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Abstract: At present, robotic manipulators are commonly used in manufacturing
industry. In many cases, their end-effectors are required to move from one place to
the other and follow some desired trajectories. This paper develops a nonlinear
backstepping control design scheme with velocity observers for the trajectory
tracking control of robotic manipulators. In fact, most of robot manipulator
controllers require position as well as velocity measurements to achieve their
control objectives, but a lot of robotic systems do not have the velocity measure-
ment devices. Therefore, a velocity observer is designed to estimate the unknown
angular velocity of robot manipulators, and then the nonlinear controller based on
backstepping design algorithm is developed for the control of robot manipulator
systems. The proposed nonlinear backstepping controller is not only to stabilize
the robot system, but also to drive the trajectory tracking errors to converge to
zero exponentially. Furthermore, some simulation results are given to illustrate
the excellent performance of the backstepping control design scheme applied to a
two-link robot manipulator. Copyright c© 2005 IFAC
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1. INTRODUCTION

In recent years, nonlinear and adaptive backstep-
ping (Khalil, 2002; Krstić et al., 1995) control
design schemes have been widely developed and
applied in various nonlinear systems, including
inverted pendulum systems (Tsai and Lin, 2003),
active suspensions (Lin and Huang, 2003), anti-
lock braking systems (Ting and Lin, 2004) and
so forth. Those nonlinear and adaptive controllers
could indeed achieve their desired control objec-
tives excellently. For example, in (Tsai and Lin,
2003), a nonlinear backstepping design scheme
was proposed to solve the problem of balancing a
360-degree inverted pendulum system by moving
the cart horizontally. Here, the major target of

this paper is to employ the backstepping con-
trol design methodology for the motion control of
robotic manipulator systems. The control goal is
to drive each link of a robot manipulator to track
its own desired trajectory.

A great number of researches have been done
for the trajectory tracking control of robot ma-
nipulators. Most of these existing controllers re-
quire the information of both position and ve-
locity measurements for each link of robot ma-
nipulators, but lots of robot manipulator systems
do not provide velocity measurements. Therefore,
some research results have been developed for
the link position tracking control without velocity
measurements. In (Nisosia and Tomei, 1990), a



velocity observer based on the angular position
measurements and the system dynamic model
was developed for robot manipulator control de-
sign. According to this paper, several different
controllers have been developed in (Calugi et
al., 2002; Eric and Lu, 1996; Lim et al., 1996). In
addition, a robust tracking control law (Berghuis
and Nijmeijer, 1991) was proposed with a linear
observer which is simpler than the other previous
observers.

In this paper, a nonlinear backstepping control
design scheme with a velocity observer is pro-
posed for the trajectory tracking control of a robot
manipulator which has exact model knowledge.
The exponential stability of the resulting closed-
loop system is demonstrated via Lyapunov sta-
bility theory with a useful lemma in (Wen and
Bayard, 1988). This lemma is essentially a local
stability theorem that establishes a region of con-
vergence. Furthermore, the proposed control de-
sign scheme is applied to a two-link robot manipu-
lator for comparative simulations. As a result, the
proposed nonlinear backstepping control design is
not only to stabilize the robot system, but also
to force the tracking errors to converge to zero
exponentially.

The remainders of this paper are organized as
follows. In Section 2, the dynamic model of a robot
manipulator is introduced with some important
properties of the system. The velocity observer
and the torque input controller are developed with
backstepping design schemes in Section 3. In Sec-
tion 4, the stability of the system is investigated
and analyzed via Lyapunov stability theorem and
the useful lemma shown in Appendix. The simula-
tion results are illustrated in Section 5, and some
concluding remarks are given in Section 6.

2. SYSTEM MODEL AND DYNAMICS

Derivation of the dynamic model of a robot ma-
nipulator plays an important role for analysis of
manipulator structures, design of control algo-
rithms, and simulation of motion. The dynamic
equations of motion of a manipulator are a set of
mathematical equations describing the relation-
ship between the joint actuator torques and the
motion of the structure. In this section, we will
concentrate on the formulation, characteristics,
and properties of the dynamic equations of robot
manipulations for our control purposes.

