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Abstract: Most linear control problems convert directly to matrix inequalities, MIs.
Many of these are badly behaved but a classical core of problems convert to linear
matrix inequalities (LMIs). In many engineering systems problems convexity has
all of the advantages of a LMI. Since LMIs have a structure which is seemingly
much more ridged than convexity, there is the hope that a convexity based theory
will be less restrictive than LMIs.
A dimensionless MI is a MI where the unknowns are matrices and appear in the
formula in a manner which respects matrix multiplication. This holds for most of
the classic MIs of control theory. The results presented here suggest the surprising
conclusion that for dimensionless MIs convexity offers no greater generality than
LMIs. In fact, we prove, for a class of model situations, that a convex dimensionless
MI is equivalent to an LMI.
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1. INTRODUCTION

Arguably, the biggest revolution in linear control
theory of the 1990’s is the realization that most
linear control problems convert directly to matrix
inequalities, abbreviated MIs. Many of these are
badly behaved but a classical core of problems
convert to linear matrix inequalities (LMIs) which
are nicely behaved. Systems problems very di-
rectly and by routine methods produce lists of
messy matrix inequalities, so it would be valuable

1 Partly supported by NSF and the Ford Motor Co.
2 Partly supported by the NSF grant DMS-0140112
3 Partially supported by the Israel Science Foundation

(Grant No. 322/00)

to develop computer algebra methods to convert
them to nice ones or prove this impossible. Typ-
ically nice means ”convex”. A basic question in
light of preponderance in the systems literature
of LMIs and the fact that convexity, a seem-
ingly much weaker condition than being an LMI,
guarantees numerical success is: How much more
restricted are LMIs than Convex MIs?

There are two fundamentally different classes of
linear systems problems. Ones whose statements
do depend on the dimension of the system ”explic-
itly” and ones whose statements do not. Dimen-
sion dependent systems problems lead to tra-
ditional semialgebraic geometry problems, while



dimensionless systems problems lead directly
to a new area which might be called noncommuta-
tive semialgebraic geometry, cf. (J. W. Helton and
Vinnikov, preprint). The classic results of control
such as laid out in the book of Zhou-Doyle-Glover,
or for LMIs in the 1997 book of Skelton-Iwasaki-
Grigoriadis, have dimensionless matrix unknowns,
so lead to what we are calling noncommutative
problems. In this article we shall emphasize di-
mensionless systems problems in which case for-
mulas involve matrices of noncommutative poly-
nomials or rational functions.

1.1 A Familiar Example

For sake of orientation with respect to noncom-
mutativity let us begin with the most ancient
and ubiquitous formula in classical linear control
theory: the Riccati inequality,

AX + XAT − XBBT X + CT C ≥ 0, (1)

where ” ≥ ” means positive semidefinite as a
matrix. Also there is the LMI (linear in X)

(

AX + XAT + CT C XB

BT X I

)

≥ 0. (2)

We could think of the left side as being poly-
nomials (resp. a matrix containing linear poly-
nomials) in noncommuting variables A,B,C,X.
The inequalities (1) and (2) are equivalent in
that when matrices A,B,C are plugged in for the
corresponding noncommuting variables they have
the same set of solution matrices X. Distinguish-
ing between A as a variable and A as a matrix
might sound pedantic, but we must do this, since
we are interested in developing computer algebra
algorithms to handle A without breaking it into
entries Aij ; of course we aim at formulas which
are vastly more complicated than Riccatis. Soon
our notation will enshrine this in that lower case a

will denote the variable and capital A will denote
the matrix.

What is done here bears on properties of algo-
rithms programmed to run under our package
NCAlgebra which is the main general noncommu-
tative algebra package running under Mathemat-
ica. See §6.

2. DIMENSIONLESS CASE: CONVEXITY

This section focuses on symmetric polynomials in
noncommuting variables and sets the stage for
more general results.

