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Abstract: An asymptotic observer design procedure is analyzed for discrete-time
switched linear systems with exogenous, arbitrary, and unknown mode sequences.
The observer consists of two parts: a mode detector, and a continuous observer.
It is shown that, under mild conditions, the proposed scheme results in a global
asymptotic observer for almost all initial states. Copyright c©2005 IFAC
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1. INTRODUCTION

The focus of this paper is on the following discrete-
time model for switched linear systems (SLS):

xk+1 = A(θk)xk + B(θk)uk

yk = C(θk)xk
(1)

where xk, yk and uk are in R
n, R

p and R
m, re-

spectively, where A(·), C(·) and B(·) are in R
n×n,

R
n×m and R

p×n, respectively, and where the dis-
crete mode θk ∈ s̄ , {1, . . . , s}, so that A(θk) ∈
{A(1), . . . , A(s)}, B(θk) ∈ {B(1), . . . , B(s)}, and
C(θk) ∈ {C(1), . . . , C(s)}, which are known sets
of matrices.

The objective is to design a finite-memory, recur-
sive, asymptotic state observer for (1), assuming
only the measurements yk, k ≥ 1, are observed,
and that the mode sequence {θk}

∞
k=1 is exoge-

nous, arbitrary, and unknown. In other words, it
is to design a system producing an estimate x̂k

of xk based on the knowledge of y1, . . . , yk and of
u1, . . . , uk, such that

1 This work was supported by NSF-CAREER (PECASE)
Grant 0132716 and by NSF-CAREER Grant 0237971.

lim
k→∞

‖xk − x̂k‖ = 0.

State observation in switched linear systems, and
in hybrid systems in general, has lately received
considerable attention, and many closely related
problems to the one posed here have recently been
addressed. For piecewise affine systems, which are
hybrid systems whose modes θk are a piecewise
constant function of the state, a moving hori-
zon technique was proposed by Ferrari-Trecate
et al. (2002), and a piecewise affine observer was
studied by Juloski et al. (2003). However, those
analyses do not apply here, since the relationship
between modes and states makes the output of
the system reveal more information about the
modes than in the switched case, where the modes
are an exogenous, unknown input to the system.
Returning to SLS’s, observability (Babaali and
Egerstedt (2004); Vidal et al. (2002)) means the
ability to recover the initial state x1 from a finite
number of observations. While it is sufficient for
the existence of an asymptotic observer, it is not
necessary. (The example at the end of this paper
illustrates this fact.) In Alessandri and Coletta
(2001), it was shown how to design Luenberger-



like asymptotic observers for the known-modes
case, by assigning a common quadratic Lyapunov
function to the error dynamics, and in Balluchi
et al. (2002), the latter observer was combined
with failure detection techniques to produce an as-
ymptotic observer for SLS’s with unknown modes.
However, because of the delayed detection stem-
ming from the residual-based failure detection
techniques used, a minimum sojourn time was
required for the mode sequence. On the other
hand, a discrete output, which is absent in the
model considered here, was used in Balluchi et al.
(2002) and, later, in Balluchi et al. (2003), in order
to recover the modes. In Babaali et al. (2003), an
asymptotic observer was proposed under arbitrary
and unknown switching, yet for a subclass of (1),
namely systems with constant A matrices, and
was based on a direct approach circumventing the
need to recover the modes for the purpose of ob-
servation. Finally, it turns out that it is possible to
estimate the discrete modes instantaneously given
only the continuous outputs, as first demonstrated
in Ragot et al. (2003), and it is the mode observer
proposed in that paper that we will analyze here.

The outline of this paper is as follows. In section 2,
the observer is described. Its discrete part is then
analyzed in Section 3. An illustrative example is
then studied in section 4, before some concluding
remarks.

2. THE OBSERVER

We propose to study the following class of asymp-
totic observers:

θ̂k = f(y[k−N+1,k], u[k−N+1,k], θ̂[k−N+1,k−1]) (2)

x̂k+1 = F
θ̂[1,k]

(x̂k, yk, uk), k ≥ N, (3)

where the positive integer N , donoting the detec-
tion horizon, is a design parameter, where

y[i,j] =











yi

yi+1

...
yj











, u[i,j] =











ui

ui+1

...
uj











,

and θ̂[i,j] = θ̂i · · · θ̂j . F
θ̂[1,k]

represents some re-

cursive observer, and its dependence on the mode
history θ̂[1,k] is there to enable the consideration
of gains that can be computed recursively, as is
the case, e.g., in Kalman filtering. The observer
(2-3) can be viewed as the interconnection of the
following two entities (see Figure 1):

