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Abstract: Model-Based Networked Control Systems (MB-NCS) use a model of the plant to 
compensate for the lack of information between transmission times. This results in a significant 
reduction of the bandwidth used for stabilizing the control system. Previously published stability 
results for MB-NCS assume no quantization error. In this paper quantization is introduced for MB-
NCS. Sufficient stability conditions for static uniform, static logarithmic, and dynamic quantizers 
for continuous linear time-invariant plants are derived. The results illustrate the effects of 
quantization over the stability of MB-NCS and suggest a design model that starts with the non-
quantized MB-NCS.  Copyright © 2005 IFAC 
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                         1. INTRODUCTION 
The use of networks as media to interconnect the 
different components in control systems is rapidly 
increasing. These systems are commonly referred to as 
Networked Control System (NCS). In summary a NCS 
is a control system in which a data network is used as 
feedback media. The use of networked control systems 
poses, though, some challenges. One of the main 
problems to be addressed when considering a 
networked control system is the size of bandwidth 
required by each subsystem. In this paper, we consider 
the problem of reducing the bandwidth an NCS using a 
novel approach called Model-Based NCS (MB-NCS). 
MB-NCS were introduced in (Montestruque, et al., 
2002). The MB-NCS architecture makes explicit use of 
knowledge about the plant dynamics to enhance the 
performance of the system.  

Several results have been published regarding the issues 
involved with quantization in NCS and sampled data 
problems, see (Elia, et al., 2001; Ling, et al., 2004; 
Nair, et al., 2000a and 2000b). Most results characterize 
the stability properties of NCS when the number of bits 
used by each network packet is finite and small. The 
goal of MB-NCS is the reduction of bandwidth, but the 
design of the MB-NCS first attempts to reduce the 
bandwidth by reducing the rate at which packets are 
sent. A second step is to further reduce the bandwidth 
by reducing the number of bits used to transmit each 

packet. In this way the designer has a number of 
parameters that can be modified, namely the model 
uncertainty, the packet transmission times, and finally 
the number of bits used for each packet. 

 
Figure 1: Proposed configuration of networked control 

system. 

Consider the control of a state feedback continuous 
linear plant where the state sensor is connected to a 
linear controller/actuator via a network. In this case, the 
controller uses an explicit model of the plant that 
approximates the plant dynamics and makes possible 
the stabilization of the plant even under slow network 
conditions.  



 

 

The plant model is used at the controller/actuator side to 
recreate the plant behavior so that the sensor can delay 
sending data since the model can provide an 
approximation of the plant dynamics. The main idea is 
to perform the feedback by updating the model’s state 
using the actual state of the plant that is provided by the 
sensor. The rest of the time the control action is based 
on a plant model that is incorporated in the 
controller/actuator and is running open loop for a 
period of h seconds. The control architecture is shown 
in Figure 1.  

If all the states are available, then the sensors can send 
this information through the network to update the 
model’s vector state. For our analysis we will assume 
that the compensated model is stable and that the 
transportation delay is negligible. We will assume that 
the frequency at which the network updates the state in 
the controller is constant. The idea is to find the 
smallest frequency at which the network must update 
the state in the controller, that is, an upper bound for h, 
the update time. 

Consider the control system of Figure 1 where plant is 
given by x Ax Bu= + , the plant model by ˆ ˆˆ ˆx Ax Bu= + , 
and the controller by ˆu Kx= . The state error is defined 
as ˆ,e x x= −  and represents the difference between the 
plant state and the model state. The modeling error 
matrices ˆ ˆand A A A B B B= − = − represent the 
difference between the plant and the model. Also define 
the error ˆ( ) ( ) ( )e t x t x t= − . A necessary and sufficient 
condition for stability of the state feedback MB-NCS 
without quantization will now be presented. 

Theorem #1  
The State Feedback MB-NCS without quantization is 
globally exponentially stable around the solution 

[ ]Tz x e= = 0  if and only if the eigenvalues of 

0 0
0 0 0 0

hI I
M eΛ   

=    
   

are strictly inside the unit circle. 

A detailed proof for Theorem 1 can be found in 
(Montestruque, et al., 2002 and 2003). 

