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Abstract: This paper is concerned with optimal control of semilinear stochastic
evolution equations on Hilbert space driven by stochastic vector measure. Both
continuous and discontinuous (measurable) vector fields are admitted. Due to
nonexistence of regular solutions, existence and uniqueness of generalized (or
measure valued) solutions are proved. Using these results, existence of optimal
feedback controls from the class of bounded Borel measurable maps are proved for
several interesting optimization problems. Copyright c©2005 IFAC
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1. INTRODUCTION

For motivation let us consider the deterministic
evolution equation

ẋ = Ax + F (x), t ≥ 0, x(0) = x0. (1)

in a Hilbert space H where A is the infinitesimal
generator of a C0-semigroup, S(t), t ≥ 0, on H
and F : H −→ H is a continuous map. It is
well known that if H is finite dimensional, mere
continuity of F is good enough to prove exis-
tence of local solutions with possibly finite blow
up time. If H is an infinite dimensional Hilbert
space continuity no longer guarantees existence of
even local solutions unless the semigroup S(t), t >
0, is compact. Because of this, the very notion
of solutions required a major generalization to
cover continuous as well as discontinuous vector
fields (Fattorini, 1997), (Ahmed, 1997),(Ahmed,
1999a),(Ahmed, 1999b),(Ahmed, 2004a),(Ahmed,
2004b). Using the general concept of measure solu-
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tions one can completely avoid standard assump-
tions such as local Lipschitz property and linear
growth for both the drift and the diffusion oper-
ators as often used in (Prato and Zabczyk, 1992)
and(Fattorini, 1997). Let {H, Ξ, E} be any three
Hilbert spaces relating the stochastic system gov-
erned by an evolution equation of the form

dx(t) = Ax(t)dt + F (x(t))dt

+ Γ(x(t))u(t, x(t))dt

+ G(x(t−))M(dt), t ≥ 0, (2)

x(0) = x0.

Here A and F are as described above, and G :
H −→ L(E,H) is a continuous map and Γ :
H −→ L(Ξ,H) is Borel measurable map and
M is an E-valued stochastic vector measure de-
fined on the sigma algebra B0 of Borel subsets of
R0 ≡ [0,∞). For simplicity of presentation, we
have considered the operators F,G, Γ to be inde-
pendent of time. However the results presented
here can be extended to the time varying case
without any difficulty.



The paper is organized as follows. In section 2
we recall some important facts from analysis suf-
ficient to serve our needs. In section 3 and 4, we
consider system (2) and present without proof two
results on existence of measure valued solutions
and their regularity properties. Using these re-
sults, in section 5, we consider control problems
and present several results on the question of
existence of optimal feedback controls.

2. BASIC FACTS FROM ANALYSIS

Recently the author dealt with the question of ex-
istence of measure valued solutions for semilinear
stochastic differential equations with continuous
but unbounded nonlinearities driven by cylindri-
cal Brownian motion (Ahmed 1999b). Here we ad-
mit Borel measurable, possibly unbounded, vector
fields and replace the Brownian motion by a more
general stochastic vector measure. Properties of
the stochastic vector measure are stated in the
sequel.

Radon Nikodyme Property & Lifting:

For any normal topological space Z, let BC(Z)
and B(Z) denote the vector spaces of bounded
continuous and bounded Borel measurable func-
tions on Z respectively. Furnished with the sup-
norm topology these are Banach spaces. It fol-
lows from a well known result (Dunford and
Schwartz, 1958) that the corresponding duals
are given by Σrba(Z)(Σba(Z)) which are regular
bounded (bounded) finitely additive measures on
the algebra of sets determined closed subsets of Z.
Note that the dual pairs {BC(Z), Σrba(Z)} and
{B(Z), Σba(Z)} do not satisfy Radon-Nikodym
(RNP) property (Diestel and J.J. Uhl, 1977).
Hence, for any finite measure space (S,S, γ), it
follows from the theory of lifting that the dual of
L1(S,BC(Z)) is given by Lw

∞(S, Σrba(Z)). These
are weak star measurable measure valued func-
tions. To study the question of existence, we need
these spaces.

