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1. INTRODUCTION

Remotely operated vehicles (ROVs) play an im-
portant role in the offshore industry. The use of
conventional control systems for ROVs is limited
in that the hydrodynamic coefficients of a par-
ticular vehicle are not usually known until after
the vehicle has been completely design and test
facilities, such as a wind tunnel or a wave tank, are
employed for their determination. For dynamical
positioning it is required the tracking and posi-
tioning of the vehicle to precisions ranging a few
centimeters with short settling times.
Usually the model of the dynamics contains im-
portant structural uncertainties in the nonlin-
ear characteristics of the frictional and pressure
drag forces. These uncertainties makes difficult to
achieve good behaviors and commonly the appli-
cation of robust control can ensure stability at
the cost of performance degradation (Caccia and
Veruggio, 2000; Do et al., 2004).

1 Corresponding author: Mario Alberto Jordán: e-mail:
mjordan@criba.edu.ar; phone +54 291 4595100 (3310)

Due to the usual open frame architecture of
ROVs, complex forms in the geometry rang-
ing from a spherical, prismatic, prolate ellipsoid
forms, the determination of hydrodynamics char-
acteristics in the design phase and in posterior
modifications is very complex.

The application of identification techniques with
real signals of the kinematic and dynamics dur-
ing ROV operation can provide a good method
for uncertainty reduction. The on-line parameter
identification has proven to be a general means
to achieve adaptation to unknown modifications
of physical parameters of the dynamics and its
environment (Beltrán and Jordán, 2004). These
strategies of parameter estimation provide a first
link in the design of adaptive controllers and con-
stitutes an alternative to expensive experimenta-
tion with scale models in test facilities.
In this work a method for adaptive on-line estima-
tion is presented for the identification of pressure
drag characteristics and added mass of a ROV.
The algorithm is applicable for general geometric
shapes of the ROV and can be used for self-
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Fig. 1. Earth- and body-fixed frames for ROV
motion characterization

tuning of model coefficients which are previously
unknown. A case study for a sphere shaped ROV
illustrates by means of numerical simulations the
feature of the algorithm under simple motions.

2. ROV DYNAMICS

A mathematical nonlinear model for a ROV hav-
ing three planes of symmetry and moving with 6
degrees of freedom can be described in a body-
fixed frame as (see Fig. (1) and cf. Fossen, 1994,
for conventions)

M v̇=−C(v)v −D(v)v + (1)

+Fb(η) +Fc+Fe + τ

η̇= J(η)v, (2)

with the matrices
M =Mrov +Ma (3)

C(v) =Crov(v) + Ca(v) (4)

D(v) =D0 +D1(v), (5)

where the generalized position in the earth-fixed
frame is denoted by η = [x, y, z,φ, θ,ψ]T , the vec-
tor v = [u, v, w, p, q, r]T indicates the generalized
velocity vector of the ROV in its flight path in the
body-fixed frame, J is a transformation matrix
involving the Euler angles roll (φ), pitch (θ) and
yaw (ψ),M is the inertia matrix composed by the
ROV inertia matrixMrov and the added mass ma-
trix Ma, C is the centripetal and Coriolis matrix
with a first component Crov for the ROV and a
second component for the hydrodynamics Ca, D
is the damping matrix composed by a constant
matrix D0 and a velocity depending matrix D1,
Fb is the net buoyancy force, Fc the cable reaction
force, Fe environmental forces like currents, and
τ the generalized impulse force of the thrusters.

3. ROV HYDRODYNAMICS

In general, the damping of an underwater vehicle
moving in 6 degrees of freedom at high speed
is highly nonlinear and strongly coupled. Usu-
ally, rough approximations are made based on

the assumption that the vehicle moves slowly.
The violation of this assumption, specially when
high-gain controllers are applied, creates one of
the major uncertainty in the dynamics. In this
work we investigate the hydrodynamic damping
in dependence on the geometric form and usual
range of velocities of a ROV in the operation.
A body moving through a fluid experiences a drag
force, which is of frictional and of pressure nature.
Particularly, the last force is associated with the
development of a wake behind a passing flow.
For usual ROV geometries, the pressure drag
dominates over frictional drag since their shapes
act as bluff bodies offering higher resistance to
motion than streamlined bodies. The drag force
experimented by body in relative motion with
respect to the fluid depends on the Reynolds
number defined as

Re =
ρ
H2O

d

η
H2O

|vr| , (6)

where vr is the velocity of the body with respect to
moving fluid particles, d the characteristic dimen-
sion of the body perpendicular to the direction of
vr, ρH2O the salt water density (ρ = 1026 [kg/m

3])
and η

H2O
the dynamic viscosity of the sea water

(η
H2O

= 10−3 [Ns2/m2], at 20[oC] and 1 [atm],
η
H2O

= 1.52 × 10−3 [Ns2/m2], at 5[oC] and 1
[atm], salinity 3,5%).
A common accepted expression for the drag force
is given in (5) (Faltinsen, 1990), where D(v) is
a real, skew symmetrical and positive definite
matrix with components D0 being a constant
matrix accounting for linear skin friction, and D1
being a function matrix accounting for quadratic
skin friction due to turbulent boundary layer and
for damping due to vortex shedding. Thus

D1(v) =

 duu |u| · · · dur |r|...
. . .

