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1. INTRODUCTION

In this article, we present and discuss non de-
generate second-order necessary conditions of op-
timality for an optimal impulsive control prob-
lem. By impulsive control system, it is meant
one whose state variable is driven not only by
conventional dynamics, which are absolutely con-
tinuous with respect to the Lebesgue measure,
but also by measures which play a role of a
control and give rise to a component of its evo-
lution which is not absolutely continuous. This
evolution may correspond to jumps in the state
trajectory which are naturally considered in a
number of applications such as aerospace navi-
gation, (Lawden, 1963), resources management,
finance, (Clark et al., 1979; Dykhta and Sam-
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sonyuk, 2000), quantum electronics, (Dykhta and
Samsonyuk, 2000; Miller and Rubinovitch, 2002),
impact mechanics, (Brogliato, 1996), etc. There
is already a vast literature (see (Miller and Rubi-
novitch, 2002; Dykhta and Samsonyuk, 2000; Vin-
ter and Pereira, 1988; Pereira and Silva, 2000), to
cite just a few references) addressing optimality
conditions for this class of problems extending
the body of results for conventional problems,
(Vinter, 2000), to control systems with trajecto-
ries of bounded variation.

Here, we will consider the following optimal con-
trol problems with equality and inequality con-
straints on the endpoints of the state variable and
constraints on the control measure.

(P ) Minimize e0(x(t0), x(t1))

subject to dx(t) = f(t, x(t), u(t))dt

+G(t)dµ(t), t ∈ [t0, t1],

e1(x(t0), x(t1)) ≤ 0,



e2(x(t0), x(t1)) = 0,

dµ ∈M.

Here, t0, and t1, with t0 < t1 are fixed. The
functions f : [t0, t1] × Rn × Rm → Rn, G :
[t0, t1] → Rn×q, ei : Rn×Rn → Rd(ei), i = 0, 1, 2,
d(e0) = 1 3 , are given and assumed to satisfy the
following standard assumptions:

• The functions ei, i = 0, 1, 2, are twice contin-
uously differentiable.

• The function f is twice continuously differ-
entiable w.r.t. (x, u) for all t ∈ [t0, t1].

• The matrix function G is continuous.
• Functions f and its first and second order

derivatives are bounded on any bounded sub-
set and measurable w.r.t. t.

The function u ∈ L∞([t0, t1];Rm) 4 is the con-
ventional measurable control, and the impulsive
control dµ is a q-dimensional Borel measure taking
values in the cone M, given by{

dµ ∈ C∗q : ∀φ ∈ Cq s.t. φ(t) ∈ M0, ∀t,
∫

B

φ(t)dµ(t) ≥ 0, ∀ Borel B ⊂ [t0, t1]
}

.

Here, M0 is the dual of a given convex, closed,
pointed cone M ⊂ Rq.

These conditions improve those available in most
of the current optimal control literature on
second-order conditions for both impulsive and
conventional optimal control problems (see, for
example, (Ledzewicz and Schaettler, 1998; Dykhta,
1997), and references therein) in two ways.

One important feature of the optimality condi-
tions presented here is the fact that they do not
degenerate even for abnormal control processes,
(Arutyunov, 2000; Arutyunov, 2002). Second-
order conditions previously obtained for optimal
control do degenerate (see (Dykhta, 1997) for im-
pulsive control, and (Ledzewicz and Schaettler,
1998) for conventional control problems). Fur-
thermore, in contrast with publications concern-
ing nondegenerate second-order necessary condi-
tions of optimality (see, for example (Ben-Tal and
Zowe, 1982; Kawasaki, 1988; Cominetti, 1990)),
we do not require any a priori normality assump-
tions. The basic idea consists in using additional
information from second-order conditions in order
to select a subset of the set of multipliers satisfying
the local necessary conditions of optimality in
such a way that the conditions remain informative
even for abnormal control processes.

3 d(f) denotes the dimension of the range space of the
function f .
4 Unless otherwise stated, all function spaces will be
referred to the interval [t0, t1] and its notation simplified
to Lm∞. Other examples are Cn, C∗n, BV n, . . ..

