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Abstract: This paper develops a technique of robust approximate tracking and regulation 
for nonlinear systems that do not satisfy the restrictive regularity assumptions required by 
exact feedback linearization approach. This technique achieves closed-loop stability and 
reasonable performance in the presence of time-varying parametric uncertainties or 
unknown nonlinearities. Regarding the uncertainties, though the knowledge of bounds 
and satisfaction of matching condition are assumed, no linear dependence on the system 
dynamics or conic continuity on the growth of system nonlinearities are required. The 
design is developed for the input tracking and state regulation problems separately. 
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1. INTRODUCTION 
 

Different efforts have been devoted to substituting 
much milder assumptions such as existence of a 
robust relative degree, slightly minimum phase 
property, high-order approximate involutivity, and 
local Lipschitz condition, in order to loose stringent 
regularity conditions that are required by nonlinear 
geometric approaches (Hauser, et al., 1992; Banaszuk 
and Hauser, 1993; Ghanadan, 1994). Several attempts 
have been also made to robustify the feedback 
linearization approach against modeling errors and 
system uncertainties (Sastry and Isidori, 1989; Pomet 
and Praly, 1992; Kanellakopoulos, et al., 1991). 
 
The scheme introduced by Ghanadan and 
Blankenship (1996) is an attempt to resolve both of 
the drawbacks of exact feedback linearization 
method. It approximates a nonlinear system to the 
highest degree possible, and then applies an indirect 
adaptive scheme to eliminate parametric 
uncertainties. Despite the advantages of this 
technique, it does not consider unknown nonlinear 
functions and deals with the ideal case of parametric 

uncertainties only. Nonlinearities of the system are 
assumed known and unknown parameters are 
assumed to appear linearly with respect to these 
known functions. Egardt (1979) stated that such 
adaptive schemes may result in growing the 
parametric error and ultimately destabilizing the 
system when bounded disturbances are present. 
Rohrs, et al. (1985) also explained that other 
perturbations such as time-varying parameters and 
un-modeled dynamics may result in instability. 
Zhang and Bitmead (1990) clarified another 
drawback of these methods that poor initial parameter 
estimates may result in poor transient behavior. 
 
In this paper, a robust approximate controller is 
designed on a parallel with the adaptive one 
introduced by Ghanadan and Blankenship (1996), 
based on a continuous approximation of the min-max 
control law. It is assumed that only the nominal 
dynamic equations are approximately feedback 
linearizable. Comparing to the earlier adaptive one, 
the technique of this paper removes the linear 
dependence of unknown parameters. It can attenuate 
the effect of modeling errors coming from both 

 



 

parametric uncertainties and unknown nonlinearities. 
It can also guarantee a reasonable transient 
performance. As well, the approximate linearizability 
is only required for the nominal system, not for the 
true system affected by unknown uncertainties in a 
family of operating envelopes. 

 
 

2. SYSTEM SPECIFICATION 
 

Consider a SISO nonlinear system as 
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Suppose that only a nominal constant value Nθ  for 
the uncertainty vector  is known and 
perturbations about Nθ  are represented by 

. The model used for design and 
stability analysis is an evaluation of system (1) at 

, so-called the nominal system, as 
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It is assumed that the nonlinear functions  and f g  
are analytic in  about Nθ . Therefore,  can be 
expanded using a Taylor series in  about  as 
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where  denotes terms of  whose orders are 
higher than or equal to 2. With the exception of 

, all the terms in (3) are known, because they 
are evaluated about the nominal vector Nθ . Note that 
no assumption has been made regarding the linearity 
or nonlinearity of uncertainties. For a special case, 
where the functions and 
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f g  can be parameterized 
linearly in , expansion (3) would be exact to the 
first order in .  
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Assumption 1 (Robust Relative Degree): The nominal 
system (2) has a robust relative degree of γ  on 

, a family of operating envelopes about the 
equilibrium , i.e.,  
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where  is a ball of radius σ  centered at the origin 
and 

σB
γr0 <<  is the relative degree of (2) outside 

 but not necessarily well defined at every 
point inside  (see Hauser, et al. (1992) for 
details and definitions).  
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The robust relative degree of (2) is equal to the 
relative degree of its Jacobian linearization as a linear 
system (Hauser, et al., 1992). Therefore, if the 
nominal system (2) does not have a well defined 
relative degree but it is linearly controllable, it can 
still be approximated with an input-output linearized 
one. Moreover, the robust relative degree of (2) is 
invariant under a state dependent change of control 
coordinates as =u +),( Nθxα vβ  ),( Nθx . 

