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Abstract: In this work, we study the optimality principles in the heat shock
system, a cellular response that refers to the mechanism by which organisms
react to a sudden increase in the ambient temperature. The consequence of such
a temperature increase at the cellular level is the unfolding of cell proteins,
which threatens the life of the cell. This increase in damaged proteins is usually
counteracted by a simultaneous increase in the level of the so called heat shock
proteins that are necessary for protein refolding. Their production, however, is
metabolically costly and the benefits should be constantly balanced with the cost.
Building on a heat shock model we have developed in previous work (El-Samad et
al., 2005), we formulate and solve a multi-objective optimization problem where
both the cost of producing and maintaining HSPs and the cost of unfolded proteins
are considered as optimization criteria. Copyright c©2005 IFAC
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1. INTRODUCTION

Stress-inducing agents, including heat, have a
deleterious effect on cellular function as they usu-
ally increase the level of misfolded proteins in
the cell. Misfolded proteins loose most of their
biological activities and cause failures in the cel-
lular networks where they operate. At the molec-
ular level, the cellular response to stress is rep-
resented by the synthesis of heat shock proteins
(HSPs), of which molecular chaperones and pro-
teases represent two well characterized families.
Molecular chaperones function in protein fold-
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ing, translocation, and refolding, while proteases
ensure that damaged proteins are degraded ef-
ficiently. In order to achieve basic heat distur-
bance rejection, cells need to sense the temper-
ature and counteract its effect by increasing the
production of chaperones and proteases. Indeed, a
simple and operational heat shock system would
simply consist of a temperature sensor and tran-
scriptional/translational apparatus that responds
appropriately to temperature changes. This open
loop design would, however, result in a fragile and
metabolically inefficient system that will quickly
be at a disadvantage in the noisy environment of
the cell. As a consequence, most organisms have
evolved complex heat shock systems that involve
intricate feedback and feedforward mechanisms.

In previous work, we have developed a detailed
mechanistic model describing the dynamics of the



heat shock response in the bacterium E. coli (El-
Samad et al., 2005). We used this model to pro-
vide valuable insight into the system, explain-
ing dynamic phenomena exhibited by wild type
and mutant heat shock responses, corroborating
experimental data and guiding novel biological
experiments. We further demonstrated, through
the careful control analysis of the model, sev-
eral design principles that appear to have shaped
the feedback structure of the heat shock system.
Specifically, we itemized the roles of the various
feedback strategies and demonstrated their ne-
cessity in achieving performance objectives such
as efficiency, robustness, stability, good transient
response, and noise rejection. In this work, and
in addition to these important characteristics, we
study the principles of optimality in the heat
shock system. We specifically assess the metabolic
cost imposed on the cell by the requirement of
achieving an acceptable level of folded proteins.
The motivation for addressing this problem is as
follows. Since the objective of the heat shock re-
sponse is to refold unfolded proteins, a first glance
at the heat shock response system suggests that
overproducing HSPs in anticipation of heat is the
best strategy. This would be the case when the
control effort in the system, i.e. the chaperones,
is cheap and unconstrained. This is certainly not
true for the heat shock system where the pro-
duction of HSPs’ necessitates the use of the cell’s
limited resources. It is therefore apparent that an
excess of HSPs can be expensive. Low levels of
chaperones and unfolded proteins in the cell are
however two mutually conflicting objectives. If the
objective is to achieve simultaneous minimization
of both costs, the solution would necessarily de-
pend on how important is one objective versus
the other. To tackle this issue in this work, we
formulate an optimization problem, and generate
a Pareto optimal curve which gives the optimal
cost associated with these two objectives as their
relative important is varied. We then investigate
the optimality of the heat shock response by mea-
suring its distance from this optimal curve.

The paper is organized as follows. In the next
section, we give a detailed account of the molec-
ular components in the heat shock system. We
then briefly describe the type of equations which
are used to model the dynamics of the system.
In the fourth section, we provide a brief overview
of Pareto optimality, and formulate our optimiza-
tion problem in that context. We subsequently
describe the methods used to numerically tackle
the problem, and give its solution. We end with
some general conclusions, and a synopsis of our
future work.