Another pertinent feature which strengths the
conditions derived by the authors in (Arutyunov
et al., 2003), consists in the fact that, now, our
second-order conditions take into account the
second-order effect of the curvature of the set in
the measure control inclusion constraints. Such an
effect has been noticed in a few publications in the
optimization literature, (Ben-Tal and Zowe, 1982;
Kawasaki, 1988; Kawasaki, 1991; Cominetti and
Penot, 1997)) and transposed here to the optimal
control context.

The approach to the proof of the result presented
here consists in writing the above optimal control
problem (P ) as an abstract optimization problem
(A) with equality, inequality constraints and con-
straints in the form of inclusion in a set, defined
in appropriate spaces. Then, the necessary con-
ditions of optimality derived in (Arutyunov and
Pereira, to appear in 2005) are applied to (A) and
decoded in terms of the data of (P ).

This article is organized as follows: In the next
section, we present a set of preliminary defin-
itions having in mind not only to precise the
problem under consideration, but also specify the
concepts required for the statement of the main
result. In section 3, we provide additional con-
cepts, state the main result, and present a brief
outline the proof which essentially is based on
an abstract extremum principle. These abstract
second-order conditions are stated in section 4.
For this, we start by formulating the abstract opti-
mization problem and corresponding second-order
conditions of optimality presented and derived
in (Arutyunov and Pereira, to appear in 2005),
and compare these conditions with related results
obtained previously.

2. PRELIMINARY DEFINITIONS

We start this section by presenting a number of
definitions which will be essential to state our
main result.

We say that a pair (u, µ) is an admissible control
if u ∈ Lm

∞ and µ ∈ BV q such that dµ ∈M.

An admissible control process is a triple (x0, u, µ),
where (u, µ) is an admissible control and the cor-
responding trajectory satisfies the given endpoint
constraints.

For any given triple (x0, u, µ), where x0 is an
initial value of the state variable, i.e., and (u, µ)
is an admissible control, the trajectory associated
with (1) is the unique right continuous function
x(·) of bounded variation on (t0, t1] satisfying
x(t0) = x0 and, for t > 0,

x(t)=x0 +

t∫

t0

f(s, x(s), u(s))ds +
∫

[t0,t]

G(s)dµ(s) (1)



We say that the admissible process (x∗0, u
∗, µ∗) is a

local minimizer of the problem (P ) if there exists
ε > 0 and, for any finite-dimensional subspace
R ⊂ Lm

∞, εR > 0 such that the process (x∗0, u
∗, µ∗)

yields a minimum to the problem (P ) with the
additional constraints ‖u − u∗‖Lm∞ < εR, u ∈ R,
‖x0 − x∗0‖ < ε, and ‖dµ− dµ∗‖C∗q < ε.

Moreover, since (x∗0, u
∗, µ∗) is investigated for

local minimum only, then there is no loss of
generality in assuming that all endpoint inequality
constraints are active at the optimal trajectory,
i.e., e1(x∗(t0), x∗(t1)) = 0.

In order to state the second-order conditions,
we introduce next a local maximum principle,
and define a critical cone, and an appropriate
quadratic form.

Let ψ∈Rn, λ = (λ0, λ1, λ2)∈R1×Rd(e1)×Rd(e2).

In order to shorten the notation, we denote by
xi the point x(ti) 5 , for i = 0, 1. When some
arguments of a given function are missing, this
means that the considered function is evaluated
along the given reference process. The dot over
the function label means the total derivative with
respect to time. An argument variable appearing
in sub index means that a partial derivative is
being considered.

The Pontryagin function, H, and the endpoint
Lagrangian, lλ, are, respectively, given by:

H(t, x, ψ, u) = 〈ψ, f(t, x, u)〉,

lλ(x0, x1) = λ0e0(x0, x1) +
2∑

i=1

〈λi, ei(x0, x1)〉.

