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Abstract: The goal of this study is to show the usefulness of reinforcement learning
(RL) to solve a common greenhouse climate optimisation problem. The problem is
to minimise the daily heating cost while achieving simultaneously two agronomic
goals, namely maintaining a good crop growth and an appropriate development
rate. The complexity of the problem is due to the very different time constants
of these two biological processes. First, a simple model for greenhouse roses is
presented that simulates the daily crop growth and development. Second, the RL
method is presented, in its application to this problem. Finally, optimisation results
are presented and discussed. Copyright©2005 IFAC
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1. INTRODUCTION

Greenhouse crops can be manipulated by the con-
trol of their environment, including climate, fer-
tigation and biotic populations. Heating is, after
labour, the main cost of greenhouse crops, but
it is also one of the main controls used to steer
the crop behaviour according to the grower’s ob-
jectives. The relation between heating and crop
response is not straightforward, nor simple. The
heating mainly modifies the air temperature, but
also affects the air water vapour deficit (VPD) but
the resulting greenhouse climate is also dependent
on the outside climate and the crop activity (tran-

1 This research has been carried out during the sabbatical
of Dr Tchamitchian at the Univ. of Thessaly, funded by the
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spiration mainly). The response of the crop to
heating is in reality a response to the greenhouse
air temperature and VPD and, depending on the
heating system, to the heating intensity itself.
Determining the adequate temperature according
to a goal on the crop behaviour is therefore a
complex task, which is mainly achieved by the
grower.

In practice, two main temperature set-points are
used, one for the night, one for the day. Al-
though only two set-points are used, the green-
house climate does not remain stable, especially
during daytime, due to the evolution of outside
conditions. Furthermore, it has been shown that
crops can withstand deviations from optimal con-
ditions for a while and recover later, provided
that these episodes do not last more than a few
days (Bredmose and Nielsen, 2004; Bakker and



van Uffelen, 1988; Heuvelink, 1989). It is therefore
possible to optimise the daily evolution of the
temperature in the greenhouse so as to maintain a
given average and also to limit the energetic cost
of this average.

The temperature optimisation problem has re-
ceived a lot of attention in the past years. Within
the studies devoted to the daily optimisation,
most have concentrated on optimising the tem-
perature to maximise growth rate or a function of
the crop harvest (which may include economic op-
timisation by balancing harvest and costs), which
in fact is very close to maximising the growth of
the crop for vegetable crops. Slow crop processes,
like development rates, are rather difficult to take
into account because of the limited time horizon
of such optimisation. Moreover, dynamic mod-
els of the crop including two very different time
scales are not easy to solve with the mathemati-
cal methods of Automatics like optimal control.
Therefore development is very seldom included
in the optimisation criteria for daily temperature
optimisation.

The goal of this work is to overcome the above
mentioned limitations in solving the daily green-
house temperature optimisation problem, stated
as an energy saving problem. It implies to redesign
the criterion used to define the optimal solution
and therefore the model of the bio-physical sys-
tem. The role of the model of the bio-physical
system is both to predict the response of the
system to the controls applied to it and to provide
the necessary information to build the criterion.
New optimisation methods based on the results of
the simulations themselves rather than on the for-
mal structure of the model will be applied. These
methods are computer intensive but have fewer
requirements on the model structure. Their use-
fulness and efficiency will be demonstrated here
on an application to the control the greenhouse
climate for rose production.

This paper is organised as follows: first, a descrip-
tion of the reinforcement learning method (RL) is
given because it has implications on the structure
of the model. Second the greenhouse rose crop
model is described, as well as the chosen crite-
rion. Third, optimisation results are given and
discussed. Finally, the application of RL to the
greenhouse climate control problem is discussed.

2. REINFORCEMENT LEARNING

Reinforcement learning is defined as a type of
problem to solve rather than by an algorithm
(Sutton and Barto, 1998). It can be defined as
solving the problem of deciding what to do in a
given situation by trial and error, that is by inter-
acting with the environment. Most commonly, it

is applied to Markov Decision Problems (MDP).
An MDP is an extension of Markov chains includ-
ing actions and rewards (Puterman, 1994). In an
MDP, the system can be in a given state of the
set of possible states, S, and will move to another
state in S with a given probability because an
action was taken in the set of possible actions,
A. With each state, a reward is associated that
measures how satisfactory is the state with respect
to the goal assigned to the control problem. In an
MDP, the transition probability from state si to
state si+1 given the action ai only depends on
si and ai. What previous actions were taken and
which previous states the system was in are of
no importance, only the current state and taken
action are necessary to move forward. The second
property of MDPs is that the criterion to max-
imise is the sum of the local rewards obtained after
each decision step. Given this system, the problem
is to find the sequence of actions that maximises
the criterion. It corresponds to mapping from S
into A. This sequence of actions is called a pol-
icy, noted Π. Because the system evolves in a
stochastic environment, the state it will be in at a
given time step is not known. Therefore a policy is
constituted by a set of subpolicies defined for each
time step and mapping the each possible states of
this time step into an action. It is very close to
the feedback loops of classical control where the
action is decided based on the current system state
using the feedback law.