2. THE BIOLOGY OF HEAT SHOCK

In E. coli, the heat shock (HS) response is im-
plemented through an intricate architecture of
feedback loops centered around the σ- factor that
regulates the transcription of the HS proteins
under normal and stress conditions. The enzyme
RNA polymerase (RNAP) bound to this regula-
tory sigma factor, σ32, recognizes the HS gene
promoters and transcribes specific HS genes. The
HS genes encode predominantly molecular chap-
erones (DnaK, DnaJ, GroEL, GrpE, etc.) that are
involved in refolding denatured proteins and pro-
teases (Lon, FtsH, etc.) that function to degrade
unfolded proteins. At physiological temperatures
(30◦C to 37◦C), there is very little σ32 present
and hence little transcription of the HS genes.
When bacteria are exposed to high temperatures,
σ32 first rapidly accumulates, allowing increased
transcription of the HS genes and then declines
to a new steady state level characteristic of the
new growth temperature. There are two mech-
anisms by which σ32 levels are increased when
the temperature is raised. First, the translation
rate of the rpoH mRNA (encoding σ32) increases
immediately, resulting in a fast 10-fold increase in
the concentration of σ32 (Straus et al., 1989). This
mechanism implements what we refer to as the
feedforward control loop. Second, during steady
state growth, σ32 is rapidly degraded (t1/2 = 1
minute), but is stabilized for the first five minutes
after temperature upshift, so that its concentra-
tion rapidly increases. In vivo evidence is con-
sistent with the following titration model for the
HS response. DnaK and its cochaperone DnaJ are
required for the rapid degradation of σ32 by the
HS protease FtsH. Raising the temperature pro-
duces an increase in the cellular levels of unfolded
proteins that then titrate DnaK/J away from σ32,
allowing it to bind to RNA polymerase (resulting
in increased transcription) and stabilizing it in the
process. Together, increased translation and sta-
bilization lead to a transient 15-20 fold increase in
the amount of σ32 at the peak of the HS response.
The accumulation of high levels of HS proteins
leads to the efficient refolding of the denatured
proteins, thereby decreasing the pool of unfolded
protein and freeing up DnaK/J to sequester this
protein from RNA polymerase. This implements
what is referred to as a sequestration feedback loop.
Furthermore, this sequestration itself promotes
the degradation of σ32 and results in feedback
regulated degradation, mainly by the protease
FtsH. We refer to this as the FtsH degradation
feedback loop. The overall result is a decrease in
the concentration of σ32 to a new steady state
concentration that is dictated by the balance be-
tween the temperature-dependent translation of
the rpoH mRNA and the level of σ32 activity



modulated by the hsp chaperones and proteases
acting in a negative feedback fashion.

3. A MODEL OF THE HEAT SHOCK
SYSTEM

The mathematical model that we proposed in
(El-Samad et al., 2005) to describe the dynam-
ics of the heat shock response uses mass-action
first order kinetics to describe both the synthesis
of new proteins (σ factors, chaperones, and pro-
teases), and the association/dissociation activity
of molecules as described in the previous section.
This modelling approach produces a set of ordi-
nary differential equations. Upon simulation, the
equations exhibited numerical stiffness. Usually,
this behavior is due to the interaction of some
fast and slow dynamics and is a manifestation
of rate constants different by several orders of
magnitude. It is a common practice, corroborated
by experimental data, to assume that the bind-
ing rates (association and dissociation) between
proteins or between proteins and specific DNA
promoters are fast compared to the rate of syn-
thesis and degradation of mRNAs and proteins.
Therefore, we assumed that the binding dynamics
reach their steady-state very fast compared to
other reactions in the system. We also used mass-
balance equations to relate the total quantity of
a species in the system to its free concentration
and the concentration of the different compounds
where it appears. The resulting model was a set
of Differential Algebraic Equations (DAEs), which
are of the form

Ẋ(t) = F (X,Y, θ; t) (1)

0 = G(X, Y, θ; t) (2)

where X is a 11-dimensional vector whose ele-
ments are the differential variables, Y is a 20-
dimensional vector whose elements are algebraic
variables, and θ is a 38-dimensional vector whose
elements are the model parameters. This form is
known as a semi-explicit DAE, with (2) being the
constraint equation. If we differentiate (2) with
respect to time, we get the following

0 = GX(X,Y, θ; t)Ẋ + GY (X, Y, θ; t)Ẏ

+Gt(X, Y, θ; t).

