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Abstract: The automatic steering assistance system presented in this paper takes advantage
of the technique of Model-based predictive control (MPC) ofsystems with hard input
constraints in order to compute the appropriate steering angle of the front tires. In
addition the Quantitative Feedback Theory (QFT) is used to find a robust controller
that maintains the key properties of the loop for the implementation of the Model-based
Predictive Controller input, despite uncertainty, i.e. stability, tracking performance and
disturbance rejection. The procedure involves deriving a steering angle rate from the front
tire angle and applying it to the steering column. The feasibility of the proposed assistance
system is evaluated in a simulation using Matlab/Simulink and a test vehicle. The results
demonstrate the effectiveness of the automatic steering system in lane keeping and yaw
dynamic improvement.Copyrightc©2005 IFAC
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1. INTRODUCTION

The interdisciplinary research program ”intelligent
traffic and user-friendly technology” (invent) (invent,
2004) covers many different research subjects in
the field of automotive control. The Congestion-
Assistance consortium ”invent-STA” focusses on the

1 Within the framework of the interdisciplinary research program
”intelligent traffic and user-friendly technology” (invent), supported
by the German Federal Ministry of Education and Research, theIn-
stitute of Automatic Control (IRT) of the RWTH Aachen University
along with the AUDI AG et al. have developed an automatically
acting assistance system for automatic steering of vehiclesdriven at
low velocity range.

development of an automatically acting assistance
system for vehicle guidance at low velocity range in
order to improve the road’s safety and the driver’s
comfort in congestion situations. For this purpose a
Model-based Predictive Controller for the longitudinal
guidance of vehicles was designed and validated for
different test vehicles (Zambouet al., 2004). In this
paper an approach for an automatic steering control
system based on MPC of the lateral deviation, and
a robust control of the steering angle rate (Fig. 1) is
presented.

Herein the predictive component integrated into the
control-algorithm is based on the General-Predictive-



Control approach (GPC) (Clarkeet al., 1987) and
uses a linear state space model (Krauss, 1995) of the
process in order to predict the behaviour of relevant
process variables in the future. The prediction is per-
formed using both current and past process data as
well as the manipulated variable. The control target is
hereby to compute the desired control input - the front
tire steering angle - at the lowest possible deviation
between the future output - the lateral deviation -,
and a determined set point within the horizon under
consideration (Fig. 4a).

For an automatically acting steering system, correct
measures will have to be taken to overcome the obsta-
cles caused by the complete substitution of the driver
in the steering control loop and the uncertainty due to
parameter variation of the corresponding actuator. In
this paper, the problem of designing a robust steering
angle rate controller for an electric steering column
with structured parametric uncertainty is addressed
using Quantitative Feedback Theory (QFT). QFT is
a frequency domain method and emphasises the fact
that feedback is necessary because of uncertainty and
that the amount of feedback should be directly re-
lated to the extent of plant uncertainty and unknown
external disturbances (Houpis and Rasmussen, 1999).
Therefore the method takes into account quantitative
information about the plant’s variability, robust perfor-
mance requirement, tracking specification, and distur-
bance rejection requirement. Furthermore it requires
no exact knowledge about the plant, and no online
estimation or tuning algorithm is necessary. The con-
troller is designed to compute the desired manipulated
variable - the torque as the servo motor’s input (Fig. 3)
- and to ensure that robustness and disturbance atten-
uation requirements can be met. This means tracking
the reference steering angle rate by rejecting any other
disturbances other than driver intervention in critical
situations.

2. CONTROL LOOP AND DYNAMIC MODEL

2.1 Control Loop Structure

Figure 1 represents the outline principle of a control
loop structure for the automatic steering of vehicles
driven at low velocity range. It includes an inner
loop for the steering angle rate (δ̇ss) control and an
outer loop for the lateral deviation (yl ) control. The
inner loop consists of the robust steering angle rate
controller and the steering system as the controlled
system. The outer control loop includes the model
predictive controller for the lateral deviation relative to
the center line of the reference path, the vehicle lateral
dynamic as the plant, and a transformation block to
derive the required steering angle rate (δ̇ss/r ) from the
front tire steering angle (δ f ). Additional variables such
as the curvature (κre f ) of the reference path and the
required lateral deviation (yl/r ) are external inputs to
the outer loop of the cascade structure.