Reinforcement learning consists in exploring by
simulation the outcome of policies generated ei-
ther randomly or according to some law, in or-
der to learn the transition probabilities from a
given state into another granted a given action,
transitions which are not known a priori. The
R-learning algorithm learns the estimates of the
average value ρ and of the relative value functions
Ri(s, a). ρ is defined as:

ρ = E

(
1
N

N∑
i=1

ri

)
(1)

where N is the number of decision steps (time
steps)and ri is the local reward at step i. Ri(s, d)
is:

Ri(s, a) = E

⎛
⎝ N∑

j=0

rj − ρ|si = s, ai = a

⎞
⎠ (2)

where s is a state (si at step i) and a an action.
Given this knowledge, the optimal policy is found
by choosing, at each decision step, the action that
maximises the Ri function:

∀i, ∀s ∈ Si Πi(s) = arg max
a∈Ai

Ri(s, a) (3)

In finite horizon and discrete state and decision
space, the R-learning method used in this study
is summarised in algorithm 1.



ρ ← 0;
∀i ∈ {1, . . . , na + 1}, ∀s ∈ S,∀a ∈ A Ri(s, a) ← 0;

for n ← 1 to nmax do
Set initial state of the system;
Run the model using either a random policy or a
policy determined according to eqn. 3 (greedy
policy);
for i ← na to 1 do

Ri(si, ai) ← Ri(si, ai) +

αn

(
ri − ρ + max

a′
Ri+1(si+1, a′) − Ri(si, ai)

)
;

if policy is greedy then
ρ ← ρ + βn (ri − ρ+

max
a′

Ri(si+1, a′) − Ri(si, ai)

)
;

end

end

end

// na is the number of decision steps

Algorithm 1: R-learning algorithm in the
finite horizon case

As will be detailed later, the only reward (ri)
is obtained at the end of the control horizon.
Therefore all ri are null except for rfinal which
is equal to the value of the performance criterion
(see below). The average value function for na +1
is also always null. Two coefficients appear, α and
β. They are learning coefficients and decay in time
with the number of visits for each pair (s, a) in the
case of α or with the iteration number (β).

Although the present description addresses a dis-
crete representation of S and of A, it is easy to
transpose this approach to continuous domains.
However, in the present study, a discrete repre-
sentation of the system states and of actions has
been adopted.

3. GREENHOUSE ROSE CROP MODEL

3.1 Production goal: the optimisation criterion

Greenhouse roses are grown for their flowers, of
course. Hence, the main concerns of growers is
to obtain flowers of a good quality (long stems,
long post harvest life a.o.) and at a regular pace
or at given dates depending on the obligations
contracted with resellers. Hence, dry matter ac-
cumulation, although important, is as important
than development rates. Because it is rather dif-
ficult to unify the measures for growth, for devel-
opment and for energy consumption (minimising
the energy cost of production is our primary goal
as mentioned in the introduction), the criterion
has been formulated as the sum of these three
components, each expressed by comparison to a
reference value:

YΠ =
1∑

gde α[
αg

GΠ

Gref
+ αd

DΠ

Dref
+ αe

(
2 − EΠ

Eref

)]
(4)

where αg,d,e are weighting coefficients allowing to
modify the role of each of the three components of
Y , G, D, E are measures of the growth, develop-
ment and energy (respectively) achieved or used
during the control horizon and where Π means
achieved through the application of the policy Π,
while ref denotes the reference policy. The ref-
erence policy is the policy that the grower would
have chosen on the day at hand, expressed as a set
of set points for day and night. To maximise the
criterion while minimising the energy used, the
third term in Y has been negated and added to 2
so that if the policy Π is the same as the reference
policy all the three terms in Y are equal to one.
If YΠ is more than one, then Π is better than
the reference policy and can be kept, otherwise
Π can be discarded. Thanks to this formulation
of the criterion, it is possible to only build three
submodels simulating crop growth, development
rates and energy consumption instead of a full
autonomous model of the crop.

3.2 Greenhouse rose crop model

The control horizon has been fixed to 24 hours
and starts at dawn to encompass a daylight period
and then a night period, a sequence easier to
describe by growth models. This control horizon is
discretised in hourly steps where decisions about
the heating or ventilation intensities are to be
taken.