If GY (X,Y, θ; t) = ∂G(X,Y,θ;t)
∂Y is nonsingular,

the system is an implicit ODE. Therefore, the
DAE system is of index one (Ascher and Pet-
zold, 1998) and is solvable by Backward Differ-
entiation Formulas as implemented in specialized
software packages such as DASSL (Petzold, 1983).
This is exactly the case of the heat shock response
model whose equations and parameter values are
given in (El-Samad et al., 2005).

4. PARETO OPTIMALITY IN THE HEAT
SHOCK RESPONSE

We are now in position to introduce the concepts
of Pareto optimality, and formulate the optimiza-
tion problem relevant to the heat shock system.

4.1 Multi-Objective or Pareto Optimality

Suppose that in a general setting, we are inter-
ested in solving the following problem

Minimize
θ

φi(X(θ; t), Y (θ; t)), i = 1 . . . p

(3)

subject to





fj(X(θ; t), Y (θ; t)) ≤ 0, j = 1 . . .m

θ ≥ 0
Ẋ = F (X, Y, θ; t)
0 = G(X, Y, θ; t)

where [X Y ]T ∈ Rn and φi : Rn → R and
fj : Rn → R are convex functions. The above
optimization problem is well posed if we define
the concept of Pareto optimality as follows.

Definition 1. A Pareto optimal point θ∗ is a point
satisfying the following property: If θ0 is feasible
and φi(X(θ0; t), Y (θ0; t)) ≤ φi(X(θ∗; t), Y (θ∗; t))
for i = 1 . . . p, then φi(X(θ0; t), Y (θ0; t)) =
φi(X(θ∗; t), Y (θ∗; t)) for i = 1 . . . p. In other
words, a point θ∗ is Pareto optimal if and only if
it is feasible and there is no better feasible point
in the sense that for all θ, φi(X(θ∗; t), Y (θ∗; t)) ≤
φi(X(θ; t), Y (θ; t)),∀i = 1 . . . p and, for at least
one i, φi(X(θ∗; t), Y (θ∗; t)) < φi(X(θ; t), Y (θ; t)).

Based on this definition of Pareto optimal points,
we now present the following theorem.

Theorem 2. Consider the scalar optimization prob-
lem:

Minimize
θ

αT φ(X(θ; t), Y (θ; t))
(4)

subject to





fj(X(θ; t), Y (θ; t)) ≤ 0, j = 1 . . .m

θ ≥ 0
Ẋ = F (X, Y, θ; t)
0 = G(X, Y, θ; t)

where φ = [φ1, . . . , φp]T , α ∈ Rp and αi > 0,
i = 1 . . . p. Suppose that θ∗ is an optimal point
for (4). Then θ∗ is Pareto optimal for the vector
optimization problem (3).

The proof of this theorem is standard and can be
found in (Boyd and Vandenberghe, 2004).

The vector α is called the weight vector. It is a
free parameter; by varying it, we obtain (usually)



different Pareto optimal solutions for the vector
optimization problem (3). Roughly speaking, the
method of scalarization as in Theorem 2 yields
all the Pareto optimal points as the weight α
is varied over the set of nonnegative scalar vec-
tors. Therefore, as opposed to single objective
optimization, there is no single optimal solution
in multi-objective optimization with conflicting
objectives. The interaction among different objec-
tives gives rise to a set of compromised solutions,
largely known as the Pareto-optimal solutions.
Each solution of the Pareto optimal set is not
dominated by any other solution. In going from
one solution to another, it is not possible to im-
prove on one objective without making at least
one of the other objectives worse.

