

DATA ACCESS IN DISTRIBUTED CONTROL SYSTEMS

Matjaž Colnari�, Domen Verber

Univeristy of Maribor, Slovenia
colnaric|domen.verber@uni-mb.si

Abstract: When dealing with distributed control systems, the notions of nodes, messages,
timetables, etc. are usually not transparent from the control application designer view. For
that reason, in the IFATIS platform, the distributed shared memory model has been
introduced to decouple the control application design from the issues of the hardware
implementation.
To cope with that, for the control application, the underlying communication system and
peripheral devices are only exposed as a set of data cells. Two processes can use such a
cell to communicate with each other regardless of their current location. If they reside in
different nodes, data written to a cell is transparently distributed through the system by
means of statically scheduled TTCAN messages. For automatic data transformation and
fault detection, each data cell can be associated with a validation and/or transformation
routine.
To utilize this approach control application development tools (Matlab/Simulink and
ControlBuild) have been adapted. Copyright © 2005 IFAC

Keywords: distributed control systems, local area networks, CAN, time triggered,
distributed replicated shared memory.

1. INTRODUCTION

The ever-increasing complexity of the control
systems today calls for distributed implementations.
Control applications are executed over a set of
distributed processing nodes that cooperate among
themselves, with sensors, actuators, plant devices,
etc. The fault-tolerant requirements of some of those
systems additionally increase the complexity and
difficulty of its implementation. For these reasons, it
is very important that the dependability of such
systems is systematically considered at all stages of
the development and is not left to the experience and
the intuition of the designers.

The issues in the implementation of fault-tolerant
distributed control systems were investigated in the
Intelligent Fault Tolerant Control in Integrated
Systems (IFATIS) project. The major goals of its
Workpackage 4, from which this paper is originating,
are to explore the existing methodological and
technological background, to develop the solutions
and to implement an experimental fault-tolerant
hardware platform. Its purpose is to allow for testing
different fault-tolerant techniques provided by the
partners in the project. Finally, a corresponding
software tool was devised and adapted to the HW
architecture (IFATIS ,2004).

As a part of the implementation of the platform a
distributed replicated memory model has been

implemented. There are several reasons why this
model has been introduced into the control
application design.

First of all, there is usually a logical gap between the
representation of a control system and its
implementation. From the design point of view, a
typical control system consists of function blocks
and different resources. Function blocks in control
systems usually represent some sort of mathematical
transformation (e.g. derivation, integration, etc.)
although more sophisticated algorithms can also be
included. Further, function blocks can be
hierarchically organized or they can be decomposed
into the simpler elements. Resources are used by
function blocks to perform their operations. Usually
these are some physical properties of the observed
system (e.g. environment temperature). However,
from the implementation point of view, the
distributed control system consists of hardware
components, application software and system
software. Hardware components are processing
modules, sensors, actuators and interconnecting
busses. Beside some correlation between the abstract
resources and the sensors and actuators, there is no
obvious transformation from one representation to
another. Processing modules can be represented by
pre-built computing components, custom built
components or special plant devices. Because of this,
the translation of the control function into the
equivalent code is heavily target dependent and no
development tool can effectively support all
combinations. By using the intermediate layer both
issues can be observed and dealt with separately.

Further, the design of a complex control system is
usually performed by engineers and scientists with
good knowledge in automation control domain and
with less knowledge in computer system domain.
And vice versa, engineers that are responsible for the
control system implementation usually lack
knowledge about all the specifics of control systems.
The development environment should thus provide
support for the participants from both domains.

Fig.1. Diagram of the IFATIS hardware platform.

2. BRIEF DESCRIPTION OF THE IFATIS
HARDWARE PLATFORM

IFATIS hardware platform consists of several
processing and peripheral (I/O) modules (see Figure
1). The modules are interconnected with two time-
triggered communication channels. For the
communication and fault-detection special hardware
was designed. To adequately support the execution of
the control application on the target hardware, proper
system software has been developed.

Processing nodes execute control application.
Sensors and actuators are connected to the I/O nodes.
For development and monitoring purposes, one of the
nodes is connected to the host development platform.

Time-triggered communication allows for temporally
deterministic distribution of all safety critical
messages in the system. In the aerospace industry,
time-triggered applications are today already state-
of-the-art. Time-triggered automotive applications
will be part of the next generation of products. In the
Time-Triggered protocols, all messages between the
nodes are sent in the predetermined time frames. One
of the nodes on the communication channel
periodically submits a so-called reference message
and thus synchronizes the communication. Each
message is sent within the specific frame relatively to
the instant when reference message was received. In
simple scenarios each possible message is sent in
every cycle. However, in more general situations, a
certain message may only be sent every second,
third, etc. cycle. This way, the same message slot can
be shared by different messages in different basic
cycles. The reference message includes the
information which basic cycle will be transmitted
next. In Figure 2 an example of time-triggered
communication with two basic cycles is shown.
Message no. 1 is more volatile and must be sent in
each cycle.

