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Abstract: This paper presents a neuro-fuzzy internal model Cartesian controller for robot 
manipulators. An inductive learning technique is applied to generate the required inverse 
dynamics and inverse kinematics modelling rules from input/output measurements. A fully 
differentiable fuzzy neural network is used to construct the adaptive sections of the controller 
for on-line parameters adaptation. A fuzzy-PID-like incremental controller is employed as 
feedback servo-controller. The internal model Cartesian controller is implemented using 
inverse kinematics and forward kinematics models of the robot. The proposed control system 
was tested using a dynamics model of a six-axis industrial robot to perform upper-limb 
rehabilitation. The obtained results demonstrate the validity of the proposed control scheme. 
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1. INTRODUCTION 

 
It is usual in robot control systems to specify the 
desired trajectory in Cartesian coordinates as the task 
description is normally expressed in terms of a 
sequence of end-effector movements. Normally, this 
information is transformed into a series of angular 
positions in the joint space using a process called 
‘command generation’ (Vaccaro and Hill, 1988), so 
that the end-effector control is accomplished 
indirectly by controlling the joint angles. The 
transformation from joint coordinates to Cartesian 
coordinates is a vector-valued non-linear function 
which can be obtained in a straightforward way from 
the manipulator forward kinematics. However, the 
reverse transformation, the inverse kinematics, may 
not be unique and is known not to exist in closed 
form for certain manipulators. Fuzzy systems and 
neural networks have been used to approximate the 
inverse kinematics for robot manipulators (Sang-Bae, 
1997; Martinez et al., 1996; Kim et al., 1993). This 
paper presents an adaptive neuro-fuzzy internal 
model Cartesian controller for robot manipulators (Li 

et al., 1996). For this purpose, an inductive fuzzy 
learning technique introduced by Bigot (2003), was 
modified and used to generate the required inverse 
dynamics and inverse kinematics modelling rules. A 
fully differentiable fuzzy neural network was 
developed to construct the adaptive sections of the 
controller for on-line parameters adaptation. A fuzzy-
PID-like incremental controller introduced by 
Shankir (2001) was modified and used as feedback 
servo-controller. The proposed control system was 
tested using a virtual dynamics model of the Puma 
560 robot arm to perform upper-limb rehabilitation. 
 
The remainder of the paper is organized as follows. 
Section (2) presents the overall structure of the 
proposed controller. Section (3) explains the 
proposed neuro-fuzzy network. Section (4) describes 
the fuzzy-PID-like servo-controller. Section (5) 
presents a robustness analysis for the proposed 
controller. Section (6) gives the results of controlling 
a Puma 560 to perform upper-limb rehabilitation 
using the proposed controller. Section (7) concludes 
the paper. 
 



2. PROPOSED NEURO-FUZZY CONTROLLER  
 
The structure of the proposed neuro-fuzzy control 
system is presented in Figures (1) and (2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Proposed controller structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Simplified representation. 
 
In the proposed control scheme, an approximate 
inverse kinematics model is employed as a Cartesian 
controller. A pre-compensation structure, which 
comprises a neuro-fuzzy inverse dynamics network 
and a feedback servo-controller, is used so that the 
internal model control (IMC) structure can be 
implemented using the inverse kinematics neuro-
fuzzy network and the forward kinematics model of 
the robot arm to achieve adaptive Cartesian control. 
An adaptive ‘command generator’ working for an 
existing joint-based inverse robot controller is 
obtained by introducing the inverse kinematics 
network outside the control loop to achieve 
compensation for robot Cartesian uncertainties 
through modifying the input Cartesian trajectory. The 
internal model represents the model of the robot in 
addition to the inverse joint-based controller 
cascaded by the forward kinematics model. From the 
simplified representation shown in figure (2), the 
input-output relationship (from Xd to Xm) can be 
directly derived as: 
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where p
Φ , the part surrounded by the dashed line, is 

the existing joint-based controller regarded as the 
pre-compensation structure of the robot dynamics, 
ΦK is the robot forward kinematics model, and ΦIK is 
the robot inverse kinematics model.  

The input-output relationship (from θd to Xm) of the 
existing joint-based controller can be written as: 
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where ΦP represents the robot arm dynamics, ΦFF is 
the neuro-fuzzy inverse dynamics network regarded 
as the pre-lineariser, and ΦFB is the fuzzy-PID-like 
servo-controller regarded as the stabilization element. 
Consequently equation (1) can be rewritten as: 
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The overall Cartesian IMC can be considered a 
framework combining the neuro-fuzzy joint-based 
control structure, i.e. the pre-compensation structure, 
as the inner loop controller, with the general IMC 
structure as the outer loop controller. On the other 
hand, the IMC configuration can be regarded as an 
enhanced scheme for the neuro-fuzzy joint-based 
controller. This is because the outer loop structure in 
the IMC configuration, formed by ΦIK and ΦK, acts 
as an additional compensator for the original neuro-
fuzzy joint-based controller. 
 