(1) 

 
Functions 

N
  that 

approximate the output and its derivatives are 
independent in a neighborhood of the equilibrium  
(Hauser, et al., 1992). With the  independent 
functions  in hand, the nonlinear change of 
coordinates can, by the Frobenius theorem, be 
completed with functions   such 
that 

N i . Therefore, the state 
coordinate transformation  is 
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In the new coordinates  the nominal system (2) 
can approximately be linearized from the new input 
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=),( Nθxβ )( 1 1γLL xfg h− , where  and f g  are 

evaluated about the nominal vector Nθ . Here, the 
term  denotes a uniformly higher order 
function of the form . The new 
approximately linearized system can be represented 
by a compact form as 
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Note that the form (6) is a perturbation of the normal 
form of exact feedback linearization when 

0),(N =uxψ .  
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Assumption 2 (Slightly Non-minimum Phase): The 
zero dynamics of approximate nominal system are 
locally exponentially stable and  is Lipschitz 
continuous function of  and  on .  

q
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The above mentioned dynamics, i.e. , are in 
fact the dynamics of true nominal system (2), or 
equivalently transformed system (6), when the output 
and its derivatives are approximately constrained to 
zero by the input. The stability of these dynamics 
may be satisfied by slightly non-minimum phase 
nominal systems. The nominal system (2) is said 
slightly non-minimum phase if its zero dynamics are 
not stable but the zero dynamics of its approximate 
input-output model, obtained by neglecting  in 
(6), are stable (Pomet and Praly, 1992). 
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Assumption 3 (Matching Condition): For M∈∀x  
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Loosely speaking, the matching condition implies 
that the input and uncertainties have a same reachable 
part of the stable space.  

 
 

3. ROBUST INPUT TRACKING 
 

Consider the nominal system (2) as the known 
compartment of the uncertain system (1). It is 
supposed to be approximately feedback linearizable, 
in the form of (6), by a nonlinear change of 
coordinates (4) and a choice of linearizing control (5). 
Applying the transformation (4) to the expanded 
model (3), subject to the state feedback (5), yields 
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The uncertain terms of (7) may be rewritten as 
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Under the matching condition as in Assumption 3, it 
is easy to show the validity of  
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for   , 2 , 1 K=i . According to
N

L 0)(),( =xxg iηθ , the 
above expression implies that all terms on the 
right-hand side of (8) become zero except for the 
first. It means that the internal dynamics of 
input-output model under the matching condition stay 
independence from the uncertainties. Therefore, the 
expanded and transformed form of the true system 
(1), specified by (7) and (8), may be represented in a 
compact form as 
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the matching condition as in Assumption 3 and 
considering the robust relative degree defined by 
Assumption 1, it is clear that all nonlinear functions 
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Consider Rvvv += ˆ , where v  assigns the poles of the 
approximate input-output model of nominal system to 
the proper places, and Rv  is an additional control 
term to eliminate the effect of uncertainties. The 
approximate tracking of desired trajectory  is 
achieved by 
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an error vector with  d . 

 is a constant row vector chosen such that 
 is a strictly positive real function. 
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with Rvvv += ˆ  in (9) and according to ρv ≤R , the 
triangle inequality gives 
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It is important to note in the above expression that 
everything on the right-hand side is known and easily 
determinable, once the deviation range of  is 
specified.  
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Assumption 4 (Reference Signal): The desired 
trajectory  and its first  derivatives are 
bounded, i.e., 
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Theorem 1 (Robust Approximate Tracking): Consider 
the uncertain nonlinear system (1) with the nonlinear 
functions  and f g  satisfying the matching 
condition as in Assumption 3. Suppose that the 
nominal system (3) has a robust relative degree as in 
Assumption 1 and is slightly non-minimum phase as 
in Assumption 2. Then for  sufficiently small and 
for the desired trajectories satisfying Assumption 4, 
the control law (5), subject to  with (11) 
and (12), yields a closed-loop system that its states 
are bounded and its input tracking error converges to 
a ball of order . 
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for some positive constants , ,  and . 
Since  is a local diffeomorphic transformation 
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where cρ2ρ1 = . Neglecting the strictly negative 
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Thus V  whenever 0),( <ηe& e  or η  is enough large. 
It implies that e  and η  are bounded and hence x  
and  are bounded too. Using the continuity of R  
and , it is seen that (13) is an exponentially stable 
linear system with stable internal dynamics, under an 