The local maximum principle is satisfied by the
process (x∗0, u

∗, µ∗) if there exists λ 6= 0, such that

λ0 ≥ 0, λ1 ≥ 0, 〈λ1, e1(x∗0, x
∗
1)〉 = 0 (2)

and a vector function ψ ∈ BV n, solution to the
adjoint system

{−ψ̇(t) = Hx(t, x∗(t), ψ(t), u∗(t))

(−ψ(t1), ψ(t0)) = lλ(x0,x1)
(x∗0, x

∗
1)

(3)

which satisfy the following conditions:

Hu(t, x∗(t), ψ(t), u∗(t)) = 0 L-a.e.,

〈ψ(t), G(t)v〉 ≤ 0 ∀(t, v) ∈ [t0, t1]×M,

〈ψ(t), G(t)ω∗(t)〉= 0 dµ∗-a.e.,

where ω∗(t) = dµ∗(t)
d|µ∗(t)| is the Radon Nicodym

derivative of the measure dµ∗ with respect to its
total variation measure. Remark that any adjoint

5 This notation extends to the optimal reference trajec-
tory, x∗, and to the variation δx.

trajectory ψ(t) and the function H(·) depend on
λ due to the transversality condition in (3).

Let Λ = Λ(x∗0, u
∗, µ∗), denote the set of all La-

grange multipliers λ satisfying the local maximum
principle and ‖λ‖ = 1. Then (see (Arutyunov,
2000; Arutyunov et al., 2003)), we have the fol-
lowing result:

Theorem 1. (First order necessary conditions of
optimality). If (x∗0, u

∗, µ∗) is a local minimum for
problem (P ), then Λ 6= ∅.

A variation (δx0, δu, δµ) ∈ Rn×Lm
∞×C∗q is called

critical if the corresponding state trajectory varia-
tion, δx ∈ BV n, satisfies the following conditions:




ei
(x0,x1)

(x∗0, x
∗
1)(δx0, δx1)T ≤ 0, i = 0, 1,

e2
(x0,x1)

(x∗0, x
∗
1)(δx0, δx1)T = 0

(4)

d(δx)(t) = [fx(t)δx(t) + fu(t)δu(t)]dt

+G(t)d(δµ), (5)

with d(δµ) ∈ TM(dµ∗).

Denote by Kcr, the cone of all critical variations.

For each λ ∈ Λ(x∗0, u
∗, µ∗), define the quadratic

form Ωλ : Rn × Lm
∞ ×M→ R1, by

Ωλ(ξ, δu, δµ) =−
t1∫

t0

∂2H(t)
∂(x, u)2

[(δx(t), δu(t))]2dt

+
∂2lλ

∂(x0, x1)2
(x∗0, x

∗
1)[(δx0, δx1)]2. (6)

Here, δx is the solution to the above variational
equation corresponding to δu and δµ ∈ TK(µ∗)
with δx0 = ξ, and Q[a]2 denotes the quadratic
form aT Qa.

3. THE MAIN RESULT

The statement of our main result requires some
additional definitions which enable the specifica-
tion of a subset of Λa(x∗0, u

∗, µ∗) ⊆ Λ(x∗0, u
∗, µ∗)

ensuring that the optimality conditions remain
informative even for abnormal control processes.

Denote by Kπ ⊂ Rn × Lm
∞ × Lq

∞ × Rq the set of
the triples (ξ, δu, δw, h), where δx is the solution
to the following modification of (5),




˙δx(t) = fx(t)δx(t) + fu(t)δu(t)−G(t)πδw,
t /∈ supp{µ∗s}

d(δw) ∈ TM(dw∗)

δx0 = ξ, δu ∈ Lm
∞,

(7)

being w∗ and δw, functions of bounded variation
associated with measures dµ∗ and d(δµ), respec-
tively, supp{µ∗s} the support of the singular com-
ponent of the measure µ∗, and π the matrix of



orthogonal projection from Rq into M ∩ (−M),
and that satisfy

e(x0,x1)(x
∗
0, x

∗
1)(δx0, δx1)T+ ex1(x

∗
0, x

∗
1)G(t1)πh = 0

where e = (e1, e2)T , and h = δw(t1).