The first step is to generate inverse dynamics and 
inverse kinematics modelling rules from input/output 
measurements using a fuzzy inductive learning 
algorithm introduced by Bigot (2003). This algorithm 
is designed to extract fuzzy IF-THEN rules from a 
collection of examples (training set). Initially, a 
manual step is performed to divide the output 
variable domain into target classes (fuzzy output 
membership functions, CE). Here, each output 
variable is divided into equal, 50% overlapping 
Gaussian membership functions.  
 
The algorithm incrementally employs a specific rule 
forming process until all examples are covered. The 
main feature of this process is that the conditions 
(membership functions) for inputs are created 
automatically during the rule forming process. At the 
end of the rule formation process, each condition 
takes the form ( i

1V  < Ai < i

2V ), where i

1V  and i

2V  are 
continuous values included in the ith attribute range 
( i

minV , i
maxV ). After the rule forming process, each 

continuous condition is transformed into a fuzzy 
condition in order to obtain the final fuzzy rule.  
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3. PROPOSED NEURO-FUZZY NETWORK 
 
To model the inverse kinematics and inverse 
dynamics of the robot arm, a fuzzy rule-base is 
generated first using the aforementioned inductive 
learning method. Equations (4) & (5) express an 
approximation for both functions. 
 
Ti

k+1 ≅ f (T1
k,..., Tn

k,θ1
k+1,..., θn

k+1, θ1
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k, v1
k+1, 

                                     , vn
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θi

k+1 ≅ f( xk+1, yk+1, zk+1,θ1
k,θ2

k,.......,θn
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where k is the sampling interval, i = (1,2,..., n), n is 
the number of joints, T is the joint torque, v is the 
joint velocity, θ  is the joint angle, and (x, y, z) are the 
end-effector Cartesian position. The proposed 
network is a representation of the Mamdani-model-
based feedforward fuzzy neural network. The 
network employs time-delayed feedback from the 
output layer to the input. The selected Gaussian and 
sigmoidal membership functions are differentiable 
and their parameters can be tuned on-line. To achieve 
effective application of the back-propagation learning 
method, the network employs differentiable 
alternatives for the logic-min and logic-max functions 
in its decision-making mechanism (Estevez and 
Nakano, 1995; Shankir, 2001).Figure (3) presents the 
structure of the proposed network consisting of six-
layers. The first four layers have the same structure 
as the first four layers in (Lin and Lee, 1991), while 
the defuzzification function is represented using the 
last two layers. The softmin and softmax functions are 
used as layer (3) and layer (4) activation functions 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Proposed neuro-fuzzy network. 

4. FUZZY-PID-LIKE SERVO-CONTROLLER 
 
This controller employs two inputs, present and 
previous errors, and three outputs, P, I, and D. Each 
output element can approximate the corresponding 
(functional) control action with independent non-
linear gain. The input and output universe of 
discourses are partitioned using five triangular fuzzy 
membership functions with 50% overlap. 
 
The proportional, derivative and incremental part of 
the integral control actions of the fuzzy-PID-like 
incremental controller are functions of the two 
present and past normalized error variables. The 
partitions of the output universe of discourses are 
with different scaling factors to allow different tuning 
for each control element.  
 
The fuzzy rules of the Fuzzy Proportional Control 
Element (FPCE) are generated heuristically based on 
the intuitive concept that the proportional control 
action at any time step is directly proportional to the 
error 1e  at the same time step. The fuzzy rules of the 
Fuzzy Derivative Control Element FDCE are 
generated based on the intuitive concept that the 
derivative control action at any time step is directly 
proportional to the error difference between two 
successive time steps. The fuzzy rules of the Fuzzy 
Incremental Integral Control Element (FICE) are 
generated based on the intuitive concept that the 
incremental part of the integral control action at a 
time step is directly proportional to the sum of the 
error variables at two successive time steps. The rule 
base of the three incremental FCEs (P, D, and I) is 
given in (Pham and Fahmy, 2005).  
 
 
Feedback-Error Learning Scheme 
 
Kawato et al. (Kawato et al., 1988) proposed a novel 
architecture for adaptive control called the Feedback 
Error Learning (FEL) control technique. The neuro-
fuzzy forward path controller parameters are tuned 
on-line using the feedback controller response as the 
error signal. This error signal is propagated through 
the inverse dynamics neuro-fuzzy network to the 
inverse kinematics neuro-fuzzy network to realise 
adaptive Cartesian control through on-line 
parameters optimization. The network adjustable 
parameters were selected to be centres of the output 
membership functions of the output term nodes in 
layer four as well as the link weights in layers two 
and six. The chain rule is then applied to calculate the 
network output partial derivatives with respect to the 
variable weights in each layer of the two networks.  
 
It can be seen that by proper tuning of the parameters 
of the inverse kinematics neuro-fuzzy network, 

1

IK K

−Φ ≅ Φ , equation (1) can be reduced 

to
RΦ I≅ , resulting in almost perfect Cartesian 

trajectory tracking. 
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5. ROBUSTNESS ANALYSIS 
 

In this section, the proposed controller structure will 
be analyzed in terms of disturbance rejection and 
sensitivity to model uncertainties. The analysis will 
be compared with the original joint-based controller 
response to disturbance and model uncertainties to 
highlight the added benefits of the new structure.  
 