The dry matter accumulation of a rose crop is
modelled rather classically (Dayan et al., 2003),
by accumulating photosynthesis and accounting
maintenance respiration and, if possible, growth
and growth respiration. Parameter values for leaf
photosynthesis are taken from Gonzalez-Real and
Baille (2000). The structure of the growth sub-
model is described in details in Seginer et al.
(1994). It consists of two compartments, one for
transient carbon pool (fed by photosynthesis, de-
pleted by respirations and growth) and one for
structural dry matter (fed by growth). At the
start of each day, the assumption will be made
that the transient reserve compartment is empty,
an optimal situation for the coming day. Giving
a value to the level of the transient pool is rather
difficult because is depends on the use that will be
made of it, and this use is a function of the future
temperatures experienced by the crop. Therefore,
the value of the growth is only appreciated at the
end of the control horizon and no local reward
will be associated to the hourly decisions. Because
the criterion Y uses the growth, it is also only
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Fig. 1. Outside climate used as weather forecast. Upper row: global radiation; lower row: temperature
and wind speed. Left column: March 1st, 2004; right column: March 4th, 2004.

defined at the end of the control horizon? No
local rewards will be associated to development
and energy consumption too. This submodel must
be initialised with the crop LAI and dry matter.
To do so, empirical relations mapping the shoot
density and leaf number per shoot to the crop LAI
have been established using measurements carried
out at the experimental farm of the University
of Thessaly, Volos, Greece (Lykas, pers. comm.)
These measurements were also the base to Leaf
Area Ratio function allowing to deduce the crop
dry matter from its LAI.

A simple measure of the development rate has
been adopted in this study. It consists in estimat-
ing the ratio of the degree day provided during the
control horizon to the degree day from emergence
of a shoot to its harvest. If the hypothesis that
the age distribution of flowering shoots in the
greenhouse is uniform cannot be made, then the
grower has to supply a simple estimation of the
age distribution of the flowering shoots, like the
ratio of shoots bearing a bud to those not bear-
ing one (younger). Degree day values of the life
of flowering shoot, including some intermediate
stages were taken from Pasian and Lieth (1996).

To determine the greenhouse temperature from
the heating or ventilation intensity decided upon
at each time step, a greenhouse energy model has
been used. Because of the discretisation of the
time adopted in the present study, a simple static
model has been selected (Gutman et al., 1993):

Tg = To +
bRg + H

U + V
(5)

where Tg,o are the greenhouse and outside tem-
peratures (respectively), Rg the incoming solar

radiation, b an efficiency coefficient, H the heating
intensity, U the overall energy loss by convection
at the walls and V the energy loss by ventilation.
U and V are proportional to wind speed. This
complete model is described in more details in
Tchamitchian and Kittas (2004).

3.3 Weather forecasts: a stochastic environment

For the model to run, a priori knowledge of the
outside conditions (radiation, temperature, wind
speed) is necessary. The RL approach is fit for
finding a optimal policy in an uncertain environ-
ment: randomly chosen values for the outside con-
ditions are used at each trial of a policy to update
the values of the average value and of the rela-
tive value functions. However, to limit the range
of outside conditions to consider, which will re-
duce the computational load of the RL approach,
weather forecasts can be used as an indicator of
the probable future climate. The outside condition
values used are drawn randomly according to a
uniform distribution centred on the weather fore-
casts with a standard deviation chosen by the user
(depending on the quality of the forecasts for the
local situation). Values not physically possible are
filtered out, like negative wind speed or radiation,
or non zero radiation values at night time.

4. RESULTS AND DISCUSSION

4.1 Trial setup

The optimisations have been carried out using
historical data of two late winter in Velestino
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Fig. 2. Optimal heating (left axis & plain line) and
resulting greenhouse temperature (right axis
& dashed line). Left graph: March 1st; right
graph: March 4th, 2004.

(experimental farm of the University of Thessaly,
Greece, near Volos) days as weather forecasts.
They are presented in figure 1. Given that fore-
casts are used as a guide to generate random
values, using historical data should not alter the
conclusions that will be drawn from the results of
the optimisation unless the forecasts are biased.

The reference policy adopted has been obtained
from local advisors to rose growers. It consists in
a night-time set point of 17°C and a daytime set
point of 22°C. The greenhouse temperature model
is used to compute the energy cost of this policy
in order to obtain the Eref reference value. If the
night set point cannot be maintained because the
boiler cannot deliver the necessary energy, then
the instantaneous temperature in the greenhouse
is taken as that resulting from the maximum
heating instead as the set point. Similarly, day
time temperature is corrected of the ventilation
cannot maintain the set point. Using this new
temperature pattern, the crop model is applied to
determine the reference growth and development
elements of the criterion.