In this paper stability conditions for MB-NCS under 
popular quantization schemes are derived. The paper is 
organized as follows, in Section 2 the stability of MB-
NCS with Static Quantizers is addressed. Then is 
Section 3 MB-NCS with Dynamic Quantizers are 
discussed. Conclusions are presented at the end. 

 

2. STATIC QUANTIZATION 

In this subsection we address the stability analysis of a 
state feedback MB-NCS using a static quantizer. Static 
quantizers have defined quantization regions that do not 
change with time. They are an important class of 
quantizers since they are simple to implement in both 
hardware and software and are not computationally 
expensive as their dynamic counterparts. Two types of 
quantizers are analyzed here, namely uniform 
quantizers and logarithmic quantizers. Each quantizer is 

associated with two popular data representations. The 
uniform quantizer is associated with the fixed-point data 
representation. Indeed, fixed-point numbers have a 
constant maximum error regardless of how close is the 
actual number to the origin. Logarithmic quantizers on 
the other hand are associated with floating-point 
numbers, this allows the maximum error to decrease as 
the actual number is close to origin. 

2.1. Uniform Quantizers 

We will define a uniform quantizer as function 
: n nq →  with the following property: 

( ) , , 0nz q z zδ δ− ≤ ∈ >             (1) 
Theorem 2 
Assume that the state feedback MB-NCS networked 
system without quantization is stable and satisfies: 

( ) ( ) ( ) ( )( )ˆ ˆˆ ˆ
e e

T
A BK h A BK hT

Dh P h P Q+ + + ∆ + ∆ − = − 
 

 (2) 

with DQ  and P symmetric and positive definite. Then 
when using the uniform quantizer defined by (1), the 
state feedback MB-NCS plant state will enter and 
remain in the region x R≤  defined by: 

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )( )

( )

( ) ( )( ) ( ) ( )

ˆ ˆ

max max

2
max

min

ˆ ˆ

max 0

e e

e e
 

e e

A BK h A h

T TAh Ah

D

h A BKA h

R h r h

h P h
where r

Q

and h A BK d

σ σ

σ τσ τ

δ

λ δ

λ

σ τ

+

+−

= + ∆ + + ∆

− ∆ − ∆
=

∆ = +∫

 

Proof: 

The response for the error is given now by: 

( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )

ˆe

e

k

k

A t t
k k k

A t t
k k k k

e t e t t t x t

t t e t t t x

− +

−

= + ∆ −

= − ∆ − + ∆ −
         (3) 

( ) ( ) ( ) ( )ˆ ˆ

0
where e ek k

t t A BKA t t
kt t A BK dττ τ

− +− −∆ − = +∫  

The contribution due to ( )ke t  initial value will grow 
exponentially with time and with a rate that corresponds 
to the uncompensated plant dynamics. So at time 

1[ , ]k kt t t +∈  the plant state is: 

( ) ( ) ( )
( )( ) ( ) ( )( ) ( )
( )

ˆ ˆ

ˆ

e ek kA BK t t A t t
k k k

k k

x t x t e t

x t t e t

t t x

+ − −

= +

= + − ∆ −

+∆ −

     (4) 

We can therefore evaluate the Lyapunov function at any 
instant in time 1[ , ]k kt t t +∈ . It is know that for uniformly 
exponential stability we require (Ye, et al., 1998) that: 

( )( ) ( )( )( ) ( )( )2
1

1 ,k k kV x t V x t c x t c
h

+
+ − ≤ − ∈  (5) 

We are interested in its value at 1kt + : 



 

 

( )( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

( )( ) ( )( )

1 1 1

ˆ ˆˆ ˆ
e e

   e e

T
k k k

T
A BK h A BK hT

k k

TT Ah Ah
k k

V x t x t Px t

x h P h x

e h P h e

+ + +

+ +

=

= + ∆ + ∆

+ − ∆ − ∆

    (6) 

    
 ( )1where 0,k k k k kh h t t e e t+= = − > =  
So from (6) we obtain: 

( )( ) ( )( )
( )( ) ( )( )

1

e e

k k

TT TAh Ah
k k k D k

V x t V x t

e h P h e x Q x

+ −

= − ∆ − ∆ −
  (7) 

We can bound (7) by: 

( )( ) ( )( )
( )( ) ( )( )( )

( )

2
max

2
min

e e

e e

    