2.1 NC Polynomials

We consider noncommutative (hereafter denoted
NC) polynomials with real numbers as coefficients
in variables x = {x1, · · ·xg}. While this class
does not include Riccatis the theory, even for the
case we treat, is new, rich, very challenging and
indicative of Riccatis and much more general cases

Example 2.1. Some such polynomials are:

p(x) = x1x2x1 +x1x2 +x2x1 xT
1 = x1 xT

2 = x2.

Here we took the variables xj to be formally
symmetric. Next

p(x) = xT
1 x2x1 + xT

1 x2 + x2x1 xT
2 = x2.

Here we took the variable x2 to be formally
symmetric, but x1 is not.

A NC polynomial p is symmetric provided that it
is formally symmetric with respect to the involu-
tion T . Often we shall substitute n × n matrices
X1, · · · , Xg into p for the variables x1, · · · , xg. If
the xj are designated as symmetric variables the
matrices X1, · · · , Xg must be taken to be sym-
metric; then the resulting matrix p(X1, · · · , Xg)
is symmetric. The variables xj which are not de-
clared symmetric, if substituted by the matrix Xj ,
also result in the variables xT

j being substituted

by XT
j . Henceforth, to save space and confusion,

the formal definitions and theorems we state are
all for functions in symmetric variables.

Denote the n × n matrices with real entries by
R

n×n, and the subspace of symmetric n × n

matrices by SR
n×n. Similarly, denote the set of all

g-tuples X = (X1, . . . , Xg) of (resp. symmetric)
n × n matrices by (Rn×n)g (resp. (SR

n×n)g).

A symmetric NC polynomial in symmetric vari-
ables is matrix-convex provided that for any
tuples X = (X1, . . . , Xg) and Y = (Y1, . . . , Yg) of
square symmetric matrices of the same dimension
n and any 0 ≤ t ≤ 1, the matrix

tp(X) + (1 − t)p(Y ) − p(tX + (1 − t)Y ) (3)

is positive semidefinite. We emphasize that we test
with matrices of all dimensions n. A less stringent
condition is matrix convexity in a NC open set,
where an example of this is matrix- convex near
0. This means there is a positive number ε such
that if tuples X,Y each lie in the ball

Bε := {Z ∈ (SR
n×n)g : Z2

1 + · · · + Z2

g < ε2I},

then the inequality (3) holds. Matrix convexity
is defined analogously for NC rational functions,
a class of expressions discussed below, see §3.1.

2.2 NC Linear Pencils

At the core of an LMI is a linear pencil. Given
a matrix W with entries Wij and a variable x`,
let Wx` = x`W denote the matrix with entries
given by

(Wx`)ij = Wijx`.

A m×d NC linear pencil (in g indeterminantes)
is an expression of the form

M(x) := M0 + M1x1 + . . . + Mgxg

and M0,M1, . . . ,Mg are m×d matrices. A monic
pencil is one with M0 = I. As an example, for

M0 :=

(

1 0
0 −1

)

M1 :=

(

3 2
2 1

)

M2 :=

(

5 4
4 2

)

,



the pencil is

M(x) =

(

1 + 3x1 + 5x2 2x1 + 4x2

2x1 + 4x2 −1 + x1 + 2x2

)

.

We reiterate that our set up in this brief note does
not allow terms linear in xj like ax1 + x1a

T + cT c

because the coefficients are indeterminants a, cT c,
however we think our theory is indicative of the
behavior there.

An ”ordinary”, meaning commutative, pencil is
one where the variables x′

js all commute.

2.3 NC Convex Polynomials are Trivial

Theorem 2.2. (Helton and McCullough, 2004a)
Every symmetric NC polynomial which is matrix
convex near 0 has degree two or less. Indeed,

(1) r must be matrix convex everywhere, and
(2) r is a Schur Complement of an associated NC

linear pencil.

Even in the one variable (g = 1) case this result,
due to Ando twenty years ago, has content since
the X and Y in the definition of convex need not
commute. For an idea of how to prove Theorem
2.2 see §4.1.

