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Abstract: A new method for on-line optimal control of nonlinear systems is
proposed. The proposed method is based on the algorithms for obtaining the
numerical solutions of optimal control problems. According to this idea, we can
use the iterative computational method for the on-line optimal control problems.
In this paper, we adopt the Riccati-equation based algorithm, one of the iterative
algorithms, and demonstrate the proposed algorithmic method is applicable to
such mechanical systems as fast-sampling is required.Copyright c©2005 IFAC
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1. INTRODUCTION

The design methods for real-time calculation
of unconstrained/constrained nonlinear control
problems have gained much attention in a variety
of realworld applications. Among them, receding
horizon schemes (Allgowet et al., 2000), (Oht-
suka, 2004) and state-dependent Riccati-equation
techniques (Coutier et al., 1996) are getting their
popularity.
In the computational field of control problems,
iterative approaches are popular in finding numer-
ical solutions. It is known, however, that such ap-
proaches are computationally expensive, and that
they are not suitable for real-time control. In this
paper, we focus on iterative computational tech-
niques for numerical solutions, and attack the big
issue of real-time computation of optimal control
problems. In this paper, a new idea is proposed in
order to circumvent such computational burden.
According to this idea, we can use the iterative

computational method for the real-time control
of nonlinear optimal control problems.
The outline of the paper is as follows. In Section
2, the nonlinear optimal control problems are for-
mulated. Also, one of the computational meth-
ods for optimal control problems is given with
its convergence property. In Section 3, based on
the computational method, our algorithmic design
method is proposed. In Sections 4 and 5, simula-
tion and experiment results are given in order to
demonstrate the effectiveness and practicability of
our approach, where the Van der Pol problem and
the swing control problem of a crane are adopted
as design examples.

2. OPTIMAL CONTROL PROBLEM

2.1 Formulation
System equation, initial condition, and perfor-

mance index are given as follows.



ẋ(t) = f(t, x(t), u(t)) (1)

x(t0) = x0 ∈ �n (2)

J = G(x(t1)) +
∫ t1

t0

L(t, x(t), u(t))dt (3)

where t0, t1 are initial/terminal time given.
Then, our goal is to find a controller minimiz-
ing the performance index J over a time interval
[t0, t1]. Here, denote the state variable by x(t) =
[x1(t), · · · , xn(t)]T ∈ �n, and the input variable
by u(t) = [u1(t), · · · , ur(t)]T ∈ Rr. Based on the
problem formulation (1) to (3), we describe our
on-line computational design method, that is to
say, algorithmic design method.
Before that, we give some preliminaries. Whether
or not the algorithmic design method succeeds
depends on how effective the algorithm is to iter-
atively search the numerical solutions of optimal
control problems. In this paper, we adopt one of
the so-called Riccati-equation based algorithms
(REB algorithms), which is known to be reliable
and effective in searching numerical solutions. One
of the characteristics is the use of feedback struc-
ture in the process of computation of solutions.
Details are given later.
2.2 Riccati-equation based algorithm

Under the problem formulation (1) to (3), we
describe an iterative algorithm for the numerical
solutions of optimal control problems, based on
Riccati differential equations. In this respect, the
algorithm falls in the category of optimal control
algorithms, such as the REB algorithms presented
in (Nedeljkovic, 1981), (Murray, 1978), (Mer-
riam, 1965), (Bullock & Franklin, 1967), (Dyer
& McReynolds, 1970), (Jacobson & Mayne, 1970)
and (Imae et al., 1992).
Assumptions
Let x : [t0, t1] → �n be an absolutely continuous
function, and u : [t0, t1] → �r be an essentially
bounded measurable function. For each positive
integer j, let us denote by ACj all absolutely
continuous functions: [t0, t1] → �j , and by all es-
sentially bounded measurable functions: [t0, t1] →
�j . Moreover, we define the following norms on
ACj and Lj

∞ respectively:

‖ x ‖= max | x(t) | for x ∈ ACj , t ∈ [t0 t1]

‖ y ‖= ess sup | y(t) | for y ∈ Lj
∞, t ∈ [t0 t1]

where the vertical bars are used to denote Eu-
clidean norms for vectors.
Now, we make some assumptiions.

(i) G : �r → �1, f : �1 × �n × �r → �n, L :
�1 × �n × �r → �1 are continuous in all
their arguments, and their partial derivatives
Gx(x), fx(t, x, u), fu(t, x, u), Lx(t, x, u) and
Lu(t, x, u) exist and are continuous in all their
arguments.