The configuration of timetables for basic cycles must
be generated in advance (off-line) and all nodes in
the system must be initialized with the same configu-

�� �� �� �������

��

��
��		
�����

��		
�����

��� ���������������������� ������������
����� ����������������� ��������������������
���������������

���� ����

Fig.2. Example of TTCAN communication with two
basic cycles

ration. This represents a drawback in the case when
nodes should be reconfigured, because the timetables
must also be reinitialized. As a consequence, an
appropriate timetable must be prepared in advance
for each of the possible reconfiguration scenarios.

There are several competitive solutions of time-
triggered control busses. Many of them are based on
CAN bus protocol as the network data layer because
of its inexpensive infrastructure. One of the
approaches is time-triggered CAN (TTCAN)
protocol and is used with the IFATIS platform
(Robert Bosch, 1991, ISO/CD 11898-4, 2004).

To avoid single point of failure, two communication
channels have been implemented, although this also
significantly increases the number of possible
reconfiguration scenarios of the system.

The detailed description of the IFATIS hardware
platform can be found in (Verber, et al., 2003).

3. DISTRIBUTED SHARED MEMORY MODEL

In control application, different function blocks
communicate with each other, read data from sensors
and produce signals for the actuators. In distributed
control applications it is also necessary to know on
what processing node the specific function block will
reside or where and how to address specific I/O
device.

From the application designer point of view,
however, it is much more convenient if the
communication is performed transparently. In this
sense, a model of distributed shared memory has
been devised. The distributed nature and other
particularities of the hardware are thus hidden from
the control application design. The specifics must be
considered only in the latter stages of the
development.

Distributed shared memory consists of a set of cells
that serve as sources or sinks of the virtual
communication links between the application,
hardware platform and the environment (see Fig. 3).
Two processes can use a cell to communicate with
each other regardless of their current location (i.e. on

which processing nodes the processes run). The same
mechanism is used for the communication between
control application and sensors or actuators.

When both source and destination peer for the
communication resides on the same processing node,
simple memory transfer of data can be used. On the
other hand, when the communication spans over two
or more nodes, the data written into a cell in one
node must be transparently distributed to all
appropriate nodes in the systems by means of some
sort of middleware, see Fig 4.

The middleware is a well-recognized approach in
modern computer systems. There are well known
distributed communication subsystems like CORBA
or DCOM that are being used in classic computer
systems (OMG Group, 2002 and Microsoft 2002).
However, these protocols usually introduce too much
overhead into the system architecture to be used in
the embedded real-time control applications. Because
of that, for the IFATIS project, time-triggered
communication as described above has been used.
Memory cells that must be distributed through the
system are mapped into the related TTCAN
messages and sent periodically to other nodes in the
system. To achieve temporally predictable behaviour,
the overall operation of the system is synchronized
with those time intervals. Each execution cycle starts
with the reception of the reference message. Then, all
outputs of the previous cycle are transmitted to the
other nodes in the system and serve as an input to a
new cycle. The behaviour is similar to the traditional
PLC operation and is used by most control
application development tools.

However, there is a problem using time-triggered
communication. Generating the optimal schedule for
specific control applications has exponential
complexity. The complexity is even larger when the
system is requested to be fault-tolerant. In the case of
a fault the control application must swiftly adapt to
the new situations. This can include a requirement
for rearrangement of the communication pathways in

��������� ����!�

"#������#$������#%������#&��

"#������#$������#'������#(����

��������� ����$�

�)�����
����� �

�$�

��

��

�%�

�*+,�
-���./�

Fig. 3: Distributed shared memory cells model

the system. Thus, for time-triggered protocols, a new
message schedule must be used. Because the
timetables cannot be generated dynamically, all
possible resolutions must be prepared in advance. To
cope with this problem an off-line tool for TTCAN
timetable generation has been implemented as a part
of the IFATIS project. Based on the information of
all possible producers and consumers in all possible
configurations of the systems appropriate timetables
by means of C-language header files are generated to
be included later in the application code.

The underlying communication protocol also
introduces some other limitations. In general, the
maximum size of the message also limits the amount
of data that can be put into a single cell. This can be
overcome if several messages are used for a single
memory cell. Further, the communication speed
confines the overall performance of the application.

This drawback can be diminished if a faster
communication protocol is used. Or, if redundant
communication channels are available, they can
share the load to increase the overall throughput of
the communication. In normal operational mode the
communication busload is distributed over all
available channels. However, this solution increases
the complexity of message’s timetable generation
because the schedules for those buses must be
synchronised. And, of course, if some of the
communication channels fail, the busload must be
rearranged and the communication time increases.