• A mode detector (2), which is supposed to

return the right mode, i.e., return θ̂k =
θk, given the outputs y[k−N+1,k] and inputs
u[k−N+1,k] over a window of length N , and

the estimates θ̂[k−N+1,k−1].

yk

uk f
θ̂k

(a) The mode detector

yk
x̂kuk F

θk

(b) The continuous observer

yk
x̂kuk F

f θ̂k

(c) The asymptotic observer

Fig. 1. The asymptotic observer as the intercon-
nection of a mode detector with a continuous
observer.

• A recursive continuous observer (3)

x̂k+1 = Fθ[1,k]
(x̂k, yk, uk), (4)

which, under known modes, i.e., when θ[1,k]

is available, should yield estimates x̂k that
converge to xk.

Definition 1. The mode detector (2) is well posed 2

for x1, {uk}
∞
k=N , and {θk}

∞
k=1, if {θ̂k}

∞
k=N =

{θk}
∞
k=N . ♦

The reason we define well-posedness for specific
initial state, input sequence and mode sequence,
is that we know, from the results of Babaali and
Egerstedt (2004), that it cannot be global. For
example, whenever x1 = 0 and uk = 0 for all
k ≥ 1, we get yk = 0 for all k ≥ 1 no matter what
{θk}

∞
k=1 is, which makes it impossible to estimate.

However, we will see that well-posedness is achiev-
able for almost all initial states, “almost all” being
with respect to Lebesgue measure in R

n. We will
concentrate on showing it for such cases, since
the initial states are unknown, and thus it makes
sense to show well-posedness almost everywhere.
Similarly, we define the following desired property
of the continuous observer.

Definition 2. The continuous observer (4) is con-
vergent if

lim
k→∞

‖xk − x̂k‖ = 0

for all input sequences {uk}
∞
k=1, all mode se-

quences {θk}
∞
k=1, all initial states x1 ∈ R

n, and
all initial estimates x̂N ∈ R

n. ♦

We clearly have:

2 The reason behind this terminology will later become
obvious.



Proposition 1. If the mode detector (2) is well
posed for x1, {uk}

∞
k=1, and {θk}

∞
k=1, and if the

continuous observer (4) is convergent, then (2-3)
satisfies

lim
k→∞

‖xk − x̂k‖ = 0

for all initial estimates x̂N . ♦

This result allows one to study both the continu-
ous observer and the mode detector separately.
In this paper, we are only concerned with the
mode detector, which we set up and analyze in the
next section. As for the continuous observer, we
simply point out that several design procedures
exist, among which one can cite the switched
Luenberger-like observers of Alessandri and Co-
letta (2001), and the Kalman filter, for which
several convergence results exist and naturally
apply here (see, e.g., Kamen (1993); Boutayeb and
Darouach (2000); Baras et al. (1988); Deyst and
Price (1968)).

3. THE MODE DETECTOR

While abundant literature exists dealing with di-
agnostics and failure detection problems, the par-
ticular problem that we consider here, namely re-
covering the mode θk immediately, given only the
measurement and input sequences up to time k,
and in the total absence of noise, has only received
little attention. The failure detection paradigm, as
surveyed, e.g., in Balluchi et al. (2002), is based on
the use of residual filters, and is only applicable
to systems with slow switching. In Vidal et al.
(2002), a switch detection algorithm was proposed
for systems with minimum dwell time and known
initial state. The mode detector we propose to
study, and which has previously been suggested
in Ragot et al. (2003), consists in computing at
time k the modes that fit the output over the time
window {k −N + 1, . . . , k}, given the modes over
{k − N + 1, . . . , k − 1} have been recovered, i.e.,

θ̂k =
{

j ∈ s̄
∣

∣

∣ y[k−N+1,k]

− G(θ̂[k−N+1,k−1]j)u[k−N+1,k]

∈ R(O(θ̂[k−N+1,k−1]j))
}

. (5)

where G(θ) is defined as
















0 · · · 0 0
C(θ2)B(θ1) · · · 0 0

C(θ3)A(θ2)B(θ1) · · ·
... 0

... · · · 0
...

C(θN )Φ(θ[2,N ])B(θ1) · · · C(θN )B(θN−1) 0

















and

O(θ) ,







C(θ1)
...