Define Ωλ
a on Rn × Lm

∞ × Lq
∞ × Rq from (6) by

formally replacing δw(t1) by h 6 and define the
linear operator A : Kπ → Rd(e1)+d(e2), by

A(δx0, δu, δw, h) := e(x0,x1)(x
∗
0, x

∗
1)(δx0, δx1)T

+ex1(x
∗
0, x

∗
1)G(t1)πh

where (δx, δu, δw) satisfies (7).
Let d = codim(ImA) 7 , and let Λa(x∗0, u

∗, w∗) be
the set of multipliers λ ∈ Λ(x∗0, u

∗, w∗) such the
index 8 of the quadratic form Ωλ

a on Kπ is not
greater than d.

Let O2
M(µ∗, δµ) denote the outer second-order

tangent cone to the set M at the point µ∗ along
the direction δµ. This is an instance of the defini-
tion of the outer second-order tangent cone given
in the next section for the case in which C = M,
x0 = µ∗, h = δµ.

Theorem 2. Let an admissible control process
(x∗0, u

∗, µ∗) be a solution to the problem (P ).

Then, the set Λa(x∗0, u
∗, µ∗) is nonempty and,

for any (ξ, δu, δµ) ∈ Kcr, and any convex set
T (δµ) ⊆ O2

M(µ∗, δµ) we have

max
λ ∈ Λa

|λ| = 1

{
Ωλ(ξ, δu, δµ)− σ

(
q; T (δµ)

)}
≥ 0, (8)

where q : [t0, t1] → Rq and σ
(
q; T (δµ)

)
are

defined by, respectively, q(t) = −GT (t)ψ(t), and

σ
(
q; T (δµ)

)
= sup

ν∈T (δµ)

{ ∫

[t0,t1]

qT (t)dν(t)

}
.

6 Notice that, now, δx has a different meaning. The second
term in (6) takes the form lλ

(x0,x1)2
(x∗0, x∗1)[(δx0, δx1)]2+

2lλx0x1
(x∗0, x∗1)[(x0, G(t1)δw1)] + lλ

x2
1
(x∗0, x∗1)[G(t1)δw1]2.

7 It can be shown that d is the dimension of the kernel
of the block matrix operator [A|B|G(t1)π]T : Rd(e) →
Rn+d(e)+q , where d(e) = d(e1) + d(e2),

A = ex0(x
∗
0, x∗1)T + Φ(t1)ex1(x

∗
0, x∗1)T ,

B = ex1(x
∗
0, x∗1)

t1∫

t0

Ψ(t1, t)Γ(t)×Γ(t)TΨ−1(t1, t)Tdtex1(x
∗
0, x∗1)T.

Here, Ψ(t, s) = Φ(t)Φ−1(s), Φ is the solution to the system
Φ̇(t) = fx(x∗(t), u∗(t), t)Φ(t), [t0, t1]-a.e., with Φ(t0) = I,
Γ(t) = [fu(t)|G(t)π], and AT denotes the transpose of A.

8 The index of a quadratic form on a given subspace
V is the dimension of the subspace of V of maximum
dimension where the quadratic form is negative definite,
(Arutyunov, 2000).

Remark. In the second-order necessary conditions
obtained in (Arutyunov et al., 2003), the term
−σ

(
q; T (δµ)

)
is absent in the inequality corre-

sponding to (8) and the variations δµ are consid-
ered only in the set M + {µ∗} which is a subset
of the set TM(µ∗) considered here. Therefore, the
conditions in (Arutyunov et al., 2003) can not take
into account the second-order curvature effect of
the set inclusion constraints. This is the most
significant improvement of the above result.

The proof of this result consists in casting the
considered optimal control problem (P ) in a ab-
stract minimization problem (Q) and apply the
second-order necessary conditions of optimality
proved in (Arutyunov and Pereira, to appear in
2005). Then, the resulting conditions are decoded
in terms of the data of (P ).

First, let us remark that with a change of state
variable (see (Clarke, 1983)), it is not difficult to
define an optimal control problem equivalent to
(P ) whose cost functional depends only on the
state variable at the initial time.