In general, the dynamic model of an n-link rigid-
body robot manipulator can be written in the
following matrix equation (Craig, 1988):

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ , (1)

where q is the n × 1 vector of generalized joint
coordinates, τ is the n × 1 vector of joint control

input torques, M(q) is the n × n positive definite
symmetric inertia matrix, G(q) is the n×1 vector
of gravity forces, C(q, q̇) is the n × n Coriolis-
centripetal matrix. From (1), the equation of
motion can be rewritten as

q̈ = M(q)−1 [τ − C(q, q̇)q̇ − G(q)] . (2)

In this system, it is assumed that only the mea-
surement of the position vector q is available. The
control algorithm will be designed based on some
very important properties of system model which
are given as follows:

Property 1: The inertia matrix M(q) is a sym-
metric positive definite matrix which verifies

mm‖x‖2 ≤ xT M(q)x ≤ mM‖x‖2, ∀x ∈ �n , (3)

where mm and mM denotes the strictly positive
minimum and maximum eigenvalues of M for all
configurations q.

Property 2: The matrix Ṁ(q)−2C(q, q̇) is skew-
symmetric, that is, for any x ∈ �n and x �= 0, we
have

xT
[
Ṁ(q) − 2C(q, q̇)

]
x = 0 . (4)

Property 3: For x, y ∈ �n, we have

C(q, x)y = C(q, y)x . (5)

Property 4: The matrix C(q, q̇) satisfies

‖C(q, q̇)‖ ≤ cM‖q̇‖ , (6)

for some bounded constant cM > 0.

3. BACKSTEPPING DESIGN WITH
VELOCITY OBSERVER

In this section, it is assumed that only the mea-
surement of position vector q is available. A
nonlinear backstepping control law with a linear
velocity observer is proposed for the trajectory
tracking control of robot manipulators. Now we
employ backstepping schemes to design the non-
linear controller and observer. The backstepping
design procedure consists of two steps:
STEP 1: The regulated variable is selected as

z1 = q − qd . (7)

The derivative of z1 is calculated as

ż1 = q̇ − q̇d ≡ x , (8)

and x is used as the first virtual control variable.
We choose the following stabilizing function as

α1 = −Λ1z1 , (9)



where Λ1 is an n×n positive definite matrix with
λmI ≤ Λ1 ≤ λM I, where λm and λM are the
minimum and maximum of eigenvalues of Λ1. The
corresponding error state variable is defined as

z2 = x − α1 = x + Λ1z1 = q̇ − q̇r , (10)

where q̇r is defined as

q̇r = q̇d − Λ1z1 . (11)

Therefore, the resulting error equation (8) be-
comes

ż1 = x = z2 + α1 = −Λ1z1 + z2 . (12)

STEP 2: The derivative of z2 is computed as

ż2 = ẋ − α̇1 = q̈ − q̈d + Λ1ż1

= M−1(q) [τ − C(q, q̇)q̇ − G(q)] − q̈d

−Λ2
1z1 + Λ1z2 . (13)

Finally, according to the Lyapunov stability anal-
ysis, the control input is designed as

τ = M(q)q̈d + C(q, ˙̂q)q̇r − z1

−K1( ˙̂q − q̇r) + G(q) , (14)

where ˙̂q is the estimated velocity vector with

˙̂q = q̇d + Ld(q − q̂) , (15)

and K1 and Ld are positive definite matrices with
kmI ≤ K1 ≤ kMI and lmI ≤ Ld ≤ lMI, and
km, kM , lm, lM are positive.