 
5.1. Robustness Analysis 
 
In robotic manipulators control, external disturbances 
are due to load torques acting at the joints as shown 
in figure (2). The disturbance transfer function for the 
neuro-fuzzy joint-based controller (from θd to Xm) is: 
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For the proposed neuro-fuzzy internal model 
Cartesian controller, the disturbance transfer function 
(from Xd to Xm) can be directly derived as: 
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By comparing equations (6) and (7), it can be seen 
that the effect of external disturbances for the 
modified IMC has been changed relative to the joint-

based controller by the term 
( )FF FB

K IK

I
I

Φ + Φ

−
Φ Φ

⎛ ⎞
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⎝ ⎠

in the 

denominator. This term has the possibility of 
producing an infinite value driving the disturbance 
transfer function to zero, resulting in a less sensitive 
control system compared to the original joint-based 
controller. 
 
 
5.2. Sensitivity Analysis 
 
Generally, in order to analyze the performance of any 
control system, it is common practice to replace the 
plant by its modelled dynamics m Φ and possible 
model uncertainties as follows: 
 

p p m p(I )Φ = + δΦ Φ + ∆Φ                            (8) 
 

where p pandδΦ ∆Φ are the multiplicative and 
additive uncertainties of the plant. Both kinds of 

uncertainties, which are due to unmodelled 
dynamics, will be examined separately.   
 
 
5.2.1. Sensitivity to Multiplicative Uncertainties 
 
For the neuro-fuzzy joint-based controller alone, the 
closed loop multiplicative sensitivity function is: 
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For the neuro-fuzzy Cartesian IMC controller, the 
closed loop multiplicative sensitivity function is: 
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                                                                               (10) 
 
 
By comparing equations (9) and (10), again it can be 
seen that the multiplicative sensitivity for the 
modified IMC has been changed relative to the 
existing joint-based controller by the term 
( )FF FB

K IK

I
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−
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in the denominator. This term could 

produce an infinite value resulting in a less sensitive 
control system compared to the original joint-based 
controller. 
 
 
5.2.2. Sensitivity to Additive Uncertainties 
 
For the neuro-fuzzy joint-based controller alone, the 
closed loop additive sensitivity function is: 
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For the IMC controller, the closed loop additive 
sensitivity function is: 
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                                                                              (12) 
 
By comparing equations (11) and (12), again it can 
be seen that the additive sensitivity for the modified 

IMC contains the term 
( )FF FB

K IK

I
I

Φ + Φ

−
Φ Φ

⎛ ⎞
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⎝ ⎠

in the 

denominator. This term could produce an infinite 
value resulting in a control system less sensitive to 
additive uncertainties compared to the original joint-
based controller. 
 
From the above analysis, it is clear that the overall 
performance of the system in the modified IMC 
structure should be better than that of the joint-based 
controller. 

 
 

6. RESULTS 
 
In 1999, the European Commission (EC) started a 
multi-national project, REHAROB, to produce a 
robotic system to administer physiotherapy to people 
with upper-limb impairments. The project brought 
together researchers with medical and engineering 
backgrounds to develop a system utilizing solutions 
in robotics and health care. The main objective of the 
REHAROB system is to minimize the time spent by 
physiotherapists in performing repetitive exercises by 

replacing physiotherapists by a robotized 
rehabilitation system. A library of exercises has been 
created by medical experts to include most of the 
exercises commonly performed by physiotherapists 
on patients with upper-limb problems. These 
exercises are encoded in the form of duration of the 
exercise, movement range, and patient posture (Pham 
et al., 2001).  
 
The proposed control system was tested on the first 
three links of the Puma 560 robot (Armstrong and 
Corke, 1994) while performing one of these exercises 
using a simplified model for the upper-limb as shown 
in figure (4).  
 

 
Fig.4. Simplified dynamic model for upper-limb 
rehabilitation using one robot. 
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Fig.5. Proposed controller tracking errors. 



Figure (5) presents the Cartesian position tracking 
errors for the neuro-fuzzy controller. The obtained 
results demonstrate the validity of the proposed 
control system in this upper-limb rehabilitation 
application. 

 
 

7. CONCLUSION 
 
A modified neuro-fuzzy internal model control 
strategy for Cartesian control of robotic manipulators 
has been proposed. The necessary structure 
modification is very simple and effective as it uses an 
approximate adaptive neuro-fuzzy inverse kinematics 
network in conjunction with a forward kinematics 
model to form an internal model scheme 
superimposed on an existing neuro-fuzzy joint-based 
controller. The control structure converts the 
command generation stage in robot control systems 
into an additional adaptive control loop which in turn 
increases the overall system robustness and 
disturbance rejection capabilities.  A feedback error 
learning scheme was used to tune the weights of the 
neural networks on-line. It can be seen from the 
obtained results that the proposed control system was 
successfully applied for upper-limb rehabilitation. 
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