C(θN )AN−1







for any path θ of length N (i.e., a word of length
N over s̄), and where R(M) is the column range
space of a matrix M . First, note the following
equivalence

∃x | Y = Ox ⇔ Y ∈ R(O) ⇔ (OO{1} − I)Y = 0,

where the vector Y and the matrix M are given,
and where O{1} is a {1}-inverse of O as defined,
e.g., in Rao and Mitra (1971). This gives both an
interpretation and a way to compute (5). Indeed,
it follows from (1) and from our notation that

y[k−N+1,k] = O(θ[k−N+1,k])xk

+ G(θ[k−N+1,k])u[k−N+1,k],

which, whenever θ̂[k−N+1,k−1] = θ[k−N+1,k−1],
implies by (5) that

θk ∈ θ̂k.

Therefore, when the mode estimates history is
correct up to time k − 1, if the mode detector
returns a singleton at time k, i.e., if card(θ̂k) = 1,
then it must be the right mode. In the sequel,
we study the well-posedness of our mode detec-
tor, i.e., whether or not, and when, (5) returns a
singleton for all k ≥ 1. Note that the existence of
a detection horizon N making the mode detector
well posed is of critical concern. Finally, it is note-
worthy that the online computational complexity
of the mode detector is polynomial in N and s,
making it an efficient detector.

In Section 3.1, we review some preliminary results.
In Sections 3.2 and 3.3, we study the autonomous
and non-autonomous cases, respectively. Finally,
in Section 3.4, we establish the decidability of the
criterion established for the well-posedness of the
mode detector.

3.1 Preliminaries

In this section, we shall recall several results on
discernibility from Babaali and Egerstedt (2004).
We first define the function Y as

Y (θ, x) , O(θ)x,

and recall the definition of discernibility:

Definition 3. (Discernibility). A path θ is dis-
cernible from another path θ′ of the same length
if

ρ([O(θ)O(θ′)]) > ρ(O(θ′)),

where [O(θ)O(θ′)] denotes the horizontal concate-
nation of O(θ) and O(θ′), and where the degree d

of discernibility is defined as

d = ρ([O(θ)O(θ′)]) − ρ(O(θ′)).

We then say that θ is d-discernible from θ′. ♦



The following proposition is now in order:

Proposition 2. Y (θ, x) 6∈ R(O(θ′)) for generic x ∈
R

n iff θ is discernible from θ′. ♦

The proof of Proposition 2 can be found in Babaali
and Egerstedt (2004), and is based on showing
that

dim(c(θ, θ′)) = n − d,

where

c(θ, θ′) , {x ∈ R
n | ∃x′ ∈ R

n : O(θ)x = O(θ′)x′}

is the state subspace of conflict of θ with θ′,
which can be furthermore expressed as c(θ, θ′) =
O(θ)−1(C(θ, θ′)), where C(θ, θ′) , R(O(θ)) ∩
R(O(θ′)) is the output subspace of conflict of θ

from θ′.

3.2 The Autonomous Case

In this section, we assume that uk = 0 for all k ≥
1. We define backward discernibility as follows:

Definition 4. (Backward Discernibility (BD)). A
mode j is backward discernible from another
mode j′ if there exists an integer N such that for
any path λ of length N , λj is discernible from λj′.
The smallest such integer N is the index of BD of
j from j′. ♦

We can now establish the main result of this
section:

Theorem 1. Assume uk = 0 for all k ≥ 1. If the
matrices A(j) are all invertible, then the following
are equivalent.

(1) Every mode is BD from any other mode.
(2) There exists a decision horizon N such that,

for all {θk}
∞
k=1, the mode detector is well

posed for almost all x1. ♦

Proof: First, note that we have

y[k−N+1,k] = Y (θ[k−N+1,k], xk−N+1),

and therefore that, assuming θ̂l = θl for all l < k,
we get

j ∈ θ̂k ⇔

Y (θ[k−N+1,k], xk−N+1) ∈ R(O(θ[k−N+1,k−1]j)),

by definition of θ̂k, and, therefore, by our estab-
lished notation, that

{

xk−N+1 ∈ R
n

∣

∣

∣ j ∈ θ̂k; θ̂l = θl, l < k
}

=

c(θ[k−N+1,k−1]θk, θ[k−N+1,k−1]j).