3. CONVEXITY FOR NC RATIONALS

Since LMIs are linear it is easily proved that
formulas based on them via Schur complements
are convex. One would think that the reverse is
not true, but in this section we give a result which
presents strong evidence that the reverse is true;
namely, ”dimensionless” systems problems which
are convex correspond precisely to LMIs. Specifi-
cally, we describe how the convex NC polynomial
theorem extends to NC rational functions which
are convex near the origin, see (J. W. Helton and
Vinnikov, preprint).

3.1 NC Rational Functions

We shall discuss the notion of a NC rational
function in terms of rational expressions. There is
a technicality,”analytic at 0”, which we include for
sake of precision which casual readers can ignore.

A NC rational expression analytic at 0 is
defined recursively. NC polynomials p are NC
rational expressions as are all sums and products
of NC rational expressions. If r is a NC rational
expression and r(0) 6= 0, then the inverse of r is a
rational expression.

The notion of the formal domain of a ra-
tional expression r, denoted Fr,formal, and the
evaluation r(X) of the rational expression at a
tuple X ∈ (SR

n×n)g ∩ Fr,formal are also defined
recursively 4 . Example 3.1 below is illustrative.

4 The formal domain of a polynomial p is all of (SRn×n)g

and p(X) is defined just as before. The formal domain of

An example of a NC rational expression is, the
Riccati expression for discrete-time systems:

r = aT pa − p + cT c

+(aT pb + cT d)(I − dT d − bT pb)−1(bT pa + dT c)

Here some variables are symmetric some are not.
A difficulty is two different expressions, such as

r1 = x1(1 − x2x1)
−1 and r2 = (1 − x1x2)

−1x1

that can be converted into each other with alge-
braic manipulation. Thus they are the same func-
tion and one needs to specify an equivalence rela-
tion on rational expressions to arrive at what are
typically called NC rational functions. (This
is standard and simple for commutative (ordi-
nary) rational functions.) There are many alter-
nate ways to describe the NC rational functions
and they go back 50 years or so in the algebra
literature. For engineering purposes one need not
be too concerned, since what happens is that two
expressions r1 and r2 are equivalent whenever the
usual manipulations you are accustomed to with
matrix expressions convert r1 to r2.

For r a rational function, that is, an ”equiva-
lence class of rational expressions r”, define its
domain by

Fr := ∪{r represents r} Fr,formal.

Let F0
r

denote the arcwise connected component
of Fr containing 0. We call F0

r
the principal

component of Fr. Henceforth we do not distin-
guish between the rational functions r and rational
expressions r, since this causes no confusion.

Example 3.1.

r(x1, x2) = (1 + x1 − (3 + x2)
−1

)−1,

where we take x1 = xT
1 , x2 = xT

2 is a symmetric
NC rational expression. The domain Fr,formal is

∪n>0{X1, X2 in SR
n×n :

1 + X1 − (3 + X2)
−1

and 3 + X2 are invertible}.

Its principal component F0
r is

{X1, X2 : 1+X1−(3 + X2)
−1

> 0 and 3+X2 > 0}

3.2 Convexity vs LMIs

Theorem 3.2. (J. W. Helton and Vinnikov, preprint)
Suppose r is a NC symmetric rational function
which is convex near the origin. Then

(1) r has a representation

r(x) = r0 + r1(x) + `(x)`(x)T (4)

+Λ(x)(I − ÃL(x))−1Λ(x)T ,

sums and products of rational expressions is the intersec-

tion of their respective formal domains. If r is an invertible

rational expression analytic at 0 and r(X) is invertible,

then X is in the the formal domain of r−1.



where

L(x), `(x), Λ(x), r0 + r1(x)

are linear pencils in x1, · · · , xg satisfying

L(0) = 0, `(0) = 0, Λ(0) = 0, r1(0) = 0.