...
dru |u| · · · drr |r|

 , (7)

with dij constant coefficients.
A more accurate approach of these dampings is
given in the next. In Fig. (2) the drag coefficient
for different shapes is shown. With exception of
frontal flat plates, it is seen that CD is not pre-
dictable over a large range in Reynolds number.
Large Reynolds numbers may be usual in the
operation of ROVs. This is shown by a simple
example. Let a spheric ROV with diameter d =
1[m] have a frontal velocity u varying between 0
till 1[m/s], it results a range in Reynolds number
from 0 till 106 (at 20 [oC] and 1 [atm]). In
this range the value of CD varies significantly in
magnitude, particularly about the value Re = 106.
At a Reynolds number between 105 and 106,
the drag coefficient takes generally a sudden dip
(Hideshi, 1989). In particular, near the shoulder,
the pressure gradient changes from being nega-
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tive (decreasing pressure) to positive (increasing
pressure). The force due to pressure differences
changes sign from being an accelerating force to
being a retarding force. The curves in Fig. (2)
are valid for polished surfaces. When the surface
contains certain degree of roughness, then the dips
of CD occur at smaller Reynolds numbers than in
the case of the figure (Faltinsen, 1990).
The resulting drag force curves for spherical bod-
ies with different diameters are given in Fig. (3,
right). It is worth noticing the functions are not
convex in the usual range of that velocity. The
development of particular flow patterns with in-
creasing Re accounts for transitions between lam-
inar and turbulent boundary layers as seen in Fig.
(3, left). It follows that, if the boundary layer of a
sphere can be made turbulent at a lower Reynolds
number, then the drag should also go down at that
Reynolds number.
In order to capture these hydrodynamics phenom-
ena in the model structure, the following descrip-
tion is used

D(v) =D0 +D1(v) = (8)

=

 d̄uu · · · d̄ur
...

. . .
...

d̄ru · · · d̄rr

+ (9)

+

 duu(u) · · · dur(u, r)
...

. . .
...

dru(r, u) · · · drr(r)

 , (10)

where i, j = u, v, ..., r, d̄ij are constants, and
dii(i) and dij(i, j) are continuous functions in the
variables i and j. For instance, for p even

dii(i) = δii1 |i|+ δii2i
2 + δii3 |i|i2 +

+...+ δiiN0 i
p (11)

dij(i, j) = δij1 |i||j|+ δij2i
2|j|+ δij3 |i|j2 +

+δij4 |i|j3 + δij5i
3|j|+ δij6i

2j2 +

+...+ δijN1 i
p
2 j

p
2 , (12)

with δiik and δijk unknown coefficients to be

identified, where N0 = p and N1 =
3(p−1)+(p−1)2

2 .
It is noticing that the diagonal coefficients diik
are described by symmetric functions. Besides,
since D(v) is skew symmetric, the non-diagonal
elements fulfill dij(i, j) = −dji(j, i) for i 6= j in
(10). The same occur in (9).
Finally, the hydrodynamics is completed with
the hydrodynamic Coriolis and centripetal matrix
Ca(v) in (4), which takes the following form for
vehicles having 3 planes of symmetry (Fossen,
1994)

Ca(v) = (13)
0 0 0 0 -cẇw cv̇v
0 0 0 cẇw 0 -cu̇u
0 0 0 -cv̇v cu̇u 0
0 -cẇw cv̇v 0 -cṙr cq̇q
cẇw 0 -cu̇u cṙr 0 -cṗp
-cv̇v cu̇u 0 -cq̇q cṗp 0

 .