4. STABILITY ANALYSIS

Now, consider the stability analysis of the result-
ing closed-loop system with the following Lya-
punov function candidate:

V =
1
2
zT
1 z1 +

1
2
zT
2 M(q)z2 +

1
2

˙̃q
T
M(q) ˙̃q , (16)

where ˙̃q = q̇ − ˙̂q is the velocity estimation error
vector. From (8)-(13), the derivative of V is com-
puted as

V̇ = zT
1 ż1 + zT

2 M(q)ż2 +
1
2
zT
2 Ṁ(q)z2

+˙̃q
T
M(q)¨̃q +

1
2

˙̃q
T
Ṁ(q) ˙̃q

=−zT
1 Λ1z1 + zT

1 z2 +
1
2
zT
2 Ṁ(q)z2

+˙̃q
T
M(q)

(
q̈ − ¨̂q

)
+

1
2

˙̃q
T
Ṁ(q) ˙̃q

+zT
2 [τ − C(q, q̇)q̇ − G(q)]

+zT
2

[−M(q)
(
q̈d + Λ2

1z1 − Λ1z2

)]
. (17)

From (4) in Property 2, we can obtain

V̇ = −zT
1 Λ1z1 + zT

1 z2

+zT
2 [τ − C(q, q̇)q̇ − G(q) + C(q, , q̇)z2]

+zT
2

[−M(q)
(
q̈d + Λ2

1z1 − Λ1z2

)]
+˙̃q

T
[
τ − C(q, q̇)q̇ − G(q) + C(q, q̇) ˙̃q − M(q)¨̂q

]
= −zT

1 Λ1z1 + zT
1 z2 + zT

2 [τ − C(q, q̇)q̇r − G(q)]

+zT
2

[−M(q)
(
q̈d + Λ2

1z1 − Λ1z2

)]
+˙̃q

T
[
τ − C(q, q̇) ˙̂q − G(q) − M(q)¨̂q

]
. (18)

Now, from the designed controller (14) and ob-
server (15), we have

V̇ =−zT
1 Λ1z1 − zT

2 M(q)Λ2
1z1 − zT

2 C(q, q̇r) ˙̃q

−zT
2 (K1 − M(q)Λ1) z2 − ˙̃q

T
K1z1

− ˙̃q
T
C(q, ˙̂q)z2 + ˙̃q

T
(K1 − M(q)Ld) ˙̃q. (19)

Note that from the (5) in Property 3, we have

C(q, ˙̂q)q̇r − C(q, q̇)q̇r

= C(q, q̇r) ˙̂q − C(q, q̇r)q̇ = −C(q, q̇r) ˙̃q, (20)

and

C(q, ˙̂q)q̇r − C(q, q̇) ˙̂q

= C(q, ˙̂q)q̇r − C(q, ˙̂q)q̇ = −C(q, ˙̂q)z2. (21)

By applying Property 1 and Property 4 in Section
2, (19) becomes

V̇ ≤−λm‖z1‖2 − (km − mMλM )‖z2‖2

+mMλ2
M‖z1‖‖z2‖ − (mmlm − kM )‖ ˙̃q‖2

+‖ ˙̃q‖‖z1‖ + cM‖z2‖‖ ˙̃q‖
(
‖q̇r‖ + ‖ ˙̂q‖

)
.(22)

In order to show that V̇ can be negative definite,
we employ the following analysis and investigation
to verify this results. First of all, we define η =
mMλ2

M , and obtain

η‖z1‖‖z2‖ ≤ 1
2
‖z1‖2 +

η2

2
‖z2‖2, (23)

and

‖z1‖‖ ˙̃q‖ ≤ 1
2
‖z1‖2 +

1
2
‖ ˙̃q‖2. (24)

Since the desired velocity q̇d is assumed to be
bounded, we have

‖q̇d‖ ≤ vM , (25)

where vM is a positive constant. Then, applying
q̇r = q̇d − Λ1z1 and ˙̂q = z2 + q̇r − ˙̃q, we have

cM‖z2‖‖ ˙̃q‖
(
‖q̇r‖ + ‖ ˙̂q‖

)
≤ cM‖z2‖‖ ˙̃q‖ (2‖q̇d‖ + 2λM‖z1‖ + ‖z2‖ + ‖ ˙̃q‖)



≤ cM

2
(‖z2‖2 + ‖ ˙̃q‖2

)
(2‖q̇d‖ + 2λM‖z1‖

+‖z2‖ + ‖ ˙̃q‖). (26)

Therefore, (22) becomes

V̇ ≤ −β1‖z1‖2 (27)

+
(−β2 + γ21‖z1‖ + γ22‖z2‖ + γ23‖ ˙̃q‖) ‖z2‖2

+
(−β3 + γ31‖z1‖ + γ32‖z2‖ + γ33‖ ˙̃q‖) ‖ ˙̃q‖2,

where

β1 = λm − 1

β2 = km − mMλM − η2

2
− cMvM

β3 = mmlm − kM − 1
2
− cMvM

γ21 = γ31 = cMλM

γ22 = γ32 =
cM

2
γ23 = γ33 =

cM

2
.