In addition L and r1 are symmetric, for example,
L(x) has the form L(x) = A1x1 + · · · + Agxg for
symmetric matrices Aj.
Thus for γ any real number r − γ is a Schur
complement of the noncommutative linear pencil
Mγ(x) :=





−1 0 `(x)T

0 −(I − L(x)) Λ(x)T

`(x) Λ(x) r0 − γ + r1(x)



 .

(2) The principal component of the domain of
r is a convex set, indeed it is the positivity set of
the pencil I − ÃL(x). Indeed this holds for any r of
the form (4).

This gives a tight enough correspondence between
properties of the pencil and properties of r, so that

Corollary 3.3. For any γ ∈ R, principal compo-
nent, G0

γ , of the set of solutions X to the matrix
inequality

r(X) < γI

equals the set of solutions to an LMI based on a
certain linear pencil Mγ(x).

That is, numerically solving matrix inequal-
ities based on r is equivalent to numerically
solving an LMI associated to r.

3.3 Proof of Corollary 3.3

By item (2) of Theorem 4.2 the upper 2× 2 block
of Mγ(X) is negative definite if and only if I −
L(X) > 0 if and only if X is in the component
of 0 of the domain of r. Given that the upper
2× 2 block of Mγ(X) is negative, definite, by the
LDLT (Cholesky) factorization , 0 > Mγ(X) is
negative definite if and only if γI > r(X). 2

3.4 Proof of Theorem 3.2

We will say little about the proof, since at this
early stage of the subject it requires about 50
pages. However, a point of general interest is that
the technique for obtaining a representation for
r as a Schur Complement of a linear pencil is
classical. In fact the following representation of
any symmetric NC rational expression r is the
symmetric version of the one due originally to
Schützenberger and Fliess (who were motivated
by automata and formal languages, and bilinear
systems) and extended recently by C. Beck and
by Ball–Groenewald–Malakorn. See (J. W. Helton
and Vinnikov, preprint) for references.

Theorem 3.4. r has a minimal Descriptor Re-
alization, namely,

r(x) = r0 + C(J −

g
∑

j

Ajxj)
−1CT , (5)

with J is a ”signature matrix”, that is, J is
symmetric and J2 = I, and Aj ∈ R

n×n are
symmetric.

For example, a polynomial of degree 10 can be
represented in this form. However, convexity of
r forces J to be within rank one of I and then
algebraic manipulations give Theorem 3.2 item
(1). The proof of item (2) is yet more gruelling.

4. NC SEMIALGEBRAIC GEOMETRY (SAG)

A NC symmetric polynomial p is matrix pos-
itive polynomial provided p(X1, · · · , Xg) is a
positive semidefinite for every X ∈ (SR

n×n)g (and
every n). An example of a matrix positive NC
polynomial is a Sum of Squares of NC poly-
nomials, meaning an expression of the form

p(x) =

c
∑

j=1

hj(x)T hj(x).

Clearly, when X in (SR
n×n)g is substituted into

p(X) we get
∑c

j=1
hj(X)T hj(X) which is a PSD

matrix. Remarkably these are the only positive
NC polynomials:

Theorem 4.1. Every matrix positive NC polyno-
mial is a sum of squares.

Those familiar with conventional ”commutative”
semialgebraic geometry will recognize that this
NC behavior is much cleaner. See (Parrilo, 2000;
Lasserre, 2001) for a beautiful treatment of appli-
cations of commutative SAG.

This theorem is just a sample of the structure
of NC semialgebraic geometry. Indeed, there is
a strong NC Positivstellensatz recently proved in
conjunction with M. Putinar. References contain-
ing this and the results alluded to in this section
can be found in the bibliography of (Helton and
McCullough, 2004b).

4.1 Application of NC SAG to NC Convexity

To give an idea of how one proves Theorem 2.2, we
prove that the symmetric NC polynomial p(x) =
x4 is not matrix convex. While far weaker than the
full Theorem 2.2 it is a good illustration of how
NC positivity (i.e., NC semialgebraic geometry) is
related to NC convexity. It is easy to show that
matrix convexity of an NC rational function on a
“convex domain” is equivalent to its NC second
directional derivative being matrix positive. This
is the link between NC convexity and NC posi-
tivity. First we define NC directional derivatives,
then we turn to convexity of p(x) = x4.