 perturbation 

u v
∆

orderε − ψ . Therefore e  converges to 
a ball of order ε , i.e. 

1
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k  and the proof is complete.                                     ■ 
 
Remark 1: Reducing ρ  will reduce the convergence 
ball of tracking error. For this goal, a way is to 
consider higher order terms of δ  with , e.g. 
considering second order terms of δ  yields 
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This, however, increases the on-line computation of 
. Another way is to add a constant value to 
. But this value makes the control effort be 

extra large. Therefore, choosing the figure of  
will be a compromise among several goals, i.e. 
minimizing the tracking error, shortening the on-line 
computation and reducing the control effort.  
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3. ROBUST STATE REGULATION 
 

In the state regulation problem, the attempting is 
approximately linearize the nonlinear system to the 
highest order possible and then design a controller 
such that the closed-loop system is asymptotically 
stable. In this case, the robust relative degree is equal 
to , i.e. the approximate system has no zero 
dynamics but the true system may be non-minimum 
phase. 

n

Consider the nonlinear system (1) with no output 
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Then, Krener (1984) stated that there exists a local 
diffeomorphic state transformation , ),( NθxTz =

),( Nθ0T 0=  and a nonlinear feedback control law 
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where the scalar function  with λ  is a 
solution of the following partial differential 
equations, 
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where  and f g  are evaluated about the nominal 
vector N . It is easy to show that the above partial 
differential equations are equivalent to the d-th order 
approximate linearization conditions, given by 
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When the matching condition is satisfied as in 
Assumption 3, applying the same transformation 

N  to the expanded model (3), subject to the 
same control law u  with v , yields 
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where  is a stable matrix,  is a 
row vector that assigns the poles of nominal linear 
system  to the proper places, and 
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where  is a positive function and  is a 
constant row vector chosen such that  is 
a strictly positive real function. Assume that 
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λρ ≥+ ρ , where ρ  is a constant sufficiently small 
and ρ  is specified by 
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Theorem 2 (Robust Regulation): Consider the 
uncertain nonlinear system (18) satisfying the 
matching condition as in Assumption 3. Suppose that 
the nominal system (19) is approximately linearizable 
to order  on . Then for  sufficiently small, 
the equilibrium  of the true system (18) is 
exponentially stable. 

d )(Bε 0 ε
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Proof: Consider a Lyapunov function as =)(zV  

 with , such that ω1T κ2 −+zz P 0PP >= T +cPA  
, . The derivative of  

along the solution trajectories of (20) is 
0QPA =+T

c
TcPb = )(zV
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Replacing (21) and adopting inequality manipulations 
similar to those in the proof of Theorem 1, give 

1dT2
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The bounds can be obtained as  

zx xl≤  
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Thus 2d
sm )λ( z⋅+−≤ εV l& , . Hence V  

is a negative definite for  sufficiently small and 
consequently, (20) is exponentially stable. Since 

 is a local diffeomorphic transformation on 
 with , the true system (18) is also 

exponentially stable and the proof is complete.        ■ 
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4. CONCLUSION 
 

An approach was presented for control of a class of 
nonlinear systems via approximate feedback 
linearization. Its principal advantages were that the 
time-varying uncertainties in the system were 
possible and the linear parameterization was not 
necessary. Moreover, the (approximate) feedback 
linearizability was required only for the nominal 
system not for the whole family of uncertain systems. 
The nominal system could be with weakly relative 
degree, slightly non-minimum phase or 
non-involutive. The output approximate tracking and 
the state regulation problems were solved if certain 
assumptions were satisfied. The scheme can be 
extended to MIMO nonlinear systems too.  
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