(ii) For each compact set U ⊂ �r there exists
some M1 ∈ (0,∞) such that

| f(t, x, u) |≤ M1(| x | +1) (4)

for all t ∈ �1, x ∈ �n, and u ∈ U .
Algorithm
Step 0: Let β ∈ (0, 1) and M2 ∈ (0, 1). Select

arbitrarily an initial input u0 ∈ Lr∞.
Step 1: i = 0
Step 2: Calculate xi(t) with ui(t) from the equa-

tion (1).
Step 3: Select Ai ∈ �n×n, Bi

11 ∈ Ln×n
∞ , Bi

12 ∈
Ln×r
∞ and Bi

22 ∈ Lr×r
∞ so that Kalman’s suffi-

cient conditions for the boundedness of Riccati
solutions [Jacobson (Jacobson & Mayne, 1970),
p.36] hold, that is, for almost all t ∈ [t0, t1],

A i ≥ 0, Bi
22(t) > 0,

B i
11(t) − Bi

12(t)B
i
22

−1
(t)Bi

12

T
(t) ≥ 0 (5)

where Ai, Bi
11 and Bi

22 are symmetric and (·)T

means the transpose of vectors and matrices.
We solve δxi(t), Ki(t), ri(t) from (6), (7), and
(8) below,
δẋ(t) = {fx(t, xi, ui) + fu(t, xi, ui)Bi

22

−1

× (fT
u (t, xi, ui)K(t) − Bi

12

T
)}δx(t)

+ fu(t, xi, ui)Bi
22

T
(fT

u (t, xi, ui)r(t)

−LT
u (t, xi, ui)), δx(t0) = 0 (6)

K̇(t) =−K(t)fx(t, xi, ui) − fT
x (t, xi, ui)K(t)

+ Bi
11 + (K(t)fu(t, xi, ui) − Bi

12)B
i
22

−1

× (Bi
12

T − fT
u (t, xi, ui)K(t)), K(t1) = −Ai

(7)

ṙ(t) =−fT
x (t, xi, ui)r(t) + LT

x (t, xi, ui) + {Bi
12

−K(t)fu(t, xi, ui)}Bi
22

−1
(−LT

u (t, xi, ui))

+ fT
u (t, xi, ui)r(t)), r(t1) = −G(x(t1))

(8)

and determine δui from the following.

δui(t) = Bi
22

−1{((fT
u (t, xi, ui)Ki(t) − Bi

22

T
))δxi

+ fT
u (t, xi, ui)ri(t) − LT

u (t, xi, ui)} (9)
Step 4: Determine (x̃i, ũi) satisfying

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0 ∈ �n

Hi(t, (x − xi), (u − ui), pi)
= maxv∈�r Hi(t, (x − xi), (v − vi), pi)where

Hi(t, δx, δu, p)
= −{Lx(t, xi, ui)δx + Lu(t, xi, ui)δu
+ 1

2 (δxT Bi
11δx+2δxT Bi

12δu+δuT Bi
22δu)}

+pT (fx(t, xi, ui)δx + fu(t, xi, ui)δu)
and pi is a solution of the followings.
ṗ(t) = −fT

x (t, xi, ui)p(t) + LT
x (t, xi, ui)

p(t1) = −GT
x (x(t1))

Step 5: αi = 1.
Step 6: Set ui+1(t) = ui(t)+αiδu

i(t)+α2
i (ũ

i(t)−
ui(t) − δui(t)). if (10) holds, go to Step 7.
Otherwise, set αi = βαi and repeat Step 6.

J(ui+1) − J(ui) ≤ αiM2{G(xi(t1))δx(t1)

+
∫ t1

t0

(Lx(t, xi, ui)δxi + Lu(t, xi, ui)δui)} (10)



Step 7: Set i = i + 1, and go to Step 3. Repeat
Step 3 to Step 7 until the performance index
J converges. Here, the integer i represents the
number of iterations.

2.3 Convergence
We can prove the convergence property of the al-
gorithm described in the previous subsection. The
theorem below tells us that accumulation points
generated by Algorithm, if they exist, satisfy the
necessary conditions for optimality. See (Imae et
al., 1998) for more details.
Theorem (convergence)
Let {Ai}∞i=0, {Bi

11}∞i=0, {Bi
12}∞i=0, {Bi

22}∞i=0, {ui}∞i=0,
{ũi}∞i=0 and {δui}∞i=0 be sequences generated
by the above-mentioned algorithm. Suppose that
there exists M4 ∈ (0, ∞) such that, for almost
all t ∈ [t0, t1], | ũi |≤ M4 and | δui |≤ M4,
i = 0, 1, 2, · · · and also suppose that exist Ā ∈
�n×n, B̄11 ∈ Ln×n