Special Vector Spaces Used:

Now we are prepared to introduce the vector
spaces used in the paper. Let H, E be two sep-
arable Hilbert spaces and (Ω,F ,Ft ↑, t ≥ 0, P ) a
complete filtered probability space, M(J), J ∈ B0,
an E valued Ft adapted vector measure in the
sense that for any J ∈ B0 with J ⊂ [0, t], M(J)
or more precisely e∗(M(J)) is Ft measurable for
every e∗ ∈ E∗ = E. For the purpose of this paper
we consider Ft ≡ FM

t ∨ σ(x0), where FM
t , σ(x0)

are the smallest sigma algebras with respect to
which the measures M and the initial state x0

respectively are measurable. Let I×Ω be furnished
with the predictable σ-field with reference to the

filtration Ft, t ∈ I and Mw
∞,2(I × Ω,Σrba(H)) ⊂

Lw
∞,2(I × Ω, Σrba(H)) denote the vector space of

Σrba(H) valued random processes {λt, t ∈ I},
which are Ft-adapted and w∗-measurable in the
sense that, for each φ ∈ BC(H), t −→ λt(φ) is a
bounded Ft measurable random variable possess-
ing finite second moments. We furnish this space
with the w∗ topology. Clearly this is the dual of
the Banach space

M1,2(I × Ω, BC(H)) ⊂ L1,2(I × Ω, BC(H))),

where the later space is furnished with the natural
topology induced by the norm given by

‖ ϕ ‖≡
∫

I

(
E(

sup{|ϕ(t, ω, ξ)|, ξ ∈ H})2
)1/2

dt.

Similarly, one can verify that Mw
∞,2(I×Ω, Σba(H))

is the dual of the Banach space M1,2(I×Ω, B(H)).
We will have occasion to use both these spaces.

Basic properties of M :

(M1): {M(J),M(K), J ∩ K = ∅, J,K ∈ B0}
are pair wise independent E-valued random vari-
ables (vector measures) satisfying E{(M(J), ξ)} =
0, J ∈ B0, ξ ∈ E, where E(z) ≡ ∫

Ω
zP (dω).

(M2): There exists a countably additive bounded
positive measure π ∈ Mc(R0), having bounded
total variation on bounded sets, such that for
every ξ, ζ ∈ E,

E{(M(J), ξ)(M(K), ζ)} = (ξ, ζ)E π(J ∩K).

Clearly, it follows from this last property that, for
any ξ ∈ E, E{(M(J), ξ)2} = |ξ|2Eπ(J), and that
the process N, defined by

N(t) ≡
t∫

0

M(ds), t ≥ 0,

is a square integrable E-valued Ft-martingale. A
simple example is given by the stochastic Wiener
integral,

M(J) ≡
∫

J

f(t)dW (t), J ∈ B0

where W is the cylindrical Brownian motion on
R0 with values in the Hilbert space H and f any
locally square integrable scalar valued function. If
f ≡ 1, π is the Lebesgue measure.

3. EXISTENCE OF MEASURE VALUED
SOLUTIONS

In recent years a notion of generalized solu-
tion, which consists of regular finitely additive
measure valued functions, has been extensively
used in the study of semi linear and quasi lin-
ear systems with vector fields which are merely



continuous and bounded on bounded sets; see
(Ahmed, 1997),(Ahmed, 1999a),(Ahmed, 1999b),
(Fattorini, 1997) and the references therein. Exis-
tence of solutions for deterministic systems, such
as (1), was proved in (Ahmed,97,99a; Fattorini,97)
with varying degrees of generality. Recently exis-
tence of measure solutions for stochastic system
(2), generalizing a previous result of the author
(Ahmed, 99b) , has been proved. These latest
results cover Borel measurable drift and diffusion
assumed to be merely bounded on bounded sets.
Our main objective here is to prove existence of
optimal feedback controls for these class of sys-
tems.