4.2 Multi-Objective Optimization Formulation for
the Heat Shock Problem

Using the framework of multi-objective optimiza-
tion, the heat shock problem can be formulated
as

min
θ

Fα(θ) ≡
∫ T

0

x2
1(t, θ) dt + α

∫ T

0

x2
2(t, θ) dt,

(5)
where x1 and x2 are the levels of unfolded proteins
and, respectively, chaperones. For every value of
the weight α, the parameters of the model, lumped
in the control vector θ, should be determined
in order to minimize the cost function Fα(θ).
α should be interpreted as the relative weight
(importance) for one of the objectives versus the
other. Different values of α yield different optimal
solutions. We denote by θOPTIM

α the values of
the parameter vector that generate the optimal
solution for the α’s considered. By plotting
∫ T

0

x2
1(t, θ

OPTIM
α ) dt vs.

∫ T

0

x2
2(t, θ

OPTIM
α ) dt

we obtain a Pareto optimal curve. Using this
curve, we can then answer our questions about the
optimality of the heat shock system by inspecting
where the point of operation of the wild type
system falls with respect to that curve.

4.3 Numerical Methods and Results

The mathematical model describing the heat
shock problem is a set of DAEs. General solvers
for the formulated optimization problem are not
available, neither commercially nor for academic
purposes. Therefore, to tackle this problem we
use a modification (Meeker, 2004) of the large-
scale DAE solver DASPK3.1 (Li and Petzold,
2000), which has a facility for sensitivity anal-
ysis. This modified version of DASPK, denoted

DASPKmod, is combined with the derivative-
based optimizer KNITRO (Waltz and Nocedal,
2003).

DASPK3.1 is designed to solve DAE systems of
the form

F(t,y,y′,u) = 0 ,
(6)

y(t0,u) = y0(u) ,

where u are the parameters of the problem. The
k-step backward differentiation formula (BDF)
method employed by DASPK3.1 approximates
the derivative y′ using k past values of the solution
y

F
(

tn+1,yn+1,
1

hβ0

k∑

i=0

αiyn+1−i,u
)

= 0 , (7)

where αi and β0 are the coefficients of the BDF
formulas. The order of the approximation is varied
by changing the number of past solution values
used. A modified Newton method is used to solve
the implicit equation for yn+1 at each time step.
The linear system in Newton’s method may be
solved by direct methods, or by preconditioned
Krylov iteration.

DASPK3.1 adaptively selects the stepsize to
achieve an efficient simulation. It is well-known
among software developers that the timestep se-
lection procedures in modern ODE and DAE
solvers do not usually lead to numerical solutions
which are smooth with respect to small perturba-
tions in the problem parameters. Since this can be
a problem in the context of dynamic optimization,
where the optimizer is assuming a certain amount
of smoothness in the problem, we have imple-
mented DASPKmod, which is able to achieve a
much smoother numerical result.

In DASPKmod the time step is selected using
a new digital filter stepsize controller (Söderlind,
2000), according to

hn+1 =
(

ε

r̂n

)β1
(

ε

r̂n−1

)β2
(

hn

hn+1

)−α2

hn , (8)

where kβ1 = kβ1 = α2 =
1
4
, k = p̂ + 1 and p̂ is the

order of convergence. In the above formula hn+1 is
the next stepsize, ε is a fraction of the desired error
tolerance, r̂n is the estimated local error, and k is
the order of BDF employed for the current step.
It was demonstrated (Meeker, 2004) that this
modification results in many fewer optimization
iterations for the heat shock problem.

The derivative-based optimizer that we employ re-
quires the computation of derivatives of the state
variables with respect to the problem parameters.
These derivatives are computed by the addition of
sensitivity equations to the system being solved.



Using the notation si =
∂y
∂ui

, the new system is

given by

F(t,y,y′,u) = 0 , (9)
∂F
∂y

si +
∂F
∂y′

s′i +
∂F
∂u

= 0, i = 1 . . . nu . (10)

The sensitivity equations are generated using
the automatic differentiation software ADIFOR
(Carle and Fagan, 2002). The staggered corrector
method in DASPK3.1 solves the entire system in
two steps. First it computes the approximation to
the solution y to (9) at the next time step using
the BDF and Newton iteration. Then it solves the
sensitivity equations (10) over the same time step
using the BDF discretization and a second New-
ton iteration. The Jacobian matrix used to solve
the original system and the sensitivity system are
dependent only on the DAE solution, so they need
only be computed once following the solution of
the DAE on each time step.

