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Abstract: This paper develops a nonlinear anti-lock braking system combined with
active suspensions applied to a quarter-vehicle model by employing nonlinear
backstepping control design schemes. An anti-lock braking system must have
the potentials to release the wheel-locking situation and assist the car to stop
at shorter distance. Although the braking distance can be reduced by the
control torque from disk/drum brakes, the braking time and distance could be
further improved if the normal force generated from active suspension systems is
considered simultaneously. As a result, the integration of anti-lock braking and
active suspension systems indeed possesses the ability to enhance the system
performance because of reduction of braking time and distance. Furthermore, some
comparative simulations are given to illustrate the excellent performance of our
integrated anti-lock braking system. Copyright c© 2005 IFAC
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1. INTRODUCTION

With advanced development of vehicular technol-
ogy, the safety requirement for automobiles be-
comes more and more important. The techniques
applied for various vehicles have already improved
system stability and passenger safety with the
use of several significant control systems, such as
anti-lock braking systems (Alvarez et al., 2003;
Drakunov et al., 1995; Liu and Sun, 1995; Unsal
and Kachroo, 1999), active suspension systems
(Kim, 1996; Lin and Kanellakopoulos, 1997), trac-
tion control systems (Drakunov et al., 2000) and
so forth, popularly used in automobile industries.
Recently, there are some integrated studies which
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combine the previous mentioned subsystems in
order to further enhance vehicle dynamics to reach
better efficiency. For example, the concept of in-
tegrating anti-lock braking systems with active
suspensions has been introduced and investigated
in (Alleyne, 1997).

Many theories and design methods for anti-lock
braking systems (ABS) and active suspension sys-
tems have been proposed individually by several
literatures for decades. ABS is the mechanism to
manipulate the braking of automobiles to prevent
from uncontrollable skidding in accidents due to
locking of wheels. It can provide the directional
stability and shorten the braking distance. Vari-
ous researchers have considered a slip-ratio control
of anti-lock braking systems in the use of sliding
mode control schemes (Drakunov et al., 1995; Un-
sal and Kachroo, 1999). In (Liu and Sun, 1995),



a gain-scheduling scheme was proposed for the
optimal target slip tracking of an anti-lock braking
system, where the friction coefficient varies with
respect to different vehicle forward speeds.

Active suspension systems must have the po-
tentials to guarantee ride comfort of passengers.
Hence, in the design of active suspensions, the
improvement of ride quality is the major control
objective to be emphasized. In (Lin and Kanel-
lakopoulos, 1997), a novel nonlinear backstepping
design (Khalil, 2002; Krstić et al., 1995) has been
developed for a quarter-car active suspension sys-
tem which aims to improve the tradeoff between
the ride quality of passenger comfort and the uti-
lization of suspension travel. In addition, a nonlin-
ear indirect adaptive controller has been applied
to the design of a quarter-car active suspension
with a hydraulic actuator in (Kim, 1996).

The target of this paper is to take advantage of
anti-lock braking systems combined with active
suspensions to further reduce the vehicle braking
time and distance. During braking process, if the
vertical normal force is increased (this situation is
equivalent to the increase of the weight of a car),
the friction force between the car and road surface
is increased to help the vehicle to stop at a shorter
distance. However, the normal force can not be
increased naturally, so active suspensions should
be the tools employed to achieve the adjustment
of normal force. With the choice of an appropriate
integrated algorithm, the vertical normal force
can be adjusted with the braking torque in order
to achieve the reduction of braking time and
distance.

The remainders of this paper are organized as
follows. In Section 2, the system dynamics of
a quarter-vehicle model is introduced, including
both anti-lock braking and active suspension sys-
tems. In Section 3, nonlinear backstepping con-
trol schemes are employed for the design of this
quarter-car integrated braking system. The simu-
lation results are illustrated in Section 4, and some
concluding remarks are given in Section 5.