Now, fix {θk}
∞
k=1, and define

φ(θ) , A(θN−1)A(θ[N−2]) · · ·A(θ1),

for any path θ of length N . We then have that the
set of initial states destroying the well-posedness
of the mode detector can be expressed as:

χ({θk}
∞
k=1)

,
{

x1 ∈ R
n

∣

∣

∣ ∃k ≥ N : card(θ̂k) > 1
}

= ∪∞
k=1

{

x1 ∈ R
n

∣

∣

∣ card(θ̂k) > 1; θ̂l = θl, l < k
}

= ∪∞
k=1 ∪j 6=θk

{

x1 ∈ R
n

∣

∣

∣
j ∈ θ̂k; θ̂l = θl, l < k

}

= ∪∞
k=1 ∪j 6=θk

φ(θ[1,k−N+1])
−1

{

xk−N+1 ∈ R
n

∣

∣

∣ j ∈ θ̂k; θ̂l = θl, l < k
}

= ∪∞
k=1 ∪j 6=θk

φ(θ[1,k−N+1])
−1

c(θ[k−N+1,k−1]θk, θ[k−N+1,k−1]j).

Since A(j) is invertible for all j ∈ s̄, φ(θ) is
invertible for all θ, and we get that χ({θk}

∞
k=1)

has null Lebesgue measure if and only if

dim(c(θ[k−N+1,k−1]θk, θ[k−N+1,k−1]j)) < n

for all k ≥ N and all j 6= θk.

Now, since {θk}
∞
k=1 is arbitrary, we thus get that

a necessary and sufficient condition for the mode
detector to be well posed for almost all x1 is

dim(c(λi, λj)) < n

for all λ of length N and i 6= j, which is equivalent
to backward discernibility with an index smaller
than or equal to N . Furthermore, it is readily seen
that the smallest detection horizon guaranteeing
such well-posedness is the largest index of BD over
all pairs of modes. �

3.3 The Non-Autonomous Case

Here, we waive the assumption that uk = 0, k ≥ 1,
we define

Y (θ, x, U) , O(θ)x + G(θ)U,

and we note that

y[k−N+1,k] = Y (θ[k−N+1,k], xk−N+1, u[k−N+1,k]).

Recalling the following classic result from linear
algebra,

Theorem 2. The intersection of V + v and V ′ + v′

is either empty or equal to V ∩ V ′ + w for some
w, in which case it has the dimension of V ∩ V ′.♦

we realize that, while the G(θ)U terms can-
not increase the degree of discernibility, they
can achieve something impossible in the non-
autonomous case: they can render the affine out-
put subspaces of θ and θ′, i.e., R(O(θ)) + G(θ)U



and R(O(θ′))+G(θ′)U , totally disjoint. Therefore,
the inputs can only, in the worst case, translate
the subspaces of conflict, and we have:

Theorem 3. Assume that the matrices A(j) are
all invertible. If every mode is BD from any other
mode, then there exists a decision horizon N such
that for all all input sequences, the mode detector
is well posed for almost all x1. ♦

3.4 Decidability

In this section, we establish the decidability of
backward discernibility. The proof is based on
the following result establishing the decidability
of pathwise observability, which was proven, in-
dependently, in Gurvits (2002) and Babaali and
Egerstedt (2003):

Theorem 4. There exist positive integers N(s, n)
such that if θ is a path of length N(s, n), then
there exists a prefix θ0 of θ (i.e., θ = θ0θ1 for
some θ1) and a path θ′ of arbitrary length such
that 3

R(O(θ0θ′)) ⊂ R(O(θ0)),

thus that ρ(O(θ0θ′)) = ρ(O(θ0)) ≤ ρ(O(θ)). ♦

What this result shows is that the index of path-
wise observability of any SLS is less than or equal
to N(s, n). We will establish that the index of BD
of any two modes is less than or equal to N(s, 2n),
in the reversible case. In other words,

Theorem 5. (Decidability of BD). If every matrix
A(j) is invertible, then BD is decidable, as the
index of BD is smaller than or equal to N(s, 2n)
given in Theorem 4. ♦

The proof is similar to that of decidability of for-
ward discernibility given in Babaali and Egerstedt
(2004), but is sufficiently different to be presented
(note that forward discernibility was shown to be
decidable for arbitrary A matrices). We first recall
the following technical lemma from Babaali and
Egerstedt (2004):

Lemma 3. Let θ and θ′ be two different paths of
the same length, and λ be any path of length
N . The degree of discernibility of θλ from θ′λ is
greater than or equal to the degree of discernibility
of θ from θ′. ♦

Proof: It is easily shown, by elementary linear
algebra, that

3
R(M) denotes the row range space of a matrix M .

ρ([O(θλ)O(θ′λ)]) − ρ([O(θ)O(θ′)]) ≥

ρ(O(θλ)) − ρ(O(θ)).