4. IDENTIFICATION

The goal of the identification consists in estimat-
ing the diik ’s and dijk ’s together with the mass
and added mass matrix upon measures of the
velocity vector v and the umbilical force Fc of the
ROV system when Fe is insignificant. A potential
numerical problem in the estimation may arrive
when the velocity components i, j take values far
away from the value 1, namely over or below
1, since the monomials in (11)-(12) will assume
values with different order of magnitudes. For this
reason it is reasonable to describe (11) and (12) as
N piecewise functions of lower order (for instance
p = 4), defined on N disconnected domains for
i and j. For a velocity space decomposed into
partitions of N intervals in each dimension, it
results

d̄ii + dii(i) = (14)

d̄ii + δii11 |i|+ ...+ δii41 i
4, for

i ∈ (−I1,−I0]U [I0, I1)
...

d̄ii + δii1N |i|+ ...+ δii4N i
4, for

i ∈ ¡−IN ,−IN−1¤U £IN−1 , IN ¢
,

d̄ij + dij(i, j) = (15)





d̄ij+δij11 |i||j|+δij21 i2|j|+δij31 |i|j2+
+δij41 |i|j3+δij51 i3|j|+δij61 i2j2, for
i ∈ (−I1,−I0]U [I0, I1)
j ∈ (−J1,−J0]U [J0, J1)

...
d̄ij+δij1N |i||j|+δij2N i2|j|+δij3N |i|j2+
+δij4N |i|j3+δij5N i3|j|+δij6N i2j2, for
i ∈ ¡−IN ,−IN−1¤U £IN−1 , IN ¢
j ∈ ¡−JN ,−JN−1¤U £JN−1 , JN ¢

where I0 = J0 = 0. By this means, complex
hydrodynamics characteristics may be estimated
with high accuracy since hydrodynamic couplings
among the modes are taken into account.
In order to involve only measurable signals in
the estimation, high derivatives like v̇ are to be
avoided. To this goal, the instrumental vector z is
defined by filtering the acceleration v̇ such that

z =
1

s+ λ
v̇ =

s

s+ λ
v, (16)

where λ is a positive real-valued filter constant.
So, with (16) and (1), it results

z=− 1

s+ λ

¡
M −1C(v)v

¢−
− 1

s+ λ

¡
M −1D(v)v

¢
+

+M −1 1

s+ λ
(Fc + Fb + τ ) . (17)

For the identification process one can build up a
linear regression for each mode i ∈ {u, v, w, p, q, r}
in the form

zi =
s

s+ λ
i = φTi θi, (18)

φTi =

· −1
s+ λ

u2, · · · , −1
s+ λ

ij, · · · , −1
s+ λ

r2,

−1
s+ λ

u, · · · , −1
s+ λ

r,

−1
s+ λ

|u||i|i, −1
s+ λ

u2|i|i, · · · , −1
s+ λ

u2i3, · · · ,
−1
s+ λ

|i|i, · · · , −1
s+ λ

i5, · · · ,
−1
s+ λ

|r||i|i, −1
s+ λ

r2|i|i, · · · , −1
s+ λ

r2i3,

1

s+ λ
(Fcu + τu) , · · · , 1

s+ λ
(Fcr + τ r)

¸
(19)

θTi =
h
c
0
i1 , · · · , c

0
ik , · · · , c

0
i20 ,

d̄0i1 , · · · , d̄0i6 , δ
0
ui1 , · · · , δ

0
ui6 , · · · ,

δ0ii1 , · · · , δ
0
ii4 , · · · , δ

0
ri1 , · · · , δ

0
ri6 ,

m0
i1 , ...,m

0
i6

¤
, (20)

where c
0
ik
is one of the 20 constants contained in

the row i of the matrix M −1C(v), d̄0ik one of the
6 constants involved in the row i of M −1D0, δ0jik
one of the 34 constants concerned in the row i of
M −1D1(v), and finally m0

ik
is the element k of

the row i of M −1. Furthermore, there exists one
regressor zi for each one of the N regions of the
partition according to (14)-(15).
The dimension of the regressor vector φi is 66
and can expand the whole space of parame-
ters <66 if certain conditions for the excitation
(Fc +Fb + τ ) are fulfilled as seen next.

4.1 Identifiability

The basis functions contained in the regressor (19)
are linearly independent in i, j ∈ <, i.e., there
exists no set of real constants {α1, ...,αn}, with
1 < n ≤ 66, other than the trivial set {0, ..., 0},
that fulfills