Let x̄ = (x0, u(·), µ), X = Rn × Lm
∞ × C∗q, and

C = Rn×Lm
∞×M. Then, by defining f : X → R1,

F1 : X → Rk1 , and F2 : X → Rk2 (here,
k1 = d(e1), and k2 = d(e2)), respectively, by
f(x̄) = e0(x0, x(t1)), F1(x̄) := e1(x0, x(t1)), and
F2(x̄) := e2(x0, x(t1)), problem (P ) becomes

(Q) Minimize f(x̄)

subject to F1(x̄) ≤ 0

F2(x̄) = 0

x̄ ∈ C ⊂ X.

This is an abstract optimization problem for
which second-order necessary conditions of opti-
mality are proved in (Arutyunov and Pereira, to
appear in 2005). For convenience, we state this
result in the next section. By following arguments
similar to the ones in (Arutyunov et al., 2003)
it is straightforward to decode these conditions
in terms of the data of (P ) in order to obtain
Theorem 2.

4. AN EXTREMUM PRINCIPLE

Let X be agiven vector space, and x∗ ∈ X be a
solution to problem (Q) in the previous section.
From now on, we will drop the bar in x̄. We
assume that the set C ⊆ X is closed, the mappings
Fi : X → Rki , i = 1, 2, and the function f : X →
R1 are twice continuously differentiable in a neigh-
borhood of x∗ with respect to the finite topology
τ . This means that the restrictions of f , F1 and
F2 to an arbitrary finite dimensional subspace
S ∈ S such that x∗ ∈ S are twice continuously
differentiable in a neighborhood (that depends on



S) of x∗. For a more detailed discussion on the
assumptions, see (Arutyunov, 2000; Arutyunov
and Pereira, to appear in 2005).

The critical cone, K(x∗), of problem (Q) at the
point x∗ is defined by
{

h ∈ TC(x∗) : 〈fx(x∗), h〉 ≤ 0, F2x(x∗)h = 0,

〈F1,jx(x∗), h〉 ≤ 0 ∀j s. t. F1,j(x∗) = 0
}

.

Here TC(x∗) =
⋃

S∈S
TC∩S(x∗), where S ∈ S is an

arbitrary finite dimensional linear subspace of X
such that x∗ ∈ S, denotes the tangent cone to C
at x∗, being TC∩S(x∗) the contingent (Bouligand)
cone, given by the set
{

x ∈ h : ∃{εn} ↓ 0, distS(x∗+εh,C) = o(εn)
}

.
Here, distS(c, C) = inf

ξ∈C∩S
{‖ξ − c‖}.

We will need the outer second-order tangent cone
to C at x∗ in the direction h, O2

C(x∗, h) which,
in the context of this problem, is defined as
O2

C(x∗, h) =
⋃

S∈S
O2

C∩S(x∗, h), for some h ∈ S

with S as above, and

O2
C∩S(x∗, h) =

{
w : ∃{εn} ↓ 0 s.t.

distS(x∗ + εnh +
1
2
ε2

nw, C) = o(ε2)
}

.

Note that if h ∈ TC(x∗) then O2
C(x∗, h) 6= ∅,

(Bonnans et al., 1999). See (Kawasaki, 1988;
Cominetti, 1990; Kawasaki, 1991; Cominetti and
Penot, 1997; Arutyunov and Pereira, to appear in
2005) for further details concerning the definition,
properties, and computation.

Let λ = (λ0, λ1, λ2) with λ0 ∈ R1, λ1 ∈ Rk1 ,
and λ2 ∈ Rk2 , and denote by L the generalized
Lagrangian defined by

L(x, λ) = λ0f(x) + 〈λ1, F1(x)〉+ 〈λ2, F2(x)〉.
The set of Lagrange of multipliers associated with
the point x∗ according to the Lagrange multiplier
rule, i.e., such that

{
∂L
∂x

(x∗, λ) ∈ −NC(x∗)

λ0 ≥ 0, λ1 ≥ 0, 〈λ1, F1(x∗)〉 = 0, |λ| = 1.
(9)

is denoted by Λ = Λ(x∗).