Table 1. System parameters and symbols

Symbols Description Value

/r , /a required, achieved -
δss steering angle -[rad]
tss torque of the servo motor -[Nm]
α f front tire slip angle -[rad]
δ f steering angle of the front tires -[rad]

yl lateral deviation -[m]

κre f curvature of the reference path -[1/m]

v longitudinal velocity 4.17[m/s]
Ψ yaw angle -[rad]
Ψre f reference yaw angle -[rad]

Ψrel relative yaw angle -[rad]

β sideslip angle -[rad]

m mass of the vehicle 1915[kg]
J vehicle yaw moment of inertia 4728

[

kgm2
]

iss steering system gear ratio 15.7[−]

l f distance from CG to front axle 1.46[m]
lr distance from CG to rear axle 1.42[m]

cf front cornering stiffness 83000[N/rad]
cr rear cornering stiffness 162000[N/rad]
K1 gain of the servo motor 1.083±10%[−]

T1 time constant of the servo motor 0.07±10%[ms]
Iss inertial moment steering system 0.05±30%

[

kgm2
]

Since this paper concerns itself with the design of
inner and outer loop controllers, it must also include
some details about the models of the controlled sys-
tems, i.e. the models of the vehicle lateral dynamic
and the steering system.
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Fig. 1. Block diagram of the control loop

2.2 Vehicle model and reference path

A prerequisite for vehicle lateral dynamic description
is the definition of an appropriate model. In this paper
a ”single-track” model with a ground fixed (inertial)
(xi ,yi) and a vehicle fixed(x,y) coordinate system
which is rotated by the yaw angle (Ψ) as shown in
figure 2 is used. The essential features to develop a
model are described in (Wallentowitz, 2001; Acker-
mann, 1993). The equations of lateral and yaw motion
in the vehicle fixed coordinate system are given as:

mv(r − β̇ ) = Ff +Fr (1)

Jṙ = Ff l f −Fr lr (2)

where,Ff andFr denote the cornering forces at front
and rear tires which are obtained from a linear tire
model. For small front and rear sideslip chassis angles
(β f ) and (βr ) respectively the corresponding cornering
forces are formulated as:

Ff = cf

(

δ f +β −
l f r

v

)

(3)

Fr = cr

(

β +
l f r

v

)

(4)



where r := Ψ̇ is the yaw rate. The tangent to the
centerline of the reference path at the intersection with
the radial line from the instantaneous center of motion
(M), referred to as−→v re f is rotated by a reference yaw
angle (Ψre f ) with respect toxi . The rate of change of
the lateral deviation of the vehicle’s center of gravity
(CG) relative to the reference path (yCG) is given by
ẏCG = v(β − Ψrel) for small angles whereβ is the
car sideslip angle andΨrel := Ψ−Ψre f as depicted in
figure 2. When a vehicle moves on a path composed
of circular arcs with constant radiusRre f , the rate of
change of the relative yaw angle can be defined as:

Ψ̇rel = r −vκre f (5)

whereκre f is the reference curvature. In the test vehi-
cle a camera system mounted at a distancels in front
of the CG measures the lateral deviation relative to
the centerline of the reference path and converts it
to the value of a sensor fixed at the CG. Therefore
the measured deviation (yl ) changes with ˙yCG, and the
resulted rate of change is given as:

ẏl = v(β −Ψrel). (6)

Note that in all equations it is assumed that the longi-
tudinal velocityv > 0 and its rate ˙v are constant. The
vehicle parameters are described in table 1.
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Fig. 2. Single-track model and reference path

2.3 Steering System Model

Figure 3 shows a picture of the steering system in the
test vehicle. The system is equipped with a servo mo-
tor which provides an interface to the robust steering
angle rate controller and a torque sensor. This offers
the possibility of data collection with the purpose of
identification of the behaviour of this system in mind.
The analysis of the prevailing dynamics between input
and output data shows that the achieved torque (tss/a)
follows the control input like a first-order lag system:

T1ṫss/a + tss/a = K1tss/r (7)

where,K1 andT1 are the servo motor gain and time
constant respectively.