α1 g1(i1, j1) + · · ·+ αn gn(in, jn) = 0, (21)

with i1, j1, in, jn ∈ {u, v,w, p, q, r}. However,
when a partition of the velocity space is con-
sidered according to (14)-(15), the linear inde-
pendence of the basis functions is only ensured
in the region about v = 0, i.e., in (−I1, I1) ×
(−J1, J1). Outside this region, the set of func-
tions

n
− 1
s+λ i

2,− 1
s+λ ij,− 1

s+λ |i|i,− 1
s+λ |i|j

o
can

only span a two-dimensional manifold of <4. Con-
sequently, parameters associated with the basis
functions − 1

s+λ i
2 and − 1

s+λ |i|i (or − 1
s+λ ij and

− 1
s+λ |i|j) are not distinguishable any more and

identifiability gets lost.
To avoid this lack of identifiability one defines a
second regression for each mode i in the form

zi = zi −
20X
k=1

i,j∈{u,v,w,p,q,r}

c
0
ik ij,= φ̄

T
i θ̄i, (22)

for i× j /∈ (−I1, I1)× (−J1, J1)
φ̄
T
i =

·
− 1

s+ λ
u, · · · , 1

s+ λ
(Fcr + τr)

¸
(23)

θ̄
T
i =

£
d̄0i1 , · · · ,m0

i6

¤
(24)

where, in comparison with (18), only the terms
up the position 21 are considered in the new
regression. The regression is valid in all regions
of the velocity space but not in the region that
contains v = 0. Thus the space of parameters is
reduced to 46 dimensions.

4.2 Algorithm

For each regression zi (i = 1, ..., 6) and for each
region of a partition according to (14)-(15), a lot
of estimators in norm 2, such as of the type of
the least-squares algorithm in continuous time, is
applied in i × j ∈ (−I1, I1) × (−J1, J1) (Ioannou
and Sinn, 1995). Hence, the parameter adaptive
law is
∧
θ̇i = Piεiφi, con

∧
θi (0)=

(
0 for t=0
∧
θi (tf )

(25)



εi = zi− ∧zi (26)

Ṗi = βPi+Piφiφ
T
i Pi, Pi(0)=

½
P0i for t=0
Pi(tf )

(27)

∧
zi =φTi

∧
θi, (28)

where
∧
θi (t) is an estimate of (20) at t,

∧
zi the

estimation of the zi with
∧
θi, β > 0 is a scalar for-

getting factor and finally Pi > 0 is the covariance
matrix. Every time that the velocity trajectory
v(t) enters into a new region of the partition, the

initial condition
∧
θi (0) of the trajectory

∧
θi (t)

is reset to the last value that it took the last
time it left this region, said at t = tf . At the
same time, the initial condition of the covariance
matrix is also reset to the old value. In this way,
the estimates corresponding to a particular region
are frozen till up the trajectory passes through
this region again. So the estimates can approach
piecewise to the true values of the non-linear char-
acteristics.
Finally, the estimation algorithm captures the es-
timates of the non-linear damping in the parti-
tioned domain of the approximation according to
(14)-(15). To apply the algorithm (25)-(28) in the
regions i× j /∈ (−I1, I1)× (−J1, J1), one replaces
∧
zi,
∧
φ̄i,

∧
θ̄i according to (22)-(24) instead of

∧
zi, φ

T
i ,∧

θi, respectively. When (22) is used, one takes the

c
0
ik
’s from the last estimates in

∧
θi in order to apply

(25)-(28) in the region about the null value of v.
Once the 12 regressions zi and zi are built in

the form indicated above, the matrices
∧

M−1,
∧

(M −1C(v)),
∧

(M −1D0) and
∧

(M −1D1(v)) can be
determined from the estimation procedure. Then
the physical matrices of the hydrodynamics are
calculated uniquely from the expressions

∧
Ma = (

∧
M−1)

−1
−Mrov (29)

∧
Ca (v) = (

∧
M−1)

−1 ∧
(M −1C(v))− Crov(v)(30)

∧
D0 = (

∧
M−1)

−1 ∧
(M −1D0) (31)

∧
D1 (v) = (

∧
M−1)

−1 ∧
(M −1D1(v)). (32)

4.3 Convergence

Proper excitation conditions are needed for achiev-
ing parameter convergence. One of these condi-
tions involves the concept of persistency of excita-
tion (PE) which stipulates that φi(t) must satisfy
in t ∈ [t0, t1]

t1Z
t0

¡
sTφi(τ)

¢2
dτ ≥ ε0, (33)

where s is a any vector in <66 (or <46 for (22))
with Euclidean norm |s| = 1, and ε0 is the so-
called level of persistency.
One notices from (19) that for φi to span the
parameter space, there must exist motions in
all modes. Other restrictions concern the force
(Fc +Fb + τ ), but specially τ which is manipu-
lated so that the vehicle can achieve a trajectory
that makes each φi to be PE.
The presence of a nonlinearity in the dynamics
favors the search of a profile τ (t) with sufficiently
richness for accomplishing (33). One possibility is
to use natural excitation produced on the vehicle
and cable from normal manipulation of the ROV
thrusters. Other possibility consists in generating
a test signal for specially achieving the parameter
estimation. This can be applied as much in test
tanks as in natural environment with Fe = 0.
In particular, one can select uniformly bounded
smooth signals