TT TAh Ah
k k k D k

TAh Ah

D k

e h P h e x Q x

h P h

Q x

λ δ

λ

− ∆ − ∆ −

≤ − ∆ − ∆

−

     (8) 

The sampled value of the state of the plant at the update 
times will enter the region x r≤  where: 

( )( ) ( )( )( )
( )

2
max

min

e e
TAh Ah

D

h P h
r

Q

λ δ

λ

− ∆ − ∆
=     (9) 

The plant state vector might exit this region between 
samples. The maximum magnitude the state plant can 
reach between samples after reaching the sphere 

x R≤  is given by: 

( )
( )( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

ˆ ˆ

ˆ ˆ

max max

ˆ ˆ

max 0

e e

e e

where e e

k k
A BK t t A t t

k k k k

A BK h A h

h A BKA h

x t

t t x t t e

h r h

h A BK d

σ σ

σ τσ τ

δ

σ τ

+ − −

+

+−

= + ∆ − + − ∆ −

≤ + ∆ + + ∆

∆ = +∫

  

♦ 
2.2. Logarithmic Quantizers 

We will define a logarithmic quantizer as function 
: n nq →  with the following property: 

( ) , , 0nz q z z zδ δ− ≤ ∈ >            (10) 

Theorem 3 

Assume that the state feedback MB-NCS without 
quantization is stable and satisfies: 

( ) ( ) ( ) ( )( )ˆ ˆˆ ˆ
e e

T
A BK h A BK hT

Dh P h P Q+ + + ∆ + ∆ − = − 
 

 

with DQ  and P symmetric and positive definite. Then 
when using the logarithmic quantizer defined by (10), 
the state feedback MB-NCS is exponentially stable if: 

      
( )

( )( ) ( )( )( )
min

max e e
D

TAh Ah

Q

h P h

λ
δ

λ
<

− ∆ − ∆
 

 

Proof: 

The difference between the values of the plant’s state 
Lyapunov function at two consecutive update times is 
given by: 

( )( ) ( )( )
( )( ) ( )( )

1

e e

k k

TT TAh Ah
k k k D k

V x t V x t

e h P h e x Q x

+ −

= − ∆ − ∆ −
  (11) 

We can now bound (11) using the quantizer property 
given in (10) by: 

( )( ) ( )( )
( )( ) ( )( )( )

( )

22
max

2
min

e e

e e

    

TT TAh Ah
k k k D k

TAh Ah
k

D k

e h P h e x Q x

h P h x

Q x

λ δ

λ

− ∆ − ∆ −

≤ − ∆ − ∆

−

    (12) 

This allows us to ensure exponential stability as in (5) 
if: 

( )( ) ( )( )( ) ( )2
max mine e 0

TAh Ah
Dh P h Qλ δ λ− ∆ − ∆ − <  

or equivalently (assuming 

( )( ) ( )( )e e 0
TAh Ahh P h− ∆ − ∆ ≠ ): 

( )
( )( ) ( )( )( )
min

max e e
D

TAh Ah

Q

h P h

λ
δ

λ
<

− ∆ − ∆
        (13) 

♦ 
The previously shown sufficient conditions for static 
quantizers relate the stability of the MB-NCS with the 
update time, the plant uncertainties, and the robustness 
of the non quantized MB-NCS characterized in this case 
by ( )min DQλ . 

 

3. DYNAMIC QUANTIZATION 

In this subsection we will consider the case of dynamic 
quantization, where the quantized region and 
quantization error vary at each transmission time. It has 
been shown that these type of quantizers can achieve 
the smallest bit count per packet while maintaining 
stability (Ling, et al., 2004; Nair, et al., 2000a and 
2000b). This comes with the price of quantizer 
complexity, while the static quantizers did required a 
relatively small amount of computations, the dynamic 
quantizers need to compute new quantization regions 
and detect the plant state presence with in this regions. 
Yet dynamic quantizers are an attractive alternative 
when the number of bits available per transmission is 
minimum.  

We will assume that the plant model matrix Â  has 
distinct real unstable eigenvalues. This assumption can 
be relaxed at the expense of more complex notation and 
problem geometry. We will also assume that the 
compensated model is stable.  

Previous results (Ling, et al., 2004; Hespanha, et al., 
2002) consider a similar case but our result is novel in 
that it incorporates the plant-model mismatch within our 
Model-Based Networked Control Systems approach. 