Symbolic Differentiation of NC Functions
The first directional derivative of a noncommuta-
tive rational function r(x) with respect to x in the
direction h is defined in the usual way

Dr(x)[h] :=
d

dt
r(x + th)

∣

∣

∣

∣

t=0

.

Likewise, the second directional derivative is

Hr(x)[h] =
d2

dt2
r(x + th)

∣

∣

∣

t=0

. (6)

For example, take x = {x1} and p(x) = x4. Get

Dp(x)[h] = hxxx + xhxx + xxhx + xxxh

and get Hr(x)[h]

= 2(hhxx+hxhx+hxxh+xhhx+xhxh+xxhh)

Nonconvexity of x4 If p(x) = x4 is matrix
convex, then Hr(x)[h] is matrix positive and by
Theorem 4.1 is a sum of squares,

hhxx + hxhx + hxxh + xhhx + xhxh + xxhh

= f1(x, h)T f1(x, h) + · · · + fk(x, h)T fk(x, h).

One can show that each fj(x, h) is linear in h.
Thus one term, say fT

1 f1, must contain hhxx.
Thus f1 = hxx + h + more. However then

fT
1 f1 = xxhhxx + much more.

Moreover, the term xxhhxx can not be cancelled
out, contradicting that H(x)[h] is of degree 4. 2

5. DIMENSION DEPENDENT CASE:
CONVEXITY

In this section only we treat commutative x and
corresponding linear pencils M(x) in commutative
variables x ∈ R

g.

5.1 Two Closely Related Questions

Q1. We say a set C ⊂ R
g has a Linear Matrix

Inequality (LMI) Representation provided
that there is a linear pencil M(x) for which

{x ∈ R
g : M(x) is PosSemiDef} (7)

equals the set C. Without loss of generality we may
take the pencil to be monic, that is M(0) = I.
Parrilo and Sturmfels (see[PSpre] in (Helton and
Vinnikov, preprint)) formally ask:
Which sets have an LMI representation?

Q2. Define a polynomial p̌ by

p̌(x) := det[I + M1x1 + · · · + Mgxg]. (8)

where the Mj are symmetric d× d matrices. This
is said to be a monic determinantal repre-
sentation for p̌ and d is called the size of the
representation.
Which polynomials have a monic determi-
nantal representation?

As we shall see an answer to Q2 also answers
Q1. This section describes work in (Helton and
Vinnikov, preprint) which settles the questions for
g = 2.

5.2 Obvious Necessary Conditions

5.2.1. p Satisfies the Real Zeroes Condition For
a determinantal representation to exist there is an
obvious condition. Observe from (8) that

p̌(µx) := µd det[
I

µ
+ M1x1 + · · · + Mgxg].

Since (for real numbers xj ) all eigenvalues of the
symmetric matrix M1x1 + · · ·+ Mgxg are real we
see that, while p(µx) is a complex valued function
of the complex number µ, it vanishes only at µ

which are real numbers. This condition is critical
enough that we formalize it in a definition.

A Real Zero polynomial (RZ polynomial) is
defined to be a polynomial in g variables satisfy-
ing, for each x ∈ Rg,

p(µx) = 0 for µ a complex number

implies

(RZ) µ is actually a real number

Example 5.1. p(x) := 1 − (x4
1 + x4

2). Then

p(µx) = [1 − µ2(x4

1 + x4

2)
1

2 ][1 + µ2(x4

1 + x4

2)
1

2 ]

which for any x1, x2 has 2 complex (not real

zeroes) which are µ± := i(x4
1 + x4

2)
− 1

2 . Thus p

does not satisfy the Real Zero condition.

5.2.2. LMI Representations Suppose we are
given a monic pencil M(x) which represents a set
C as in (7). Clearly

(1) C is a convex set (with 0 in C) .
(2) The boundary of C is contained in the zero

set of the polynomial p̌(x) := detM(x),
so the boundary of C lies on an algebraic
curve.