2. SYSTEM MODEL AND DYNAMICS

In general, the quarter-vehicle braking model can
be shown in Fig. 1. According to Newton’s second
law, the dynamics of the quarter-car braking sys-
tem can be represented by the following equations:

mv̇ =−Fzµ(λ) − Cxv2

Iω̇ =−Bω + Fzµ(λ)R − τb (1)

τ̇b =−1
τ
τb +

Kb

τ
vb ,

where m is the total mass consisting of the car
body and wheel, v is the longitudinal velocity, ω

ω

R

Rωτb
v

Fx Fz

Fig. 1. Quarter-car braking model.
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Fig. 2. Two-DOF quarter-car active suspension
model.

is the angular velocity, τb is the braking torque
applied by the disk/drum brakes, I is the wheel’s
moment of inertia, B is the friction coefficient due
to the wheel bearings, Fz is the vertical normal
force on the road, R is the radius of the wheel, Cx

is the aerodynamic coefficient of the vehicle, and
µ(λ) is the friction coefficient between tire and
road to be defined later. In addition, the braking
torque is controlled by the braking pressure vb

from the braking pedal, where τ is the time
constant and Kb is the braking gain.

The quarter-car active suspension model shown in
Fig. 2 is represented as a two degree-of-freedom
(DOF) system. It consists of a single sprung mass
(car body) connected to a unsprung mass (wheel).
The suspensions between the sprung mass and un-
sprung mass are modeled as linear viscous damper
and spring elements, while the tire is modeled as
linear spring and damping elements. The equa-
tions of motion for this quarter-car active suspen-
sion model can be written as follows:

msz̈s =−Ka (zs − zu) − Ca (żs − żu) + u

musz̈u = Ka (zs − zu) + Ca (żs − żu) − u (2)

−Kt (zu − zr) − Ct (żu − żr) ,

where zs and zu are the displacements of car body
and wheel, ms and mus are the masses of car body
and wheel, Ka and Kt are the spring coefficients,
Ca and Ct are the damping coefficients, zr is the
road disturbance, and u is the control force from
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the hydraulic actuator. From (1) and (2), we can
have

m = ms + mus (3)

Fz = mg − Kt(zu − zr) − Ct (żu − żr) , (4)

where g is the acceleration of gravity.

In addition, the coefficient of friction µ(λ) is a
nonlinear function of the wheel slip ratio λ. The
wheel slip ratio λ is defined by

λ =
v − Rω

v
, (5)

and describes the normalized difference between
the vehicle speed v and the speed of the wheel
perimeter Rω. The slip value of λ = 0 character-
izes the free motion of the wheel where no friction
force Fx is exerted. If the slip reaches the value
λ = 1, then the wheel is locked (ω = 0). The
friction coefficient µ(λ) can span over a very wide
range. The relationship between µ(λ) and wheel
slip ratio λ is shown in Fig. 3. It shows how the
friction coefficient µ(λ) increases with slip λ up to
a value λ0, where it attains its maximum value µ0.
For higher slip values, the friction coefficient will
decrease until the wheel is locked. The function of
µ(λ) can be approximated by the function

µ (λ) = 2µ0
λ0λ

λ2
0 + λ2

= µ0f (λ) λ , (6)

where µ0 is maximum friction coefficient between
tire and road, f(λ) = 2 λ0

λ2
0+λ2 is always positive,

and λ0 is the optimal slip ratio, which can yield
the peak friction value µ(λ0) = µ0.

With the choices of the state variables x1 = v,
x2 = ω, x3 = τb, x4 = zs, x5 = żs, x6 = zu, and
x7 = żu, the integrated braking system modeled
by (1) and (2) can be rewritten as

ẋ1 =−µ(λ)Fz

m
− Cx

m
x2

1

ẋ2 =−B

I
x2 +

µ (λ)R

I
Fz − 1

I
x3

ẋ3 =−1
τ
x3 +

Kb

τ
vB

ẋ4 = x5 (7)

ẋ5 =−Ka

ms
(x4 − x6) − Ca

ms
(x5 − x7) +

1
ms

u

ẋ6 = x7

ẋ7 =
Ka

mus
(x4 − x6) +

Ca

mus
(x5 − x7) − 1

mus

− Kt

mus
(x6 − zr) − Ct

mus
(x7 − żr) .