There are other possibilities to utilize the proposed
shared memory model. First, because the data
between the control application and peripherals are
transferred indirectly, some sort of data
transformation can be applied. Control application
usually deals with abstract representation of some
physical quantities from the environment (e.g.
temperature represented in the degrees of Celsius).
On the other hand, the acquisition and the actuation
of those quantities are performed by simple
input/output devices (e.g. A/D converter connected

to the temperature sensor). Those devices use their
own kind of data representation. To simplify control
application development, the transformation between
different value domains can be done transparently by
the system software.

As an example, an integer value provided by a
temperature sensor can be transformed into the
appropriate floating-point value for the application.
For this, each memory cell can be associated with
two transformation functions. The first is applied
when data are written to and the second is applied
when data are read from the cell. If, for some reason,
the temperature sensor must be replaced with a
different one only the transformation functions must
be updated accordingly.

In addition to the application data, the memory cell
can embrace some other attributes that are provided
by the application (e.g. quality of the information
generated by the producer) or the systems software
(e.g. timestamp when the data has been generated).
System software can also monitor when data in a cell
actually change and signals the control application,
etc.

By using shared memory model it is also possible to
perform a simple and unified kind of tracing and
diagnostic of all important state variables used by the
control application. Because the information written
to a cell is transparently distributed to all nodes in the
systems, it is possible to have a dedicated monitoring
node that acquires the current state of the system.

Current version of the IFATIS system software
supports the use of maximum 32 shared memory
cells with five basic data types (byte, word, integer,
float and double). This functionality can be expanded
to a larger number of memory cells and for using
custom data types with maximum data size of eight
bytes. Communication layer manages the replication
of memory cells in the background as a separate task.

Distributed shared memory

Firmware

Application
Software

Firmware

Application
Software

Firmware

Application
Software

Firmware

I/O drivers

I/O

modules

Firmware

I/O drivers

I/O

modules

Communication subsystem

Fig 4. Implementation of DSM model

4. SUPPORT FOR FAULT-DETECTION AND
FAULT-TOLERANCE

There are several techniques to deal with faults in the
control systems. However, the first step is to detect
the fault. To do this some kind of dependable
monitoring system must be implemented, which
detects abnormalities in the system and triggers
appropriate corrective actions.

Using the shared memory model, some faults can be
detected by evaluating the values in the memory
cells. E.g., the data transformation routine (described
above) can be extended to check the plausibility of
data written into a cell. The simplest kind of
validation is range checking. It is expected that some
variables can only hold values in a certain range (e.g.
the temperature of the environment should not be
below 5 degrees or above 50 degrees Celsius). The
out-of-range values signal some sort of fault in a
system. In similar way more sophisticated validation
can be performed. For example, the dynamic of the
changing of values can be observed if a previously
written value is compared to a new one, the
minimum or maximum frequency of data arrivals can
be monitored if time-stamps are observed, etc.
Although it is more efficient if those tests are done
by dedicated hardware it is much more flexible to
use software routines. In the case of floating-point
values this is usually the only feasible solution.

The shared memory model may not only be used for
fault-detection; it can also simplify the fault-
tolerance of the overall system in the case of faults.
Fault-tolerance of the hardware is usually dealt with
by redundancy and diversity. When a fault occurs,
the system must be reconfigured. With shared
memory model approach this can be implemented in
such way that the reconfiguration is transparent to
the control application code.

For example, one of the possible faults in the system
is when one of the nodes in the system fails. In this
case the tasks performed by the failed node must be
reallocated to other ones. Because of the shared
memory model, the transition from one configuration
to another is simplified. It is not important on which
processing node the initiator for the message is
allocated. In most cases the timetable for the
message scheduling can remain the same. In some
cases, however, because of the reduced resources of
the system, some degradation in the performances
will be necessary and must be considered in the
configuration of the application (e.g. by switching
off some non-important tasks, by increasing some
response times, by gracefully degrading the accuracy
of some calculations, etc.).

In the same way the faults of sensors and actuators
can be dealt with. By using redundancy, several

sensors can be used to measure the same physical
quantities, but only one of them (the one that
operates most accurately) is used to produce the
value that is distributed through the system. It is
even possible to replace the physical sensor with the
software component that produces (i.e. calculates or
estimates) appropriate values for the system without
the need for changes in the control application.

However, there is also a difficulty by using shared
memory model. As mentioned above, several
communication channels can be used to increase the
overall throughput of the shared memory related
messages. But, in the case of failure on one of the
channels, the communication must be performed by
the others and some degradation in the commu-
nication response times can be expected.

