexity and 
difficulty of its implementation. For these reasons, it 
is very important that the dependability of such 
systems is systematically considered at all stages of 
the development and is not left to the experience and 
the intuition of the designers. 
 

The issues in the implementation of fault-tolerant 
distributed control systems were investigated in the 
Intelligent Fault Tolerant Control in Integrated 
Systems (IFATIS) project. The major goals of its 
Workpackage 4, from which this paper is originating, 
are to explore the existing methodological and 
technological background, to develop the solutions 
and to implement an experimental fault-tolerant 
hardware platform. Its purpose is to allow for testing 
different fault-tolerant techniques provided by the 
partners in the project. Finally, a corresponding 
software tool was devised and adapted to the HW 
architecture (IFATIS ,2004).  
 
As a part of the implementation of the platform a 
distributed replicated memory model has been 



     

implemented. There are several reasons why this 
model has been introduced into the control 
application design. 
 
First of all, there is usually a logical gap between the 
representation of a control system and its 
implementation. From the design point of view, a 
typical control system consists of function blocks 
and different resources. Function blocks in control 
systems usually represent some sort of mathematical 
transformation (e.g. derivation, integration, etc.) 
although more sophisticated algorithms can also be 
included. Further, function blocks can be 
hierarchically organized or they can be decomposed 
into the simpler elements. Resources are used by 
function blocks to perform their operations. Usually 
these are some physical properties of the observed 
system (e.g. environment temperature). However, 
from the implementation point of view, the 
distributed control system consists of hardware 
components, application software and system 
software. Hardware components are processing 
modules, sensors, actuators and interconnecting 
busses. Beside some correlation between the abstract 
resources and the sensors and actuators, there is no 
obvious transformation from one representation to 
another. Processing modules can be represented by 
pre-built computing components, custom built 
components or special plant devices. Because of this, 
the translation of the control function into the 
equivalent code is heavily target dependent and no 
development tool can effectively support all 
combinations. By using the intermediate layer both 
issues can be observed and dealt with separately. 
 
Further, the design of a complex control system is 
usually performed by engineers and scientists with 
good knowledge in automation control domain and 
with less knowledge in computer system domain. 
And vice versa, engineers that are responsible for the 
control system implementation usually lack 
knowledge about all the specifics of control systems. 
The development environment should thus provide 
support for the participants from both domains. 
 
 
 

 
Fig.1. Diagram of the IFATIS hardware platform. 
 
 
 

2. BRIEF DESCRIPTION OF THE IFATIS 
HARDWARE PLATFORM 

 
IFATIS hardware platform consists of several 
processing and peripheral (I/O) modules (see Figure 
1). The modules are interconnected with two time-
triggered communication channels. For the 
communication and fault-detection special hardware 
was designed. To adequately support the execution of 
the control application on the target hardware, proper 
system software has been developed.  
 
Processing nodes execute control application. 
Sensors and actuators are connected to the I/O nodes. 
For development and monitoring purposes, one of the 
nodes is connected to the host development platform.  
 
Time-triggered communication allows for temporally 
deterministic distribution of all safety critical 
messages in the system.  In the aerospace industry, 
time-triggered applications are today already state-
of-the-art. Time-triggered automotive applications 
will be part of the next generation of products. In the 
Time-Triggered protocols, all messages between the 
nodes are sent in the predetermined time frames. One 
of the nodes on the communication channel 
periodically submits a so-called reference message 
and thus synchronizes the communication. Each 
message is sent within the specific frame relatively to 
the instant when reference message was received. In 
simple scenarios each possible message is sent in 
every cycle. However, in more general situations, a 
certain message may only be sent every second, 
third, etc. cycle. This way, the same message slot can 
be shared by different messages in different basic 
cycles. The reference message includes the 
information which basic cycle will be transmitted 
next. In Figure 2 an example of time-triggered 
communication with two basic cycles is shown. 
Message no. 1 is more volatile and must be sent in 
each cycle. 
 
The configuration of timetables for basic cycles must 
be generated in advance (off-line) and all nodes in 
the system must be initialized with the same configu- 
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Fig.2. Example of TTCAN communication with two 
basic cycles 
 
ration. This represents a drawback in the case when 
nodes should be reconfigured, because the timetables 
must also be reinitialized. As a consequence, an 
appropriate timetable must be prepared in advance 
for each of the possible reconfiguration scenarios. 
 