In other words, the rank of the concatenation
must increase by at least the increase in rank of
each path. �

Proof of Theorem 5: First, since every matrix A(j)
is invertible, we can write

[O(λj)O(λj′)]r =[O′(jλ)O′(j′λ)]×
(

Φ(λ)−1 0
0 Φ(λ)−1

)

,

where O′(θ) is the observability matrix of θ com-
puted by replacing A(j) with A(j)−1, and where
Mr denotes the pN × 2n matrix M written with
the size p × n blocks in reverse order. Therefore,
we can refocus our attention on proving that if
there exists an integer N such that

ρ([O(jλ)O(j′λ)]) > ρ(O(jλ))

for all j, j′, and all λ of length N (where we have
replaced O′ with O for ease of exposition) then it
must be true for N(s, 2n).

Now, fix two modes j and j′, and suppose there
exists a path λ of length N(s, 2n) such that λj is
not discernible from λj′. In what follows, we abuse
language and say that the degree of discernibility
of λj from λj′ is zero.

Note that the matrices [O(λ)O(λ)] are produced
by the following set of s pairs:

(

A(i) 0
0 A(i)

)

,
(

C(i) C(i)
)

, i ∈ {1, . . . , s}.

Therefore, by Theorem 4, there exists λ0, a prefix
of λ, and a path µ of arbitrary length, such that
R([O(λ0µ)O(λ0µ)]) ⊂ R([O(λ0)O(λ0)]), which,
by (Babaali and Egerstedt, 2003, Lemma 4) and
upon some manipulation, implies that

R([O(jλ0µ)O(j′λ0µ)]) ⊂ R([O(jλ0)O(j′λ0)]).

By Lemma 3, the last equation implies that the
degree of discernibility of jλ0µ from j′λ0µ is equal
to that of jλ0 from j′λ0, which, again by Lemma
3, is smaller than or equal to that of jλ from j′λ,
proving that jλ0µ is not discernible from j′λ0µ,
which completes the proof since µ is of arbitrary
length. �

4. AN ILLUSTRATIVE EXAMPLE

Consider the following example, which is not ini-
tial state observable (in the sense of Babaali and
Egerstedt (2004)), and for which, to the best of
the author’s knowledge, no previously published
general asymptotic observer result applies. Even
though it is quite trivial, it serves the purpose
of explaining the previous analysis. The system



is autonomous, has two modes, and admits the
parameters

C(1) = (1 0) C(2) = (2 0)

A(1) =

(

1 0
0 0.5

)

A(2) =

(

2 0
0 0.5

)

.

This system admits the Luenberger-like gains (see
Alessandri and Coletta (2001)) L(1) = (0.5 0)T

and L(2) = (1.5 0)T resulting in the same sta-

ble error dynamics E(1) = E(2) =

(

0.5 0
0 0.5

)

,

and therefore admits a convergent continuous ob-
server. This system is furthermore backward dis-
cernible with index 1. To see this, it suffices to
compare the rank of [O(λi) O(λj)] to that of
O(λi) for any pair of modes i and j, and any
path λ of length 1. Therefore, the mode detector
will be well posed for almost any x1. Specifically,

whenever x1 6∈ χ({θk}
∞
k=1) =

{(

a

b

)

∣

∣

∣
b = 0

}

,

which has Lebesgue measure 0. Intuitively, if the
initial state is not on the horizontal axis, then
the modes can successfully be inferred from time
k = 2 upward.

5. CONCLUSION

We have described an asymptotic observer de-
sign approach for switched linear systems with
unknown and arbitrary modes, and have shown
that it results in an asymptotically decaying ob-
server error for almost all initial states. The sub-
sets of Lebesgue measure zero in question are
countable unions of proper subspaces of the finite-
dimensional state space, and may actually be
dense, raising practical implementation issues, es-
pecially in the presence of measurement noise. A
solution to remedy this fact, which is currently un-
der investigation, is to select the inputs uk in order
to guarantee immediate detection of the current
mode for all initial states and mode sequences, as
has been demonstrated for initial mode observa-
tion in Babaali and Egerstedt (2004).
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