 

 

Namely, at transmission time kt the encoder partitions 
the hyper parallelogram kR−  containing the plant state 

( )kx t  into 2N  smaller hyper parallelograms and sends 
the decoder the symbol (encoded as N bit word) 
identifying the partition kR  within kR−  that contains the 
plant state. The controller then uses the center kc  of kR  
to update the plant model generates the control signal 
using the plant model until time 1kt

−
+ . At this point, 

using the plant model and plant-model uncertainties 
both encoder and decoder calculate a new hyper 
parallelogram 1kR−

+  that should contain the plant state 
by evolving or propagating forward the initial region 

kR . The process is then repeated. Stability will be 
ensured if the radius and center of the hyper 
parallelograms converge to zero with time. We will 
show now how the hyper parallelogram 1kR−

+  is 
obtained from kR . 

Assume the plant model matrix ˆ nxnA∈ has n distinct 
unstable eigenvalues 1 2, ,..., nλ λ λ  with n corresponding 
linearly independent normalized eigenvectors 

1 2, ,..., n
nv v v ∈ . We will also assume that at t=0 both 

encoder and decoder agree in a hyper parallelogram 0R  
containing the initial state of the plant. Denote a hyper 
parallelogram as the (n+1)-tuple where c is the center of 
the hyper parallelogram and iη  are its axis. In 
particular: 

( )
[ ]

11 2

, ,
, , ,...,

 , 1,1 and 

n
n

i i
in

n n
i i

x x c
R c

c

α η
η η η

η α
=

 ∈ = − =  
 ∈ ∈ − ∈ 

∑  

Let each hyper parallelogram kR  with center kc  be 
defined as follows: 

( ),1 ,2 , , , ,, , ,..., ;  and K k k k k n k i k i i k iR R c b v bη η η η= = ∈   
Therefore it can be easily verified that according to the 
plant dynamics the region kR  evolves into a hyper 
parallelogram 1

p
kR +  defined by: 

( )

( ) ( )( )

1 1 1,1 1,2 1,

1, ,

ˆ ˆ

1 0

, , ,...,  

with  

and 

p p p p p
k k k k k n

p Ah
k i k i

h A BK sA h sp Ah
k k

R R c

e

c e e BKe ds c

η η η

η η
+ + + + +

+

+−
+

=

=

= + ∫

   (14) 

Correspondingly, according to the plant model 
dynamics the hyper parallelogram kR  should evolve 
into a different hyper parallelogram 1

m
kR + : 

( )
( )

1 1 1,1 1,2 1,

ˆ ˆ

1, , 1

, , ,...,  

with ,  and i

m m m m m
k k k k k n

A BK hhm m
k i k i k k

R R c

e c e cλ

η η η

η η

+ + + + +

+
+ +

=

= =
   (15) 

According to equation (15) the hyper parallelogram 
1

m
kR +  has edges that are parallel to those of the original 

hyper parallelogram kR  but are longer by a factor of 
i heλ  for each corresponding edge. Also the center of the 

parallelogram has shifted. Note that the hyper 
parallelogram 1

m
kR +  doesn’t necessarily contain the plant 

state. We will now express 1
p

kR +  in terms of the 
parameters of 1

m
kR + . By manipulating the expressions in 

(14) we can obtain: 

( )

( ) ( )

( ) ( ) ( ) ( )

ˆ ˆ

0

ˆ ˆ

0

ˆ ˆˆ ˆ

0

and
h A h sAh Ah As

h A BK sA h sAh

hA BK h A BK sA h s

e e e Ae ds

e e BKe ds

e e A BK e ds

−

+−

+ +−

= +

+

= + +

∫

∫

∫

 

Therefore the parameters of 1
p

kR +  can be expressed in 
terms of the parameters of 1

m
kR + : 

( )( )
( ) ( )

( ) ( )( )
( ) ( ) ( ) ( )( )

( )

ˆ ˆ
1, , ,0

, , 1, ,

ˆ ˆ

1 0

ˆ ˆˆ ˆ

0

1

=

i

h A h sp Ah Ah As
k i k i k i

h m
k i k i k i k i

h A BK sA h sp Ah
k k

hA BK h A BK sA h s
k k

m
k c k

e e e Ae ds

e h h

c e e BKe ds c

e c e A BK e ds c

c h c

λ
η η

η η η

η η η η

−
+

+

+−
+

+ +−

+

= +

= + ∆ = + ∆

= +

= + +

= + ∆

∫

∫

∫

 

(16) 
 

 
Figure 2. Construction of hyper parallelogram 1kR−

+  
from 1

m
kR + . 