The optimization problem was solved using KNI-
TRO (Waltz and Nocedal, 2003), a hybrid interior
method (also known as barrier method), where the
original problem is replaced by a series of barrier
subproblems controlled by a barrier parameter.
The algorithm uses trust regions and a merit func-
tion to promote convergence. It performs one or
more minimization steps on each barrier problem,
then decreases the barrier parameter, and repeats
the process until the original problem has been
solved to the desired accuracy. The step computed
at every iteration is decomposed into a normal
step, whose goal is to improve feasibility, and
a tangent step, towards optimality. KNITRO’s
overall global convergence properties are ensured
by the use of trust regions.

The problems solved by KNITRO have the form

min
x

f(x) (11)

s.t. h(x) = 0 , g(x) ≤ 0 ,

with f : IRn → IR, g : IRn → IRm and h : IRn → IRl

smooth functions.

A typical iteration computes a primary step by
solving primal-dual equations (using direct linear
algebra) and performs a line search to ensure
decrease in a merit function. In order to obtain
global convergence in the presence of noncon-
vexity and Hessian or Jacobian singularities, the
primary step is replaced, under certain circum-
stances, by a safeguarding trust region step. The
second derivatives of the objective function and
constraints are approximated using quasi-Newton
updating.

With these two powerful numerical schemes, we
were able to generate solutions for the heat shock

10 11 12 13

0

20

40

60

80

100

Wild type heat shock

Pareto Optimal curve

various nonoptimal values
of parameters

Cost of chaperones (scaled by 1010)

C
o

s
t 

o
f 

u
n

fo
ld

e
d

 p
ro

te
in

s
 (

s
c

a
le

d
 b

y
 1

0
1
0
)

Fig. 1. Pareto optimal design of the heat shock
response

optimization problem for a wide range of the
weight α. Figure 1 shows the corresponding Pareto
optimal curve (red). Superimposed on the same
figure is the cost of chaperones and unfolded pro-
teins for wild type heat shock in E. coli. The
closeness of this point to the optimal curve in-
dicates that the heat shock response is operating
in a near-optimal regime, perhaps as a result of a
long evolutionary past that converged to a near-
optimal solution. To check that our finding is
substantial and rule out the possibility that the
structure of the model itself is generating near-
optimal solutions for all parameter values, we ran-
domly generated combinations of the parameters
and computed their costs. These randomly chosen
parameter combinations mostly yield operating
points well inside the non-optimal region, there-
fore substantiating our conclusions. Three illus-
trative points are shown in Figure 1.

5. CONCLUSIONS AND FUTURE WORK

In this work we have studied the optimality of the
heat shock response with respect to the cost of un-
folded proteins and the heat shock proteins needed
to refold them. We formulated an optimization
problem with a composite weighted cost of both
objectives. The Pareto optimal curve correspond-
ing to different weights for the two objectives was
obtained, and the wild type heat shock located
with respect to it. We observed that the nominal
operating point of the heat shock response falls
close to the curve, indicating that for a certain
relative importance of the two objectives, the heat
shock response is close to optimal. Our future
work will include the consideration of other ob-
jectives, such as fluxes (production/destruction



regimes of crucial proteins) which are important
for the response, but cannot be manipulated with-
out incurring a metabolic cost. We also plan to
undertake a thorough analysis of Pareto optimal-
ity in heat shock mutants. Special focus will be
devoted to FtsH-null and feedforward-null mu-
tants. Using the same formulation and similar
numerical techniques as those presented in this
paper, the Pareto optimal curve for the mutants
can be computed and compared to the curve of the
wild type. The differences between these curves
give concrete indications about the benefits of
these loops in alleviating various costs. Such an
investigation cannot be carried on experimentally
in a realistic time frame, whence the power of
mathematical modeling.
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