3. NONLINEAR BACKSTEPPING DESIGN

According to the system dynamics mentioned in
the previous section, the control objective for the
integrated anti-lock braking system is to keep the
wheel slip ratio close to its optimal value and
force the vehicle velocity to converge to zero as
fast as possible. The goals are achieved by em-
ploying nonlinear backstepping schemes, whose
design procedure consists of two parts to con-
struct the anti-lock braking and active suspension
controllers individually. First of all, the regulated
variable for the braking design is introduced as

z1 = v = x1 . (8)

Then, the derivative of the regulated variable z1

is computed as

ż1 = ẋ1 = −µ(λ)
m

Fz − Cx

m
z2
1 . (9)

From (5), the desired angular velocity is chosen as

ωd =
1 − λ0

R
z1 , (10)

which implies that the wheel slip ratio attains the
value yielding the maximum friction coefficient.
With the choice of the virtual control x2 = ω, the
corresponding error state variable is defined as

z2 = x2 − ωd . (11)

Therefore, the derivative of the error state variable
z2 is computed as follows:

ż2 = ω̇ − ω̇d

=−B

I
x2 +

FzR

I
µ (λ) − 1

I
x3

− 1 − λ0

R

(
−Fz

m
µ (λ) − Cx

m
z2
1

)
. (12)

Since x3 is used as the virtual control variable, we
choose the stabilizing function as

α1 = I
µ0f(λ)R

m
[mg − Kt(x6 − zr) − Ct(x7 − żr)]

− Bx2 + I
1 − λ0

R

µ(λ)
m

[mg − Kt(x6 − zr)

− Ct(x7 − żr)] + FzRµ(λ) + I
1 − λ0

R

Cx

m
z2
1

+ Ik2z2 , (13)



where k2 is a positive design constant. With the
choice of the corresponding error state variable

z3 = x3 − α1 , (14)

the derivative of z3 is computed as

ż3 = ẋ3 − α̇1

=−1
τ
x3 +

Kb

τ
vb −

[
I

1
m

µ0Rf1 − Bf2 + Rf3

+ I
1 − λ0

R

1
m

f3 + I
1 − λ0

R

Cx

m
f4 + Ik2f5

]
,

(15)

where

f1 = f(λ)[−Kt(x7 − żr) − Ctf6] − λf2(λ)
λ0

f7f8

f2 =
R

I
µ(λ)f8 − B

I
x2 − 1

I
(z3 + α1)

f3 = f(λ)[−Kt(x7 − żr) − Ctf6] + µ0f(λ)f7f8

f4 =−2z1

m

[
µ(λ)f8 + Cxz2

1

]

f5 =−B

I
x2 +

FzR

I
µ (λ) − 1

I
(z3 + α1)

+
1 − λ0

mR

[
µ(λ)f8 + Cxz2

1

]

f6 =
1

mus
[Ka(x4 − x6) + Ca(x5 − x7) − 1]

+
1

mus
(f8 − mg) − z̈r

f7 =
R

Ix1
(Bx2 + x3) − µ0f8

f(λ)λ
x1

(
R2

I
+

Rx2

Mx2
1

)

f8 = mg − Kt(x6 − zr) − Ct(x7 − żr) .

Since the actual control input vb appears in (15),
we can choose our control law as

vb =
τz2

KbI
+

1
Kb

(z3 + α1) +
τ

Kb

(
I

m
µ0Rf1 − Bf2

+ Rf3 +
1 − λ0

mR
(If3 + CxIf4) + Ik2f5

)

− τ

Kb
k3z3 , (16)

where k3 is a positive design constant.

After the further investigation, a key point has
been found out that the normal force can be
adapted by following the change of x6. It implies
that the normal force can be adjusted to help the
braking performance if x6 is close to a desired
reference x6d, which is represented by

x6d = h(t) , (17)

where h(t) is the desired design function to be
chosen later. Then a new regulated variable z6

is selected in the following to stabilize the active
suspension system:

z6 = x6 − h(t) − κ(x4 +
ms

mus
x5 + x7) , (18)

where κ is a design constant to be chosen. Then,
we compute the derivative of z6 as

ż6 = x7 − ḣ − κ(x5 +
ms

mus
ẋ5 + ẋ7) . (19)

The state x7 is chosen as the virtual control vari-
able, and the corresponding error state variable is
defined as

z7 = x7 − α2 , (20)

for which we choose the stabilizing function

α2 =
1

A1

[
ḣ − κ

Kt

mus
h − A2x5 − κ2 Kt

mus
x4

− κ
Kt

mus
(z6 − zr) + κ

Ct

mus
żr − k6z6

]
, (21)

where

A1 = 1 + κ2 Kt

mus
+ κ

Ct

mus

A2 =−κ + κ2 Ktms

m2
us

,

and k6 is a positive design constant. Therefore,
(19) can be rewritten as follows:

ż6 = A1z7 − k6z6 . (22)

The derivative of the error state z7 is computed
as follows:

ż7 = (
A2

A1ms
− 1

mus
)u − Kt

mus
(x6 − zr) − 1

A1
ḧ

+ (
Ka

mus
− A2Ka

A1ms
)(x4 − x6) − κCt

A1mus
z̈r

+ (
Ca

mus
− A2C1

A1ms
)(x5 − x7) +

κ2Kt

A1mus
x5

− Ct

mus
(x7 − żr) +

κKt

A1mus
(ḣ − żr)

+ (
k6

A1
+

κKt

A1mus
)(A1z7 − k6z6) . (23)

Since the actual active suspension control input u
appears in (23), we can design the controller as

u = Ka(x4 − x6) + Ca(x5 − x7) − A1

A3
z6

+
1

A3

[
Kt

mus
(x6 − zr) +

Ct

mus
(x7 − żr)

+
ḧ

A1
− κKt

A1mus
ḣ − κ2Kt

A1mus
x5 − k7z7

− (
k6

A1
+

κKt

A1mus
)(A1z7 − k6z6)

]
, (24)

where

A3 =− 1
mus

+
A2

A1ms

A4 =
κKt + Ct

A3musms
.



Since there are five steps in our backstepping
design procedure, the zero dynamics of the system
is observed as follows:

ẋ4 = x5

ẋ5 = b1x4 + b2x5 + d ,
(25)

where

b1 =
κKt

A3musms
− κ2 A4Kt

A1mus

b2 =
κKt

A3m2
us

− κ2Kt

A1A3musms
− A2A4

A1

d = (
Kt

A3musms
− κ

A4Kt

A1mus
)h

+ (
A4

A1
− κKt

A1A3musms
)ḣ +

ḧ

A1A3ms
.

The forms of b1 and b2 look like variables, but they
are constants if an appropriate design constant κ
is chosen. Since d is a bounded signal from the
desired reference, if an appropriate value of κ is
selected to ensure b1 and b2 to be negative, then
the zero dynamics in (25) becomes stable.

After finishing the backstepping control design
procedure, the Lyapunov function candidate is
selected in the following for the analysis of system
stability:

V =
1
2
z2
1 +

1
2
z2
2 +

1
2
z2
3 +

1
2
z2
6 +

1
2
z2
7 . (26)

From (9), (12)-(16) and (22)-(24), the derivative
of (26) is computed as follows:

V̇ = z1ż1 + z2ż2 + z3ż3 + z6ż6 + z7żz7

= z1

(
−Fz

m
µ (λ) − Cx

m
z2
1

)

+ z2

[
−B

I
x2 +

FzR

I
µ(λ) − 1

I
(z3 + α1)

− 1 − λ0

R
(−Fz

m
µ(λ) − Cx

m
z2
1)

]

+ z3

[
−1

τ
x3 +

Kb

τ
vb − I

m
µ0Rf1 + Bf2

− Rf3 − 1 − λ0

mR
I(f3 + Cxf4) − Ik2f5

]

+ z6(A1z7 − k6z6)

+ z7

[
(− 1

mus
+

A2

A1ms
)u − Kt

mus
(x6 − zr)

+ (
Ka

mus
− A2Ka

A1ms
)(x4 − x6) − κCt

A1mus
z̈r

+ (
Ca

mus
− A2

A1

C1

ms
)(x5 − x7) +

κ2Kt

A1mus
x5

− Ct

mus
(x7 − żr) +

κKt

A1mus
(ḣ − żr)

+ (
k6

A1
+

κKt

A1mus
)(A1z7 − k6z6) − 1

A1
ḧ

]

= −
(

Cx

m
z2
1 +

Fz

m
µ0f(λ)λ0

)
z1

− k2z
2
2 − k3z

2
3 − k6z

2
6 − k7z

2
7 . (27)

Table 1. System parameter values of the
integrated anti-lock braking system.

Parameter Value Parameter Value

m 390 kg Kb 0.8
ms 350 kg µ0 0.9
mus 40 kg λ0 0.25
R 0.25 m τ 0.01 s
B 0.08 kgm2 Cx 0.856 kg/m
Ka 19960 N/m Ca 1050 Ns/m
Kt 175500 N/m Ct 1500 Ns/m

Table 2. Design constants used in the
integrated anti-lock braking system.