Since the driver has been completely substituted in
the steering control loop, the concept in this paper
does not allow for driver input nor any other assisting
torque in the safe operation of the automatic system.
Thus the resulting steering angle rateδ̇ss/a is given by
the equation of roll motion of the steering column:

Issδ̈ss/a = tss/a (8)

whereIss is the inertial moment of the steering system.
Variation in the model parameters in (7) and (8) as
indicated in table 1 is first of all due to the dependency
on the longitudinal velocity, to non-considered effects
from torsional stiffness and torque of the steering gear
as well as to model uncertainties.
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Fig. 3. Steering column in the test vehicle

3. CONTROL CONCEPT

3.1 Model-based Predictive Controller

For the prediction according to the GPC approach, a
classical fourth order state space model is used. It is
derived from equations (1) to (6) of section 2.2. The
state vector isX = [β , r,Ψrel ,yl ]

T . The input vector
is defined asU =

[

δ f ,κre f
]

and the output vector is
given asY = [Ψrel ,yl ]. The application of an observer
structure (Fig. 4b) is permitted by the state space
representation, which assumes that the states of the
model mirror the behaviour of those of the plant.

In order to obtain the control law for the MPC method
used in this paper a cost function is proposed. The gen-
eral aim is for the future output (y) on the considered
horizon to follow a determined reference signal (w)
and at the same time penalise the control effort (∆u)
necessary to achieve this. The expression for such an
objective function would then be:

J = γ
N2

∑
j=N1

(wk+ j − ŷk+ j)
2 +λ

Nu−1

∑
j=0

(∆uk+ j)
2 (9)

In the cost function a set of parameters must be spec-
ified: N1 andN2 (minimum and maximum cost hori-
zons) describing the period (prediction window), in
which the estimated controlled variable ( ˆy) is consid-
ered.Nu (control horizon) corresponds to the number
of manipulated variable steps with which the minimal
error signal is to be generated(Ts is the sampling rate)(Fig.
4a). It does not necessarily have to coincide with the
maximum cost horizon. The coefficientsγ andλ can



be used as tuning parameters to cover an ample range
of the controller behaviours.

The minimisation of this cost function depending
on the control effort (∆u) represents an optimisation
problem. Since the controlled system is subject to
boundary conditions like maximal/minimal front tire

angle (δ max/min
f ) or rate of the steering wheel angle

(δ̇ max/min
ss ), it is recommended to consider these con-

straints during the optimisation. All constraints can be
expressed as control effort dependant linear inequali-
ties (N∆u≥ g) whereN is the identity or the prediction
matrix andg denotes the boundaries minus the free
response of the prediction. By the introduction of con-
straints in the optimisation an analytic solution for this
problem cannot be found. Suitable methods for the
solution of optimisation problems with linear inequal-
ities for constraints are known in the literature under
the name of Quadratic Programming (QP) (Lawson
and Hanson, 1974). The predictive method, by the use
of a time discrete computation of the control effort
(∆u) allows the determination of the manipulated vari-
ableuk = δ f ,k for the timek using the discrete back-
step integration. Since the MPC offers the possibility
to compute a sequence of the control effort (i.e. the
steering angle of the front tires) within the control
horizon, it is appropriate to use these values for the
computation of the required steering angle rate (δ̇ss/r )
(see Fig. 1).