Learning starts after this step. For a given number
of first iterations, the policy to test is chosen ran-
domly in order to explore the states and decision
domains. Afterwards, random and greedy policy
alternate randomly (greedy policy evaluation is
needed to determine the value of ρ, see algorithm
description). The best results and also the less
sensitive to changes in outside climate, reference
policy or initial system states are obtained with
a high proportion of greedy policy evaluation
(about 80%) and with a minimum number of trials
of 200,000 (two hundred thousand). The current
implementation of the algorithm takes 90 µs per
iteration on a Pentium 3 (700 MHz) computer,
and 60% of that time is spent running the model
per se; 200,000 iterations therefore takes about 20
seconds.

4.2 results

The final results are na multidimensional grids
(Ri) with two entries, the first being the triplet
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Fig. 3. Optimal policy variations in response
to changes in outside weather forecasts. H
= heating, stepwise line, right axis. Tg
= greenhouse temperature, plain line, left
axis. To.oC, outside temperature. w.ms, wind
speed.

representing the system state and the second be-
ing the decisions that can be taken. In each cell
thus defined stands the corresponding relative
value (R− i(s, d)). These grids and the knowledge
of the system states at a given decision step are
sufficient to determine the optimal policy accord-
ing to equation (3), almost like a classical feed-
back control in which the current action is a func-
tion of the observed system states. Figure 2 shows
the heating policies and resulting greenhouse tem-
peratures when applying the optimal policy to the
weather forecasts.

It can be seen that on March 1st where global radi-
ation provides natural heating during the daylight
period, heating is seldom used while at night it
used to maintain the temperature well above the
lower limit set in this case (14°C). On the contrary,
on March 4th where the global radiation provides
very little energy, the heating is used throughout
the day to maintain the minimum temperature
requested by the user (16°C at daylight time,
14°C at night). In both cases, the optimal policy
improves the control of the greenhouse and of the
crop. The average value for the final criterion is
1.12 on March 1st, 1.04 on March 4th, that is 12%
and 4% better than the reference policy respec-
tively (with {αg, αd, αe} = {1., 1., 2.}). The main
result is that the R-learning method has been able
to exploit the model and to define a control policy
consistent with both the knowledge in the model
(fortunately!) and common agronomic knowledge.
Variations around the climate of March 4th has
been studied and are presented in figure 3. Case
1 is the original case, already presented in figure
2. In case 2, the wind speed has been increased
at night. More heating is applied during this pe-
riod to maintain the greenhouse temperature at
the minimum level requested by the user, thus



decreasing the improvement achieved by the opti-
misation; the average value of the final criteria
is close to one (not better nor worse than the
reference policy). In case 3, wind speed has been
reduced. Less heating is applied during daytime,
more at night. This results in higher temperatures
at night than during daytime, which was possible
because of the overlap in the day and night bounds
that were specified ({18, 26} at day, {14, 20} at
night). Finally, in case 4, daytime temperatures
have been drastically reduced. The result is more
heating during daytime, again to maintain the
temperature above the specified limit. In case 3,
the average value of the criterion is less than one,
indicating that the proposed policy yields worse
results than the reference, which could lead the
system to fall back on the reference policy. In case
4, the proposed strategy is about 8% better than
the reference.

The previous optimisations have been carried out
with an equal weight for the crop related parts
of the criterion, the sum of these being equal
to the weight set on heating: energy savings was
therefore as meaningful as the global measure of
the crop performance. A change in the relative
weights of these three criterion elements modi-
fies the resulting policies. However, growth and
development tend to oppose one to the other:
to increase development, high temperatures are
needed. However, high temperatures induce a in-
creased rate of respiration and may result in the
depletion of the carbon pool compartment in the
growth model, a situation which limits the growth.
Putting the emphasis on the crop behaviour by
deceasing the weight of the energy savings must
therefore be made with caution to avoid this sit-
uation.

5. CONCLUSION

The goal of this study was to prove the applica-
bility and effectiveness of reinforcement learning
to the greenhouse climate control problem. Al-
though simple, the model used encompasses the
two main aspects of crop processes: growth and
development. The results obtained so far shows
that the R-learning algorithm described here can
adequately solve the problem and provides the
equivalent of a feedback control law that can be
applied to greenhouses. One of the key features
of the method is that it is designed for finding
optimal policies under uncertain future, which
is the case here. In that respect it is far more
advantageous than, for example, optimal control
approach which find an optimal solution for a
given future rather than for a range of possible
futures.

The next steps of the study are first to complete
and validate the crop model to make it more accu-
rate and second to adopt a continuous approach
to the problem.
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