There are several competitive solutions of time-
triggered control busses. Many of them are based on 
CAN bus protocol as the network data layer because 
of its inexpensive infrastructure. One of the 
approaches is time-triggered CAN (TTCAN) 
protocol and is used with the IFATIS platform 
(Robert Bosch, 1991, ISO/CD 11898-4, 2004). 
 
To avoid single point of failure, two communication 
channels have been implemented, although this also 
significantly increases the number of possible 
reconfiguration scenarios of the system. 
  
The detailed description of the IFATIS hardware 
platform can be found in (Verber, et al., 2003). 
 

3. DISTRIBUTED SHARED MEMORY MODEL 
 
In control application, different function blocks 
communicate with each other, read data from sensors 
and produce signals for the actuators. In distributed 
control applications it is also necessary to know on 
what processing node the specific function block will 
reside or where and how to address specific I/O 
device.  
 
From the application designer point of view, 
however, it is much more convenient if the 
communication is performed transparently. In this 
sense, a model of distributed shared memory has 
been devised. The distributed nature and other 
particularities of the hardware are thus hidden from 
the control application design. The specifics must be 
considered only in the latter stages of the 
development.  
 
Distributed shared memory consists of a set of cells 
that serve as sources or sinks of the virtual 
communication links between the application, 
hardware platform and the environment (see Fig. 3). 
Two processes can use a cell to communicate with 
each other regardless of their current location (i.e. on 

which processing nodes the processes run). The same 
mechanism is used for the communication between 
control application and sensors or actuators. 
 
When both source and destination peer for the 
communication resides on the same processing node, 
simple memory transfer of data can be used. On the 
other hand, when the communication spans over two 
or more nodes, the data written into a cell in one 
node must be transparently distributed to all 
appropriate nodes in the systems by means of some 
sort of middleware, see Fig 4. 
 
The middleware is a well-recognized approach in 
modern computer systems. There are well known 
distributed communication subsystems like CORBA 
or DCOM that are being used in classic computer 
systems (OMG Group, 2002 and Microsoft 2002). 
However, these protocols usually introduce too much 
overhead into the system architecture to be used in 
the embedded real-time control applications. Because 
of that, for the IFATIS project, time-triggered 
communication as described above has been used. 
Memory cells that must be distributed through the 
system are mapped into the related TTCAN 
messages and sent periodically to other nodes in the 
system. To achieve temporally predictable behaviour, 
the overall operation of the system is synchronized 
with those time intervals. Each execution cycle starts 
with the reception of the reference message. Then, all 
outputs of the previous cycle are transmitted to the 
other nodes in the system and serve as an input to a 
new cycle. The behaviour is similar to the traditional 
PLC operation and is used by most control 
application development tools. 
 
However, there is a problem using time-triggered 
communication. Generating the optimal schedule for 
specific control applications has exponential 
complexity.  The complexity is even larger when the 
system is requested to be fault-tolerant. In the case of 
a fault the control application must swiftly adapt to 
the new situations. This can include a requirement 
for rearrangement of the communication pathways in 
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Fig. 3: Distributed shared memory cells model 
 



     

the system. Thus, for time-triggered protocols, a new 
message schedule must be used. Because the 
timetables cannot be generated dynamically, all 
possible resolutions must be prepared in advance. To 
cope with this problem an off-line tool for TTCAN 
timetable generation has been implemented as a part 
of the IFATIS project. Based on the information of 
all possible producers and consumers in all possible 
configurations of the systems appropriate timetables 
by means of C-language header files are generated to 
be included later in the application code. 
 
The underlying communication protocol also 
introduces some other limitations. In general, the 
maximum size of the message also limits the amount 
of data that can be put into a single cell. This can be 
overcome if several messages are used for a single 
memory cell. Further, the communication speed 
confines the overall performance of the application.  
 
This drawback can be diminished if a faster 
communication protocol is used. Or, if redundant 
communication channels are available, they can 
share the load to increase the overall throughput of 
the communication. In normal operational mode the 
communication busload is distributed over all 
available channels. However, this solution increases 
the complexity of message’s timetable generation 
because the schedules for those buses must be 
synchronised. And, of course, if some of the 
communication channels fail, the busload must be 
rearranged and the communication time increases. 
 