Furthermore, (28) can be rewritten as follows:

V̇ ≤−β1‖z1‖2

−
3∑

i=2

⎛
⎝βi −

3∑
j=1

γij‖χj‖
⎞
⎠ ‖χi‖. (28)

From the Lemma introduced in Appendix, if we
select the following conditions:

• λm > 1,

• km > mMλM +
η2

2
+ cMvM +

3∑
j=1

(
V0

ξj

) 1
2

,

• mmlm > kM +
1
2

+ cMvM +
3∑

j=1

(
V0

ξj

) 1
2

,

where

ξ1 =
1
2
km, ξ2 =

1
2
mm, ξ3 =

1
2
mm ,

and
V0 ≡ V

(
z1(0), z2(0), ˙̃q(0)

)
.

The following inequality holds

V̇ ≤−β1‖z1‖2 − λ2‖z2‖2 − λ3‖ ˙̃q‖2 < 0

∀λi ∈
⎡
⎣0, βi −

3∑
j=1

γij

(
V0

ξj

) 1
2

⎤
⎦ , (i = 2, 3). (29)

As a result, we can conclude that V̇ is negative
definite. From (16) and (29), it implies that the
resulting closed-loop system is exponentially sta-
ble according to Lyapunov stability theorem. In
other words, not only the stability of the system
can be guaranteed, but also that the trajectory
tracking error and angular velocity estimation

Table 1. System parameter values of the
two-link robot manipulator model.

Parameter Value Parameter Value

m1 5kg m2 5kg
l1 0.5m l2 0.5m
lc1 0.25m lc2 0.25m
I1 0.104 kg.m2 I2 0.104 kg.m2

error converge to zero finally. It can be shown
that the proposed control scheme (14) guarantees
exponential stability for the tracking control of
robot manipulator with only position measure-
ment. The velocity observer (15) can estimate the
unknown angular velocity of each joint of robot
manipulator.

5. SIMULATION RESULTS

In our simulations, a two-link robot manipulator
is considered with the masses m1 and m2, the
lengths l1 and l2, the angles q1 and q2, the mo-
ments of inertia I1 and I2, and the control torques
τ1 and τ2. In addition, lc1 and lc2 are the distances
from the center of mass to the joint axes. The
dynamic model of a two-link robot manipulator
can be written as follows:[

τ1

τ2

]
=
[

M1 M2

M3 M4

] [
q̈1

q̈2

]
+
[

C1 C2

C3 C4

] [
q̇1

q̇2

]
+
[

G1

G2

]
,

where

M1 = m1l
2
c1 + I1 + m2(l21 + l2c2 + 2l1lc2 cos q2) + I2

M2 = M3 = m2l1lc2 cos q2 + m2l
2
c2 + I2

M4 = m2l
2
c2 + I2

C1 = −m2l1lc2 sin q2q̇2

C2 = −m2l1lc2 sin q2(q̇1 + q̇2)

C3 = m2l1lc2 sin q2q̇1

C4 = 0

G1 = m1glc1 cos q1 + m2g (l1 cos q1 + lc2 cos(q1 + q2))

G2 = m2glc2 cos(q1 + q2).

The system parameters of this two-link of robot
manipulator model are selected as Table 1. In
addition, the reference trajectories are given as
the following two cases:

• Case 1: qd1 = qd2 = 1.25 − 1.25e−t, and
• Case 2: qd1 = qd2 = sin t.

The design constants for the nonlinear controller
(14) and observer (15) are selected as

Λ1 =
[

2 0
0 2

]
, K1 =

[
30 0
0 30

]
, Ld =

[
30 0
0 30

]
.