In addition, C is what we call an Algebraic
Interior, that is, it is a set C in Rg for which
there is a polynomial p in g variables (normalized
by p(0) = 1), such that C equals the closed arcwise
connected set containing 0, with p(x) > 0 on its
interior and p(x) = 0 on its boundary. Such a p is
called a defining polynomial for C.

5.3 Main Representation Results

It is shown in (Helton and Vinnikov, preprint)
that:

The minimal degree defining polynomial p for an
Algebraic Interior C is unique;

let d denote the degree of p and say that C is an
Algebraic Interior of Degree d. Moreover, C
will be called rigidly convex provided that its
minimal degree defining polynomial satisfies the
Real Zero condition.

Theorem 5.2. If C has an LMI representation,
then it is rigidly convex.



The converse is true in two dimensions, that is,
when g = 2. Furthermore, in this case there exists
an LMI representation of the size equal to the
degree of C.

Conjecture 5.3. We conjecture that for any di-
mension g if C is rigidly convex, then it has an
LMI representation.

Remark 5.4. When g > 2, the minimal size of an
LMI representation in Conjecture 5.3 is in general
larger than the degree of C.
Conjecture 5.3 follows from

Conjecture 5.5. [ (Helton and Vinnikov, preprint)]
Every Real Zero polynomial has a monic determi-
nantal representation.
For g = 2 this is proved true in (Helton and
Vinnikov, preprint).

This might be called a modified Lax conjecture in
that Lewis, Parrilo and Ramana (A. S. Lewis and
Ramana, to appear) settled a 1958 conjecture of
Peter Lax affirmatively for g = 2, using the g =
2 monic determinantal representation mentioned
above. They proved the Lax conjecture false for
g > 2 but our conjecture is a natural modification.

6. SOFTWARE

Here is a list of software running under NCAlgebra
(which runs under Mathematica) that implements
and experiments on symbolic algorithms pertain-
ing to NC Convexity and LMIs.

http://www.math.ucsd.edu/ ∼ ncalg

LMI producing: A symbolic algorithm of N.
Slinglend has been implemented by J. Shopple
under NCAlgebra to construct the linear pencil
M in Theorem 3.2 symbolically from r. While it
provably always associates an LMI with a convex
r it works now only on small problems. Also to
flexibly handle control problems more generality
is needed and work is in progress. However, these
results establish that the correspondence between
dimensionless systems problems which are convex
and LMIs is very strong.

Convexity Checker: Camino, Helton, Skelton
have an (algebraic) algorithm for determining the
region on which a rational expression is convex.

Classical Production of LMIs: There are two
Mma notebooks by de Oliveira and Helton. The
first is based on algorithms for implementing the
1997 approach of Skelton, Iwasaki and Grigonidas
associating LMIs to many control problems. The
second (requires C++) produces LMIs by symbol-
ically implementing the 1997 change of variables
method of C. Scherer et. al.

7. CONCLUSIONS

7.1 Commutative:
Semialgebraic geometry is a subject which goes
back 75 years.

For sets convexity is different from having an
LMI representation, which we conjecture is the
same as rigid convexity. Parrilo speculated that
any convex algebraic interior has a lift to an LMI
representable set.

Change of variables to make a problem convex
is classically analyzed (via Morse theory) and
understood, but what one finds seems not to be
profoundly practical.

7.2 Noncommutative:
NC semialgebraic geometry is only a few years
old and while challenging is developing well into
a mathematically rich area.

We conjecture that NC convexity is the same as
having an NC LMI representation. While far from
proved, evidence for that conclusion is strong.
Needed is a theory with ”letters as coefficients”
and for matrices with NC rational entries. The
first of these while messy has been done in many
situations, e.g., in some of the software.

Changing variables to make a NC problem convex
is an open area. It is possible that NC changes of
variables will behave better than classically.
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