There are other possibilities to utilize the proposed 
shared memory model. First, because the data 
between the control application and peripherals are 
transferred indirectly, some sort of data 
transformation can be applied. Control application 
usually deals with abstract representation of some 
physical quantities from the environment (e.g. 
temperature represented in the degrees of Celsius). 
On the other hand, the acquisition and the actuation 
of those quantities are performed by simple 
input/output devices (e.g. A/D converter connected 

to the temperature sensor). Those devices use their 
own kind of data representation. To simplify control 
application development, the transformation between 
different value domains can be done transparently by 
the system software.  
 
As an example, an integer value provided by a 
temperature sensor can be transformed into the 
appropriate floating-point value for the application. 
For this, each memory cell can be associated with 
two transformation functions. The first is applied 
when data are written to and the second is applied 
when data are read from the cell. If, for some reason, 
the temperature sensor must be replaced with a 
different one only the transformation functions must 
be updated accordingly. 
 
In addition to the application data, the memory cell 
can embrace some other attributes that are provided 
by the application (e.g. quality of the information 
generated by the producer) or the systems software 
(e.g. timestamp when the data has been generated). 
System software can also monitor when data in a cell 
actually change and signals the control application, 
etc. 
 
By using shared memory model it is also possible to 
perform a simple and unified kind of tracing and 
diagnostic of all important state variables used by the 
control application. Because the information written 
to a cell is transparently distributed to all nodes in the 
systems, it is possible to have a dedicated monitoring 
node that acquires the current state of the system.  
 
Current version of the IFATIS system software 
supports the use of maximum 32 shared memory 
cells with five basic data types (byte, word, integer, 
float and double). This functionality can be expanded 
to a larger number of memory cells and for using 
custom data types with maximum data size of eight 
bytes. Communication layer manages the replication 
of memory cells in the background as a separate task. 
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4. SUPPORT FOR FAULT-DETECTION AND 
FAULT-TOLERANCE 

 
There are several techniques to deal with faults in the 
control systems. However, the first step is to detect 
the fault. To do this some kind of dependable 
monitoring system must be implemented, which 
detects abnormalities in the system and triggers 
appropriate corrective actions.  
 
Using the shared memory model, some faults can be 
detected by evaluating the values in the memory 
cells. E.g., the data transformation routine (described 
above) can be extended to check the plausibility of 
data written into a cell. The simplest kind of 
validation is range checking. It is expected that some 
variables can only hold values in a certain range (e.g. 
the temperature of the environment should not be 
below 5 degrees or above 50 degrees Celsius).  The 
out-of-range values signal some sort of fault in a 
system. In similar way more sophisticated validation 
can be performed. For example, the dynamic of the 
changing of values can be observed if a previously 
written value is compared to a new one, the 
minimum or maximum frequency of data arrivals can 
be monitored if time-stamps are observed, etc. 
Although it is more efficient if those tests are done 
by dedicated hardware it is much more flexible to 
use software routines. In the case of floating-point 
values this is usually the only feasible solution. 
 
The shared memory model may not only be used for 
fault-detection; it can also simplify the fault-
tolerance of the overall system in the case of faults. 
Fault-tolerance of the hardware is usually dealt with 
by redundancy and diversity. When a fault occurs, 
the system must be reconfigured. With shared 
memory model approach this can be implemented in 
such way that the reconfiguration is transparent to 
the control application code. 
 
For example, one of the possible faults in the system 
is when one of the nodes in the system fails. In this 
case the tasks performed by the failed node must be 
reallocated to other ones. Because of the shared 
memory model, the transition from one configuration 
to another is simplified. It is not important on which 
processing node the initiator for the message is 
allocated. In most cases the timetable for the 
message scheduling can remain the same. In some 
cases, however, because of the reduced resources of 
the system, some degradation in the performances 
will be necessary and must be considered in the 
configuration of the application (e.g. by switching 
off some non-important tasks, by increasing some 
response times, by gracefully degrading the accuracy 
of some calculations, etc.). 
 
In the same way the faults of sensors and actuators 
can be dealt with. By using redundancy, several 

sensors can be used to measure the same physical 
quantities, but only one of them (the one that 
operates most accurately) is used to produce the 
value that is distributed through the system.  It is 
even possible to replace the physical sensor with the 
software component that produces (i.e. calculates or 
estimates) appropriate values for the system without 
the need for changes in the control application. 
 