Parameter Value Parameter Value

k2 100 k3 100
k6 100 k7 100
κ 0.0001

Since f(λ) is always positive, λ0 is the optimal
slip ratio with 0 < λ0 ≤ 1, µ0 is the corre-
sponding peak friction value with µ0 > 0, and
z1 is the vehicle velocity which is always positive
during braking process, we can conclude that V̇ is
negative definite with the appropriate choices of
k2, k3, k6, k7 and κ. This result shows that the
error system (z1, z2, z3, z6, z7) is asymptotically
stable according to Lyapunov stability theorem.
In addition, the backstepping control design is
also to stabilize the zero dynamic system (x4, x5)
simultaneously. As a result, the controllers of the
anti-lock braking and active suspension systems
can keep the wheel slip ratio λ close to its optimal
value λ0, and then force the vehicle speed to
converge to zero at a shorter braking distance.

4. SIMULATION RESULTS

The system parameters of the anti-lock braking
model combined with active suspensions are given
in Table 1, and all the design constants are chosen
in Table 2. The road surface is corresponding
to dry asphalt. The maximum control torque
from the anti-lock braking system is assumed
to be 1500 Nm. The desired design function
h(t) in (17) is simply assumed to be a constant,
which is selected to be −0.005. In addition, the
initial velocity of the vehicle is 30 m/s and the
corresponding initial wheel angular velocity is
123.67 rad/s resulting in v̇(0) = 0.

Fig. 4 shows that the vehicle speed and wheel
speed during braking process with three differ-
ent braking control schemes. The diamond line
denotes the vehicle speed and the star line is
the wheel angular speed. The dotted-dashed line
shows that the system employs the maximum
constant braking torque and its wheel speed fast
reaches zero at 0.3 s, but its vehicle velocity stops
to zero around 6.3 s. It implies that the wheel is
completely locked at 0.3 s and the system must
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Fig. 4. The vehicle and wheel speeds with the use
of different braking schemes.

spend almost 6.3 s to stop the vehicle. The solid
line illustrates that the integrated plant combin-
ing anti-lock braking system with active suspen-
sion system can stop the car at 2.9 s and has
the most excellent performance compared to the
dotted-dashed line and dotted line, which rep-
resents the system using ABS only without the
assistance of active suspensions.

The braking distances with three different braking
designs are shown in Fig. 5. The dashed-dotted
line shows that the system with the maximum
braking torque has to spend almost 86 m to stop
the vehicle. The dotted line shows that the system
using only ABS must spend 47 m to stop the
car. Obviously, the solid line illustrates that the
integrated braking system combined with active
suspensions has the most excellent performance
and can stop the car around 43 m.

5. CONCLUDING REMARKS

In this paper, a nonlinear backstepping control de-
sign scheme has been developed for the control of
a quarter-car anti-lock braking system combined
with active suspensions. In addition, an algorithm
for integrating these two subsystems is proposed,
and two individual controllers have been designed
and coordinated with this integrated algorithm.
As a result, the integrated anti-lock braking sys-
tem with the assistance of active suspensions can
obtain excellent braking performance because of
reduction of braking time and distance.

In the further research, adaptive backstepping
control strategy should be considered and em-
ployed for the design of anti-lock braking systems
with dynamic uncertainties. In addition, a half-car
(even a full-car) system model would be another
interesting issue, since it would make the system
become more realizable. Hence, how to design a
more robust controller for further enhancing the
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Fig. 5. The required braking distances with the
use of different braking schemes.

performance of anti-lock braking systems is a new
challenge to be faced on in future works.

REFERENCES

Alleyne, A. (1997). Improved vehicle perfor-
mance using combined suspension and brak-
ing forces. Vehicle System Dynamics 27, 235–
265.

Alvarez, L., J. Yi, X. Claeys and R. Horowitz
(2003). Emergency braking control with an
observer-based dynamic tire/toad friction
model and wheel angular velocity measure-
ment. Vehicle System Dynamics 39, 81–97.

Drakunov, S.V., B. Ashrafi and A. Rosiglioni
(2000). Yaw control algorithm via sliding
mode control. Vol. 1. pp. 580–583. Chicago,
Illinois.

Drakunov, S.V., U. Ozguner, P. Dix and
B. Ashrafi (1995). ABS control using opti-
mum search via sliding modes. IEEE Trans-
actions on Control Systems Technology 3, 79–
85.

Khalil, H.K. (2002). Nonlinear Systems, 3rd ed..
Upper Saddle River, NJ: Prentice-Hall.

Kim, E.-S (1996). Nonlinear indirect adaptive
control of a quarter car active suspension.
pp. 61–66. Dearborn, MI.
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