Figs. 1 and 2 show the simulation results with
the reference trajectory in Case 1, and Figs. 3
and 4 are the simulation results with the reference
trajectory in Case 2, which contains periodic



trajectories. The plots of the trajectories of joint
1 and joint 2 are shown in Figs. 1 and 3, where
the desired trajectory of each joint is shown with
dotted line, and the actual position of each joint
is plotted with solid line. The velocity estimation
errors of joint 1 and joint 2 are shown in Figs. 2
and 4 with different cases of reference signals.

All of these simulation results illustrate excellent
performance of the proposed nonlinear controller
with the given observer. The simulation plots
shown in Figs. 1 and 3 indeed verify that our
nonlinear backstepping design scheme can guaran-
tee each joint of the robotic manipulator to follow
its desired trajectory exponentially. Figs. 2 and 4
show the velocity estimation error between the
actual system velocity and the estimated velocity.
From these figures, we can find out that all the
velocity estimation errors converge to zero expo-
nentially. It implies that the estimated velocity of
each joint converges to its actual velocity rapidly.

6. CONCLUDING REMARKS

In this paper, a nonlinear backstepping design
method has been proposed for the control of robot
manipulators with velocity observers to achieve
the desired trajectory tracking control objectives.
Hence, the movement of robot manipulators can
be controlled with only position measurements.
The resulting closed-loop system is exponentially
stable, that is, the trajectory tracking errors and
velocity estimation errors converge to zero expo-
nentially according to Lyapunov stability theo-
rem. With this backstepping design approach, the
simulation results of a two-link robot manipula-
tor are seemed to be excellent for the trajectory
tracking control with velocity estimation.

Besides the angular velocity observation, if system
dynamic uncertainties and load disturbances of
the robot manipulator are existent, then their
estimations must be considered in order to en-
hance the system performance. Therefore, adap-
tive backstepping control scheme should be ap-
plied for the tracking control design of robotic
manipulator systems under these circumstances in
the further research.

APPENDIX

An important stability lemma mentioned below
plays a major role for the system stability analysis
in this paper. This Lemma is a local stability
theorem that establishes a region of convergence.
It will be shown that if the initial state is within
some ball of radius β, then the state never escape
the β-ball.

Lemma (Wen and Bayard, 1988): Consider a
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Fig. 1. The trajectories of the two-link robot
manipulator (Case 1): desired trajectory (· · ·
dotted line) vs. actual position (— solid line).
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Fig. 2. The velocity estimation error of the two-
link robot manipulator (Case 1)

dynamic system ẋi = fi(xi, . . . , xN , t), xi ∈ Rn,
t ≥ 0, i = 1, . . . , N , where fi is locally Lipschitz
with respect to x1, . . . , xN , uniformly in t on
bounded intervals and continuous in t for t ≥ 0.
Suppose that a function V is given such that

V (x1, . . . , xm) =
m∑

i,j=1

xT
i Pijxj ,

and for i = 1, . . . , m, there exists ξi > 0 such that
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Fig. 3. The trajectories of the two-link robot
manipulator (Case 2): desired trajectory (· · ·
dotted line) vs. actual position (— solid line).
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Fig. 4. The velocity estimation error of the two-
link robot manipulator (Case 2)

ξi‖xi‖2 ≤ V (x1, . . . , xm)

V̇ (x1, . . . , xm)≤−
∑
i∈I1

(
βi −

∑
i∈I2

γij‖xj‖
)
‖xi‖2 ,

where βi > 0, γij > 0 and I2 ⊂ I1 ⊂ {1, . . . , m}.
Let V0 ≡ V (x1(0), . . . , xm(0)). If for all i ∈ I1,

βi >
∑
j∈I2

γij

(
V0

ξj

) 1
2

,

then ∀λi ∈
[
0, βi −

∑
j∈I2

γij

(
V0
ξj

) 1
2
]
, the follow-

ing inequality holds

V̇ (x1, . . . , xm) ≤ −
∑
i∈I1

λi‖xi‖2 , ∀t ≥ 0 .

It implies that the dynamic system is locally ex-
ponentially stable according to Lyapunov stability
theorem.
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