However, there is also a difficulty by using shared 
memory model. As mentioned above, several 
communication channels can be used to increase the 
overall throughput of the shared memory related 
messages. But, in the case of failure on one of the 
channels, the communication must be performed by 
the others and some degradation in the commu-
nication response times can be expected. 
 
 

5. SUPPORT FOR CONTROL APPLICATION 
DEVELOPMENT 

 
Use of the shared memory model would have no 
practical value, if it would not be integrated within 
the control application development life cycle. For 
this, the application development tool should be 
adapted to support the shared memory model. As a 
part of the IFATIS project the official development 
tool, ControlBuild, has been expanded in such a way. 
Also, one of the most frequently used development 
tools for control application development, 
Matlab/Simulink, has been upgraded. 
 
To implement the shared memory model two 
additional function blocks have been added to the 
development tool library: one for reading from and 
one for writing into the specific memory cell. The 
custom dialog window is used to define specific 
parameters: type of data that will be sent or received, 
shared memory slot identifier, status if the same data 
should be sent over both TTCAN channels 
(redundancy), how frequently data should be 
updated, etc. Some of the memory blocks are used 
for the communication with the peripheral devices. 
For those blocks several additional parameters must 
be set. For example, parameters for mapping between 
application specific values and device specific values 
can be defined to support data transformation. To 
allow for this, two value intervals can also be 
defined. The first interval defines the expected range 
of the value produced by the application and the 
second one defines the range of the value expected 
by the hardware device.  The given range also 
represents the minimum and maximum values of the 
data and serves as some kind of limiter or it can be 
used for the data validation. As a shortcoming, only 
linear transformation can be described at this time. 
More complex transformation and other fault-
detection mechanisms can be (at this time) 
implemented in C and added later to the application 
code. 



     

 
Because the redundancy and the diversity can be 
utilized, it is possible that more than one function 
block produces the data for a specific memory cell, 
however not at the same time. Thus, there may be 
more than one output memory block with the same 
ID. To assure that only one of the replicas actually 
produces the value, the sending block has an 
additional enable signal. This signal is used to enable 
and disable the data transmission in different 
operation modes. The signal is set according to the 
current execution state of the application. 
 
The process proposed for building a fault-tolerant 
control application by using the solutions described 
above would be as follows.  
 
First, the development of the control application is 
performed as usually without considering the target 
platform. Only the limitations on what function 
blocks are usable for the implementation should be 
considered. The model should be tested and validated 
by means of all usual practices from the control 
application domain.  
 
Later, the model must be prepared for execution in 
the distributed environment. The control application 
must be divided into modules that will be executed 
on different processing nodes. In the case of the 
IFATIS tool this is done by division of the model 
into the sub models. Because all code is preloaded 
onto the processing nodes prior to execution, also all 
possible execution modes of the system must be 
prepared. To simplify this, each subsystem can be 
further divided into several smaller ones that 
represent the model of execution in different 
execution modes. Then, the shared memory blocks 
are introduced to describe the connection links 
between different subsystems. After that, the 
application can be simulated and validated again as a 
distributed system. Sampling effects due to latencies 
introduced by the TTCAN bus can also be simulated 
accurately. Later, when the result of the testing is 
satisfied, the specific blocks are augmented with 
more detailed implementation attributes. Based on 
the information about the nodes and the memory cell 
blocks, appropriate timetables for TTCAN messages 
are generated. Finally, the code is generated and 
loaded into the target where additional testing and 
validation can be performed directly on the target. 

6. CONCLUSION 
 
During the design and implementation of the IFATIS 
experimental platform several approaches to 
implement a reliable and fault-tolerant distributed 
computer system were tested.  One of the solutions to 
partial problems was the distributed shared memory 
model that has been represented in this paper. 
Although this approach still exposes some difficulties 
it proved to be a very efficient solution to 
transparently deal with data interchange and with 
faults in the system almost independently of control 
application design and implementation. 
In the future work the distributed shared memory 
approach will be further elaborated to increase the 
dependability and to reduce the number of required 
TTCAN timetables for all possible configurations of 
the system. As an experiment, for massive data 
transfer, an Ethernet communication channel will be 
added in parallel to the TTCAN communication to 
increase the overall throughput and response times of 
the system.  
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