Since matrices ( )c h∆  and ( )hη∆  are unknown, the 

hyper parallelogram 1
p

kR +  cannot be constructed. Instead 
we will use the expressions in equation (16) and the 
bounds over the norms of ( )c h∆  and ( )hη∆  to 
construct a hyper parallelogram that will contain the 
plant state i.e. it will contain 1

p
kR + . This is depicted in 

Figure 2. 

( )1 1 1,1 1,2 1,, , ,...,k k k k k nR R c η η η− − − − −
+ + + + +=  

( )( )

( )( )

[ ]( )

1,

1, 1,

,
1,

1 1 1 2

1

 with 

 ,where   1 det ... ,  1

c k m
k i m

k i k i

k i m
k i

m
k k n i

h c

h

c c v v v v

η

κσ
η

η η
κσ η

η

κ

+−
+ +

+

−
+ +

 + ∆ 
 =  
 + ∆
 
 

= = =

 (17) 

Note that bounds over ( )( )c hσ ∆  and ( )( )hησ ∆  can 
be obtained based on the norms over the error matrices 
A and B . Note also that 1kR−

+  is a hyper parallelogram 
with edges larger but parallel to those of 1

m
kR + . At this 



 

 

time the encoder will divide 1kR−
+  into smaller 

parallelograms and transmits to the decoder the symbol 
that identifies the one that contains the plant state 1kR + . 
And the process repeats itself again. This process is 
depicted below, also see Figure 3: 

encoder plant encoder
1 1h secondsk k k kR R R R− −

+ +→ → →      (18) 
 

 
Figure 3. Evolution of quantized regions. 
 
In Figure 3 the term kd  represents the displacement of 
the center of 1kR +  with respect to the center of 1kR−

+ . We 
will now establish the relationship between the 
evolution of the hyper parallelograms parameters and 
stability. It is clear that in order to ensure the stability of 
the system we require that the center and radius of the 
hyper parallelograms must converge to zero with time.  

We will now assume that in order to generate the hyper 
parallelograms 1kR +  each edge of the hyper 
parallelogram 1kR−

+  is divided in equal iQ  parts. Note 

that all the iQ  must be powers of 2, that is 2 ib
iQ =  

where ib  represent the number of bits assigned to each 

axis. The resulting bit rate is ( )1

n
ii

BitRate b h
=

= ∑ . 

We can now present a sufficient condition for stability 
of MB-NCS under the described dynamic quantization.  

Theorem 4. 

The state feedback MB-NCS using the dynamic 
quantization described in (18) is globally asymptotically 
stable if the following conditions are satisfied: 

1. The non-quantized MB-NCS is stable. 

2. The test matrix T has all its eigenvalues inside the 
unit circle. 

Where 

( )( )

( )( )

1

11 11 12

21 22

1

11

with

,..

 ,

.,
n

a b

h

a h

n

T T T
T

T T

e h
Q

T diag
e h

Q

λ
η

λ
η

σ κ

σ κ

+ 
=  
 

  + ∆
  
    =
  + ∆
  
    

     

( )( )

( )( )

( )( )
( )( )

( )( )

1

1

11

1

1

ˆ ˆ

12 22

ˆ ˆ
1

21
1

11 ...

: : ,

11 ...

: ,   

11 ... ,

n

n

b c

n

n

c
A BK h

c

A BK hn

n

QQ
Q Q

T h

QQ
Q Q

h

T T e
h

QQT e
Q Q

σ κ

σ κ
σ

σ κ

σ

+

+

    −−
   
    
 = ∆
 
    −−
   
     
 ∆
 

= = 
 ∆  
    −−=    
    

    (19) 

Proof. 

In order to characterize the evolution of the hyper 
parallelograms it is convenient to establish the 
relationship between the sizes of edges of 1kR−

+  and the 
edges of kR− . 