∞ , B̄12 ∈ Ln×r
∞ , B̄22 ∈ Lr×r

∞ ,
ū ∈ Lr∞ and a sequence N ⊂ (0, 1, 2, 3, · · · ) such
that Ā ≥ 0, B̄11(t)−B̄12(t)(B̄22(t))−1(B̄T

12(t)) ≥ 0
for almost all t ∈ [t0, t1]
limi∈N Ai = Ā in the norm of �n×n

limi∈N Bi
11(t)(resp.,Bi

12(t), B
i
22(t))

= B̄11(t)(resp., B̄i
12(t), B̄

i
22(t))

in the norm of Ln×n(resp., Ln×r
∞ , Lr×r

∞ )
limi∈N ui(t) = ū(t) in the norm of Lr

∞
Here, Ā, B̄11 and B̄22 are symmetric. Then, ū(t)
satisfies the weak necessary condition for optimal-
ity
Hu(t, x̄(t), ū(t), p̄(t)) = 0 a.e.in t ∈ [t0, t1]

where H(t, x, u, p) = −L(t, x, u) + pT f(t, x, u),
x̄(t) is a solution of (1) with ū, and p̄(t) is a
solution of the followings.

ṗ(t) =−fT
x (t, x̄, ū)p(t) + LT

x (t, x, u)

p(t1) =−GT
x (x̄(t1))

3. ALGORITHMIC DESIGN
The key idea is very simple. Roughly speaking,
all we have to do is to proceed with such above-
mentioned algorithm by one iteration only, pe-
riodically. This means that as time passes the
number of iterations increases. That is, through
sufficiently large number of iterations, it could be
expected to eventually reach the possible optimal
solutions. More detailed explanations are given in
the following description.
From a practical point of view, the calculation
time for one-iteration-ahead solution is assumed
to be equal to ∆T [ms] (or less than ∆T ). The
calculation time ∆T plays a key role in our design
method. We here describe how well the algorith-
mic controller works, together with Fig. 1.
Algorithm
Step 1: Measure an actual state x0, and select

arbitrarily an initial input u0. Set the unit of
calculation time ∆T [ms], and apply the input
u0 to the plant over the interval of the first unit
time of calculation. During the (say, Section 1)
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Fig. 1. Optimal/Actual trajectory

interval, proceed with two kinds of calculation.
One is to predict the one-unit-time-ahead state
x̂1 through system equation (1) with the initial
state x0, and the other is to calculate the one-
iteration-ahead solution over [∆T, t1] with the
updated initial state x̂1 as a new initial state.
Then, denote by k1 the feedback gain

−B−1
22 {fu(t, x, u)T K + BT

12},
and by u1 the input associated with Optimal
trajectory 1.

Step 2: Measure the actual state x1, and apply
the input u1 together with the feedback gain
k1 to the plant over the interval of the second
unit time of calculation. During such interval
(say, Section 2), proceed with two kinds of com-
putation. One is to predict the one-unit-time-
ahead state x̂2 through the system equation
(1) with the state x1. The other is to calculate
over [2∆T, t1] the one-iteration-ahead solution
(say, Optimal trajectory 2), using x2 as the new
initial state. Then, denote by k2 the feedback
gain.

−B−1
22 {fu(t, x, u)T K + BT

12}
and by u2 the input corresponding to Optimal
trajectory 2.

Step 3: Apply to the plant the input u3, u4, · · · .
4. NUMERICAL SIMULATIONS

First of all, we consider a simple optimal control
problem in order to illustrate how well our design
method works.
Van der Pol Oscillator
System equation, initial condition, and perfor-
mance index are as follows.

ẋ1(t) = (1 − x2
2(t))x1(t) − x2(t) + u

ẋ2(t) = x1(t) (11)

x1(0) = 0, x2(0) = 1

J(u) =
1
2

∫ ∞

0

(x2
1(t) + x2

2(t) + u2(t))dt (12)

Our goal is to find a real-time optimal controller
in the algorithmic fashion. We apply the algorith-
mic design method to this oscillation problem.
In this example, t1 = ∞ should be given. However,
from the computational point of view, it is impos-
sible to find a numerical solution with the terminal
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time being infinity. So, we here set t1 = 10, which
would be sufficiently large, and let the final time
t1 move as time goes by. The integration steps of
differential equations are chosen to be 1000, and
the input u0(t) = 0 is adopted as an arbitrarily
chosen initial one. The computation time for one-
iteration-ahead solution is set by ∆T = 100[ms].
Fig. 2 shows the computed input compared with
the numerical optimal solution. The CPU time is
given in Fig. 3, where the computation time for
one-iteration-ahead solution has turned out less
than 60[ms]. This implies that the algorithmic
design methods are implementable in real-time
optimization.
Fig. 4 and Fig. 5 show the behaviors of states and
inputs, where the system equation

ẋ1(t) = (1.5 − x2
2(t))x1(t) − x2(t) + u

is adopted instead of the first equation of eq.
(11). The computational results show that our
approach is robust to the parameter variations
generated in the system. We here note that our
approach turns out feedforward in case of the
feedback gain being zero.