Additional information about the prediction and the
formulation of the optimisation problem are provided
in (Krauss, 1995).
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Fig. 4. a) Basic principle of MPC b) Block diagram

3.2 QFT Controller Design

A transfer function of the steering system - plant of
the inner control loop - is obtained by transforming
equations (7) and (8) in Laplace domain. Thus the
set of transfer functions which describe the region
of plant parameter uncertainty is defined for different
parameter combinations{K1,T1, Iss} using:

P(s) =
K1/Iss

(1+T1s)s
(10)

where, the parameters are subject to variation as given
in table 1. A typical two degree-of-freedom (DOF)

feedback structure is shown in figure 5 whereG(s) is
the cascade compensator andF(s) is an input prefilter.
A detailed description of QFT design procedure can
be found in (Houpis and Rasmussen, 1999). A strictly

steering
system

tssδss r/ δss a/
F(s) G(s)

Fig. 5. QFT feedback structure

proper controllerG(s) and prefilterF(s) are to be
designed such that the following performance and
stability specifications are satisfied.

Assume the inner loop desired performance speci-
fications in the time domain - figures of merit for
unit step forcing functions - are based on a under-
damped second-order system with a maximum peak
MP = 1.2 and a settling timeTset = 0.4s for the upper
bound, as well as on an over-damped system with the
same settling time for the lower bound, the control
ratio for trackingTR(s) should satisfy the inequality
|TRL( jω)| ≤ |TR( jω)| ≤ |TRU( jω)| ∀ω ∈ [0,∞). Ac-
cording to figure 5 the open-loop transfer function is
denoted asL(s) := G(s)P(s) and the control ratio for
tracking is defined as

TR(s) =
F(s)G(s)P(s)
1+G(s)P(s)

(11)

and the transfer functions based on the given perfor-
mance specifications, are identified by

TRU(s) =
60s+1500

s2 +70s+1500
(12)

TRL(s) =
1600

0.0667s3 +4.467s2 +158.7s+1600
(13)

for the upper and lower bounds respectively.

Since the control system does not exclude any driver
intervention, an extremely rapid disturbance rejection
is not required. Therefore if a unit step driver input is
considered as a disturbance on the output signal which
should be attenuated within 15s, then equation (14) is
appropriate to represent the upper bound imposed on
the disturbance as|TD( jω)| ≤ |TDU ( jω)|.

TDU (s) =
20s2 +2.5s

20s2 +10.5s+1
;TD(s) =

1
1+L(s)

(14)

For the closed-loop robust stability an associated QFT
robust constraint is given by|L( jω)|/ |1+L( jω)| ≤
M = 1.2 which corresponds to the 1.6db M-contour
on the Nichols chart (NC).

The design specifications are translated into some con-
straints on the nominal open-loop transfer function
(L0(s) = G(s)P0(s)) whereP0(s) is the nominal plant
transfer function. These constraints, typically deter-
mined on the NC are designated as QFT bounds. A
procedure known as loop shaping in QFT is then ap-
plied to determine an admissibleL0(s) that meets all



the bounds. Figure 6 presents the QFT bounds as well
as the results of the final loop shaping. The controller
G(s) is then extracted fromL0(s) by dividing it by the
nominal plant transfer function.

G(s) =
0.753s+38.19

s+25.46
(15)
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A prefilter is designed such that the closed-loop fre-
quency responses lie between the tracking boundaries
given by the equations (12) and (13). The suitable
prefilter is determined using the Bode analysis.

F(s) =
30

s+30
(16)

The closed-loop frequency responses according to the
tracking control ratio of equation (11) are computed
for the extent of plant uncertainty by means of the pro-
posed controller (15) and prefilter (16). The computa-
tion results are presented in figure 7, there it emerges
that the proposed system as the steering wheel rate
controller achieves the design specifications.

Fig. 7. Closed-loop frequency responses

4. SIMULATION

To demonstrate the effectiveness of the automatic
steering system in lane keeping situations and yaw
dynamic enhancement, simulations and experiments
using a test vehicle are considered. In the simulation
a nonlinear single-track vehicle model along with a

database for the centerline of the reference path as
well as a model of the steering system are used as a
substitute of the controlled systems and the guideline
in a horizontal plane. The required steering wheel an-
gle rate is derived from the front tire angle by means
of differentiation within the control horizon and mul-
tiplication with the steering system gear ratio (iss).
Since the automatic acting steering system is devel-
oped for vehicles driven at low velocity, a constant
velocity (v = 15km/h) is applied in the simulation.
The reference path consists of sections with differ-
ent curvatures, i.e. positive and negative for left and
right cornering respectively, as well as zero for straight
lines. Figure 8 shows the time responses in the simula-
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Fig. 8. Time responses in the simulation