( )( ) ( )( )

( )( ) ( )( )

( )( )

1, ,

,

i

i

h

k i k i c k
i

h

k i c k
i

c k

e h
h c

Q

e h
h c

Q

h d

λ
η

λ
η

σ κ
η η σ κ

σ κ
η σ κ

σ κ

− −
+

− −

 + ∆
 = + ∆
 
 
 + ∆
 ≤ + ∆
 
 
+ ∆

(20) 
Equation (20) is a scalar discrete linear system. It is 
dependent on kc− . The evolution of kc  is given by: 

( ) ( ) ( )ˆ ˆ ˆˆ ˆ ˆ

1
A BK h A BK h A BK h

k k k kc e c e c e d+ + +− −
+ = = +      (21) 

The term kd  is bounded by: 

1,
1

1N
i

k k i
i i

Qd
Q

η −
+

=

  −≤      
∑          (22) 

We will now bound kc− :  

( )( )
( )( )

ˆ ˆ

1

ˆ ˆ

1,
1

1

A BK h
k k

NA BK h i
k i

i i

c e c

Qe
Q

σ

σ η

+− −
+

+ −
+

=

≤

  −
+      

∑
        (23) 

 
From  (20), (22), and (23) it is clear that stability is 
guaranteed if T has its eigenvalues inside the unit circle. 
                ♦ 

Note that if the plant model is exact, then 0A =  and 
0B = then, ( ) 0c h∆ =  and ( ) 0hη∆ = . This implies 

that if ( )( )ˆ ˆ
1A BK heσ + <  then stability is guaranteed if 

( )max 1i h
ii

e Qλ <  which is a well-established result 

(Nair, et al., 2000a and 2000b). In order to enforce the 



 

 

condition that ( )( )ˆ ˆ
1A BK heσ + <  it is convenient to apply 

a similarity transformation that diagonalizes ˆ ˆA BK+ . 

Next an example is presented. This example depicts the 
way a MB-NCS can be designed, namely first a non-
quantized MB-NCS is designed and then a suitable 
quantization scheme is added and tested for stability. 
Example 

Consider the plant represented by the following state 
space matrices: 

21

0 1 0.1
0.5 0.2

A B
a
   

= =   
  

                 (24) 

Where [ ]11 0.01, 0.01a ∈ −  represents the uncertainty in 
the A  matrix. The plant model is defined as the 
nominal plant, that is: 

0 1 0.1ˆ ˆ
0 0.5 0.2

A B   
= =   
   

                       (25) 

A feedback gain [ ]3.3333 8.3333K = − −  is selected 
so to place the eigenvalues of the plant model at 
( )0.5, 1− − . An update time of 1h =  sec is used. The 
following similarity transformation that diagonalizes 
ˆ ˆA BK+  is applied to the system: 

1.8856 0.4714
,  where 

1.3744 1.3744newx Px P  
= =  

 
            (26) 

 
Figure 4. Trajectories for Plant State and Plant Model 

State showing the evolution of quantized regions. 

Finally, the quantized levels are defined as 1 1n =  bit 
and 2 2n =  bits for the eigenvectors corresponding to 
the eigenvalues at –0.5 and –1 respectively. The bounds 
for the norms of uncertainty matrices are calculated in 
the transformed space by searching along the parameter 

21a : ( )( ) ( )( )0.1354, 0.0961c h hησ σ∆ ≤ ∆ ≤ . 

The maximum eigenvalue for the test matrix T  is at 
0.9531 indicating that the quantized system is stable. 
Next a simulation of the system is presented. In this 
simulation the parameter 21a  is chosen randomly to be 

0.0034, the starting region with center [ ]2 3 T− , edges 
with length 1, and the plant state randomly placed 

within this region. The plots are in the non-transformed 
original space. 

 
 

4. CONCLUSIONS 
This paper characterizes the stability properties of a 
state feedback MB-NCS under different quantization 
schemes. First the computationally inexpensive static 
quantizers are considered, associated with them are two 
popular data representations, namely fixed point and 
floating point representations. Finally, the 
computationally intensive dynamic quantizer is 
considered. The assumptions on this paper include 
availability of the state and negligible transport times 
but the results can be extended to output feedback and 
networks with transport delays thanks to the MB-NCS 
unified framework (Montestruque, et al., 2003). The 
results quantitatively shows how the system stability 
degrades as the update time and plant uncertainties 
increase for a given quantization scheme. 
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