5. SWING CONTROL OF CRANE

We demonstrate the effectiveness and practicabil-
ity of our algorithmic design method by applying
it to the practical optimal control problem, such
as swing control of a crane system (see Fig 6).
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5.1 Mathematical model
System equation is given as follows. Denote by
r the position of the cart, by θ the angle of the
pendulum, and by the input voltage to the DC
motor. Therefore, the state variable x is given as
x = [x1 x2 x3 x4]T = [r θ ṙ θ̇]T and the input
variable u is given as u = v. See Fig. 6



Table 1. Parameters of crane system

M mass of cart 0.361 kg

kf torque coefficient 2.71 N/V

J moment of inertia 2.79 × 10−3

kgm2

l length of pendulum 0.301 m

m mass of pendulum 0.100 kg

Dr friction coefficient 9.025 kg/s
between rail and cart

Dθ friction coefficient 6.95 × 10−4

between cart and pendulum kgm2/s

g gravitational acceleration 9.81m/s2

ẋ = Ax + Bu

A =
1
α1




0 0 α1 0
0 0 0 α1

0 a32 a33 a34

0 a42 a43 a44


 , B =

1
α1




0
0
b3

b4




where
a32 =−(ml)2g cos x2

sinx2

x2

a33 =−(J + ml2)Dr

a34 =−(J + ml2)mlx4 sin x2 − mlDθ cos x2

a42 =−(M + m)mgl
sinx2

x2

a43 =−mlDrx3 cos x2

a44 =−(ml)2x4 cos x2 sinx2 − (M + m)Dθ

b3 = kf (J + ml2), b4 = kfml cos x2

α1 = MJ − (ml cos x3)

and the values of parameters are given in Table 1.

5.2 Numerical simulations
First, we introduce the following performance
index.

J =
1
2

∫ ∞

0

{ 100x2
1(t) + x2

2(t)

+ x2
3(t) + x2

4(t) + u2(t)}dt (13)

We set ∆T = 100[ms] and t1 = 10[sec]. The
integration steps of differential equations are cho-
sen to be 1000 steps, and the input u0(t) = 0
is adopted as an arbitrarily chosen initial one. It
would be important to note that the terminal time
t1 is not fixed, that is, the terminal time t1 moves
as the time goes.
Case of x2(0) = 1.0[rad]
We set [x1 x2 x3 x4]T = [0 1.0 0 0]T . Fig. 7

tells us that the swing control of the crane sys-
tem is successful. The CPU time is given in Fig.
8, where the computation time for one-iteration-
ahead solution has turned out less than 70 [ms].
This means that the algorithmic method is also
implementable in the nonlinear crane system. The
behaviors of states are shown in Fig. 9.
5.3 Experimental result
Fig. 10 shows the experimental system. We here
adopt the same performance index as given in
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the previous subsection. Similarily, we set ∆T =
100[ms] and t1 = 10[sec]. The integration steps of
differential equations are chosen to be 1000, and
the input u0(t) = 0 is adopted as an arbitrarily
chosen initial one.
Case of x2(0) = 2.0[rad]
We take as an initial condition [x1 x2 x3 x4]T =
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[0 2.0 0 0]T . The CPU time for one-iteration-ahead
solution has turned out less than 70 [ms]. The
behaviors of states and input are shown in Fig.
11 and 12, compared with the numerical optimal
solutions.

6. CONCLUSION

A design method for real-time computation of
nonlinear optimal control problems has been pro-
posed. The proposed method is based on the op-
timal control algorithms. Therefore, whether or
not the real-time computation succeeds depends
on how effective the algorithm is. It has been
demonstrated that, if the Riccati-equation-based
algorithm is adopted, the proposed algorithmic
controller is applicable to the optimal control
problem. Simulation and experiment have been
given in order to demonstrate the effectiveness
and practicability of our approach, where the van
der Pol problem and the swing control problem of
a crane are adopted as design examples.
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