tion using the lateral deviation controller based on the
MPC algorithm and the robust steering wheel angle
controller designed by means of the QFT technique.
For the computation of the MPC law a fixed control
horizon (Nu=2) was selected. Since further control
parameters are considerably affected by the system
dynamics and the available computation performance,
correct measures have been taken as recommended
in the literature (Lawson and Hanson, 1974), so that
the arithmetic complexity of the manipulated variable
(δ f ) sequence does not rise arbitrarily. Therefor the
boundaries of the prediction window (N1 andN2) was
set as to maintain the dimensions of the matrices in an
adequate range.

The reference path used in the simulation is composed
of a sequence of sections with a straight line at the be-
ginning, which is followed by left, right, and left cor-
nering and a straight line at the end. In figure 8 (top)
the resulting lateral deviation lies in between−10 and
20cm underlining that a good steering behaviour is
preserved under different curvatures. The following
diagrams confirm this result. There it emerges that the
outer loop controller computes an adequate steering
angle of the front tiresδ f such as to keep the lateral
deviationyl so close as possible to the required value
and thereby improves the relative yaw angleΨrel . The
last two diagrams present the time responses of the
steering wheel angle rate and the servo motor torque.
It is recognisable how the robust inner loop control



contributes to obtain smoother control with less effort.
From the simulation results it follows that the pre-
liminaries for the application of the developed control
system to a test vehicle were successfully conducted.

5. APPLICATION

For the implementation into the test vehicle a rapid
control prototyping tool is used to link the controller
algorithms to a dSPACE AutoBox which provides
an interface to the vehicle’s standard serial bus sys-
tem Controller Area Network (CAN). To measure the
vehicle dynamics the test vehicle is equipped with
a great variety of sensors (see fig. 9). The camera
system, the yaw rate and the torque sensors as well
as the resolver are important components used in the
yaw dynamic determination. In addition the electrical
steering system is equipped with a switcher module,
which enables the transition between the conventional
and automatic car steering and vice versa. The im-
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Fig. 9. Test vehicle

plementation and the test of the developed controller
algorithms is carried out in several steps. First of
all the algorithms of the robust steering angle rate
control are implemented into the test vehicle, and a
performance check is done with the vehicle at stand-
still. Successful results lead to further tests with the
vehicle driven at low velocity range. Good perfor-
mance of the inner control loop is a prerequisite for
the extension of the implemented algorithms to the
complete control structure in oder to perform an auto-
matic steering assistance system for vehicles driven at
low velocity. Figure 10 shows the experimental results
for the application of the controller algorithms to the
test vehicle according to the described procedure. The
performance tests of the robust steering rate control
are carried out in standstill and for vehicle velocities
which lie in between 10 and 30km/h. Starting with a
lateral deviation from the centerline as a disturbance,
the automatic steering system compensates the devi-
ation and maintains the test vehicle on the reference
path, which consists of a straight line and a left and
right cornering. The last two diagrams confirm good
performance of the inner control loop with the vehicle
in motion. Further diagrams in figure 10 present the
time responses which elucidate good performance of
the automatic car steering system when the test ve-
hicle is driven within the given velocity range. This
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performance leads to similar conclusions as in the
simulation.

6. CONCLUSION

This paper is concerned with the MPC and Robust
loop shaping control design in order to improve the au-
tomatic steering assistance system of vehicles driven
at low velocity range. The MPC algorithm is based on
a QP-solution of the GPC-approach. The robust inner
loop control solves a two-DOF problem by means
of the QFT design procedure. The simulated and the
applied results demonstrate that the combination of
an inner loop robust controller and a MPC algorithm
in the outer loop is an appropriate cascade structure
to achieve automatic car steering for driver assistance
systems.
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