5. SUPPORT FOR CONTROL APPLICATION
DEVELOPMENT

Use of the shared memory model would have no
practical value, if it would not be integrated within
the control application development life cycle. For
this, the application development tool should be
adapted to support the shared memory model. As a
part of the IFATIS project the official development
tool, ControlBuild, has been expanded in such a way.
Also, one of the most frequently used development
tools for control application development,
Matlab/Simulink, has been upgraded.

To implement the shared memory model two
additional function blocks have been added to the
development tool library: one for reading from and
one for writing into the specific memory cell. The
custom dialog window is used to define specific
parameters: type of data that will be sent or received,
shared memory slot identifier, status if the same data
should be sent over both TTCAN channels
(redundancy), how frequently data should be
updated, etc. Some of the memory blocks are used
for the communication with the peripheral devices.
For those blocks several additional parameters must
be set. For example, parameters for mapping between
application specific values and device specific values
can be defined to support data transformation. To
allow for this, two value intervals can also be
defined. The first interval defines the expected range
of the value produced by the application and the
second one defines the range of the value expected
by the hardware device. The given range also
represents the minimum and maximum values of the
data and serves as some kind of limiter or it can be
used for the data validation. As a shortcoming, only
linear transformation can be described at this time.
More complex transformation and other fault-
detection mechanisms can be (at this time)
implemented in C and added later to the application
code.

Because the redundancy and the diversity can be
utilized, it is possible that more than one function
block produces the data for a specific memory cell,
however not at the same time. Thus, there may be
more than one output memory block with the same
ID. To assure that only one of the replicas actually
produces the value, the sending block has an
additional enable signal. This signal is used to enable
and disable the data transmission in different
operation modes. The signal is set according to the
current execution state of the application.

The process proposed for building a fault-tolerant
control application by using the solutions described
above would be as follows.

First, the development of the control application is
performed as usually without considering the target
platform. Only the limitations on what function
blocks are usable for the implementation should be
considered. The model should be tested and validated
by means of all usual practices from the control
application domain.

Later, the model must be prepared for execution in
the distributed environment. The control application
must be divided into modules that will be executed
on different processing nodes. In the case of the
IFATIS tool this is done by division of the model
into the sub models. Because all code is preloaded
onto the processing nodes prior to execution, also all
possible execution modes of the system must be
prepared. To simplify this, each subsystem can be
further divided into several smaller ones that
represent the model of execution in different
execution modes. Then, the shared memory blocks
are introduced to describe the connection links
between different subsystems. After that, the
application can be simulated and validated again as a
distributed system. Sampling effects due to latencies
introduced by the TTCAN bus can also be simulated
accurately. Later, when the result of the testing is
satisfied, the specific blocks are augmented with
more detailed implementation attributes. Based on
the information about the nodes and the memory cell
blocks, appropriate timetables for TTCAN messages
are generated. Finally, the code is generated and
loaded into the target where additional testing and
validation can be performed directly on the target.

6. CONCLUSION

During the design and implementation of the IFATIS
experimental platform several approaches to
implement a reliable and fault-tolerant distributed
computer system were tested. One of the solutions to
partial problems was the distributed shared memory
model that has been represented in this paper.
Although this approach still exposes some difficulties
it proved to be a very efficient solution to
transparently deal with data interchange and with
faults in the system almost independently of control
application design and implementation.
In the future work the distributed shared memory
approach will be further elaborated to increase the
dependability and to reduce the number of required
TTCAN timetables for all possible configurations of
the system. As an experiment, for massive data
transfer, an Ethernet communication channel will be
added in parallel to the TTCAN communication to
increase the overall throughput and response times of
the system.

REFERENCES

Bosch R. (1991). Controller Area Network (CAN)

Specification, Version 2.0.
http://www.can.bosch.com

ISO/CD 11898-4 (2004) Road vehicles – Controller
area network (CAN) – Part 4: Time triggered
communication.

IFATIS (2004). Intelligent Fault Tolerant Control in
Integrated Systems. IST-2001-32122.
http://ifatis.uni-duisburg.de

Microsoft (2002). Distributed COM (DCOM)
specifications.
http://www.microsoft.com/com

OMG Group (2002). Corba specifications.
http://www.corba.com

Verber D and Colnari� M. (2003) “Issues in the
implementation of a fault-tolerant hardware
platform”, in 5th IFAC Symposium on fault
detection, supervision and safety of technical
processes, Washington, D.C., USA, June 9-11,
2003 p. 561-566.

Verber D., Colnari� M. and Halang W. A. (2002).
Fault detection in safety-critical embedded
systems. In: Design and analysis of distributed
embedded systems (Kleinjohann B. (ed.)), p.
113-119. Kluwer Academic Publishers, Boston.