Here, NC(x∗) is the normal cone in the sense of
Mordukhovich, (Mordukhovich, 1993), which can
be defined as NC(x∗) =

⋃

S∈S
NS

C(x∗) where S is as

above,

NS
C(x∗) =lim

x∈S

x→x∗

sup
⋃
r>0

{r[x−WS∩C(x)]}

where WS∩C(x) = inf
ξ∈C∩S

{‖ξ − x‖}.

By invariant linear subspace (ILS) relatively to C
at x, it is meant a linear subspace of X, denoted
by IC(x), such that x + IC(x) ⊆ C, ∀x ∈ C.

For a given closed set C, an ILS is not, in general,
unique since any linear subspace of an ILS also is
an invariant linear subspace. For any x ∈ C, put
IC(x) =

⋂

r 6=0

r[C−x], being the intersection taken

over all reals r ∈ R1, r 6= 0.

If the set C is convex, then, ∀x ∈ C, IC(x) is the
maximal ILS relatively C and it does not depend
on x.

Note also that, if the set C is a convex cone, then
IC = C ∩ (−C) is the maximal ILS.

In what follows, we assume, for convenience, that
F1(x∗) = 0. This can always be achieved by omit-
ting the nonactive components of the inequality
constraints.

Take any linear subspace S ⊆ X and consider the
set of all Lagrange multipliers λ ∈ Λ for which
there exists a linear subspace Π ⊆ S (depending
on λ) such that

• codimSΠ ≤ k,

• Π ⊆ Ker
∂F

∂x
(x∗),

• ∂2L
∂x2

(x∗, λ)[h, h] ≥ 0, ∀h ∈ Π.

Here, F = [F1|F2]T , codimS denotes the codi-
mension relative to the subspace S. We denote
this set of Lagrange multipliers by Λk(x∗, S). Each
set Λk(x∗, S) is obviously compact (but might be
empty).

For a given set D ⊆ X, we denote by σ(·, D) its
support function, i.e., σ(χ,D) = supx∈D〈χ, x〉, for
some χ ∈ X∗.

Theorem 3 (Theorem 2.1 in (Arutyunov and
Pereira, to appear in 2005)). Let x∗ be a point of
local minimum with respect to the finite topology
τ of problem (Q).

Then, for each ILS IC(x∗), the set Λk(x∗, IC(x∗))
is nonempty, and, moreover, for each h ∈ K(x∗)
and any convex set T (h) ⊆ O2

C(x∗, h),

max
λ∈Λa

(
∂2L
∂x2

(x∗, λ)[h, h]

−σ

(
−∂L

∂x
(x∗, λ), T (h)

))
≥ 0.

Here, Λa = convΛk(x∗, IC(x∗)) and convA de-
notes the convex hull of the set A .

Remark. The problem

Minimize f(x) subject to F (x) ∈ C



has been widely investigated (see (Bonnans and
Shapiro, 2000) and references therein) under the
assumptions of convexity of the set C and Robin-
son’s constraint qualification for arbitrary Banach
space Y . In this context, they obtained the follow-
ing optimality condition:

max
λ∈Λ

(
∂2L
∂x2

(x∗, λ)[h, h]− σ

(
λ̃, T (h)

))
≥ 0

for all h in the critical cone for this problem.

In (Arutyunov and Pereira, to appear in 2005),
the version of theorem 3 above for this prob-
lem (theorem 4.1 in (Arutyunov and Pereira,
to appear in 2005)) shows that, for the case
of finite dimensional Y , the second-order nec-
essary conditions of optimality from, (Ben-Tal
and Zowe, 1982; Cominetti, 1990; Bonnans and
Shapiro, 2000) holds for generalized Lagrangian
without the Robinson’s constraint qualification
(which amounts to a normality assumption) and
without the convexity assumption on C.

Note also that our condition in theorem 3 is, in
general, stronger than the corresponding one in
(Ben-Tal and Zowe, 1982; Cominetti, 1990; Bon-
nans and Shapiro, 2000) because ΛQ

a ⊆ convΛQ.
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