τu(t) = au sin(ωut) (34)

· · ·
τ r(t) = ar sin(ωrt), (35)

with the condition that all ωi and ωj are pairwise
different, and that together with the amplitudes
ai be large enough in magnitude to excite the
vehicle in the prescribed velocity space covering
all regions of the partition.
Using these components for τ , first 6 mutually lin-
ear independent basis functions { 1

s+λ (Fcu + τu),
... , 1

s+λ (Fcr + τ r)} are generated in (19). This
causes also other 6 mutually linearly indepen-
dent set { −1s+λu, ... ,

−1
s+λr}. Besides, Fc+τ

s+λ and
−v
s+λ are also linear independent vector functions.
The rest of the basis functions in (19), i.e.,n
−1
s+λ |j|n|i|m, −1s+λ ij

o
for m,n ≥ 1, clearly results

with the proposed excitation (34)-(35) in also lin-
ear independent basis functions.
In this way, the asymptotic convergence of the
estimates using the algorithm (25)-(28) is ensured
in each partition. It is worth noticing that certain
parameters are instrumental in the sense that are
estimated redundantly in different partitions, such
as {m0

i1
, ...,m0

i6
}. In the limit for t → ∞, these

estimates will tend to the true values asymptoti-
cally.

Parallel to the excitation (34)-(35), which is syn-
thesized, one can expect that perturbations of
stochastic nature can reinforce the level of persis-
tency and increment the rate of convergence. Also
operation signals are rich enough in short periods,
mainly by the regulation about a fixed point.

5. SIMULATIONS OF A CASE STUDY

Let us consider a vehicle with spherical form
with d = 1 [m], a volume Vrov= πD3

6 =0,5236



time [s]

θ 4
[s

/m
2 ]

^

0 100 200 300 400 500 600

-8

-6

-4

-2

0

2

4

θ4 (of interval 3)

θ4 (of interval 2)

θ4 (of interval 1)
^

^

^

Fig. 4. Evolution of an estimate of the non-linear
damping in different regions

[m3], a transversal area Aw=
πρD2

4 =0,7853 [m2]
and a mass m = 590.36 [Kg]. Using existing radi-
ally symmetry in the distribution of mass and vol-
ume, the additive mass in the diagonal elements
for the translations is m∞ = 268.35 [Kg]. The
couplings of the modes in the nonlinear damping
are null and also null for every rotation mode.
So for this case study it is sufficient to excite the
vehicle in only one mode to identify the whole
hydrodynamics. The simulation results presented
above correspond to the heave mode w. A parti-
tion of a velocity space [−1.2 [m/s], 1.2[m/s]] in
N = 3 intervals, namely: (−0.15, 0.15), (−0.5,
−0.15]U[0.15, 0.5) and (−1.0,−0.5]U[0.5, 1.0), is
sufficient in order to capture strong nonlinearities
in the damping characteristic accurately (cf. drag
force for d = 1 in Fig. (3), left). An external force
with sinus form and ω = 1 [rad/s] is applied to
produce a vertical motion.
The coefficient λ for filtering the acceleration
was set in λ = 10 [1/s] and Pi(0) is selected
diagonal with terms which are proportional to
10n, where n is the order of the corresponding
regressor element in (19). For instance, Pi(0) =
α diag(102, 102, ..., 1, 1), with α > 0.
Fig. (4) shows the evolution of one parameter cor-
responding to the basis function −1

s+λ |w|w2 in the
different intervals. A relatively rapid convergence
is achieved in the interval 2 located in the middle
of the velocity space. In Fig. (5) it is seen the
evolution of the added mass m∞, which tends
asymptotically to the true value. Finally, in Fig.
(6) shows the piecewise reconstruction of the drag
force characteristic in the velocity space with good
coincidence with the true curve. At the connection
points of the different paths it was applied a spline
the order 3 for achieving continuity.

6. CONCLUSIONS

In this work an algorithm for on-line estimation
of the hydrodynamics in underwater vehicles is
presented. The identification comprehends matri-
ces related to the added mass, the linear and
non-linear drag, and the Coriolis and centripetal
terms. It is required the measure of the thruster
and cable forces and the velocity of the vehicle.
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Identifiability and convergence of the parameter
trajectories are analyzed. The nonlinear drag is
approximated by skew symmetric basis functions
of the velocity components to a high degree of
precision. A case study of a spherical ROV shows
the features of the algorithm by numerical simu-
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