Since the measure solutions may not be fully sup-
ported on the original state space H, it is useful
to extend the state space to a compact Hausdorff
space containing H as a dense subspace. Since
every metric space is a Tychonoff space, H is a Ty-
chonoff space. Hence H+ ≡ βH, the Stone-Cech
compactification of H, is a compact Hausdorff
space and consequently bounded continuous func-
tions on H can be extended to continuous func-
tions on H+. In view of this we shall often use H+

in place of H and the spaces M1,2(I×Ω, BC(H+))
with dual Mw

∞,2(I × Ω,Σrba(H+)) ⊃ Mw
∞,2(I ×

Ω, Πrba(H+)). Here Mw
∞,2(I×Ω, Πrba(H+)) is the

set of all finitely additive probability measure
valued processes, a subset of the vector space
Mw
∞,2(I ×Ω, Σrba(H+)). Note that, since H+ is a

compact Hausdorff space, Σrba(H+) = Σrca(H+).
In view of the fact that the measure solutions of
stochastic evolution equations restricted to H are
only finitely additive, we prefer to use the notation
Σrba(H+) to emphasize this fact though they are
countably additive on H+.

Without further notice, throughout this paper we
use Dφ and D2φ to denote the first and second
Frechet derivatives of the function φ whenever
they exist. We denote by Ψ the class of test
functions as defined below:

Ψ ≡ {φ ∈ BC(H) : Dφ,D2φ exist, continuous

and bounded on H}.

Define the operators A B and C with domains
given by

D(A) ≡ {φ ∈ Ψ : Aφ ∈ BC(H+)}
D(B) ≡ {φ ∈ Ψ : Dφ ∈ D(A∗) & Bφ ∈ BC(H+)},

where

(Aφ)(ξ) = (1/2)Tr(D2φ GG∗)(ξ), φ ∈ D(A)

Bφ = (A∗Dφ(ξ), ξ) + (F (ξ), Dφ(ξ)) for φ ∈ D(B)

Cφ(ξ) ≡ G∗(ξ)Dφ(ξ). (3)

First we consider the uncontrolled system

dx(t) = Ax(t)dt + F (x(t))dt + G(x(t−))M(dt),

x(0) = x0, (4)

and use the notion of measure (generalized) so-
lutions introduced in (Ahmed,1999b) and finally
add modifications necessary for the control sys-
tem.

Definition 3.1 A measure valued random pro-
cess µ ∈ Mw

∞,2(I × Ω,Πrba(H+)) is said to be a
measure (or generalized) solution of equation (4) if
for every φ ∈ D(A)∩D(B) and t ∈ I, the following
equality holds

µt(φ) = φ(x0) +

t∫

0

µs(Aφ) π(ds) +

t∫

0

µs(Bφ) ds

+

t∫

0

< µs−(Cφ),M(ds) >E P − a.s. (5)

where µt(ψ) ≡ ∫
H+ ψ(ξ)µt(dξ), t ∈ I.

Remark 3.2. Note that equation (5) can be
written in the differential form as follows:

dµt(φ) = µt(Aφ)π(dt) + µt(Bφ)dt

+ < µt−(Cφ),M(dt) >

with µ0(φ) = φ(x0). This is in fact the weak form
of the stochastic evolution equation

dµt = A∗µtπ(dt) + B∗µtdt

+ < C∗µt−,M(dt) >E , µ0 = δx0 , (6)

on the state space Σrba(H) where {A∗,B∗, C∗} are
the duals of the operators {A,B, C}.
To proceed further we shall need the following
Assumptions.

(A1): there exists a sequence {Fn, Gn} with
Fn(x) ∈ D(A), Gn(x) ∈ L(E,D(A)), for each
x ∈ H, and

Fn(x) τwuc−→ F (x) in H

Gn(x) τsouc−→ G(x) strongly in L(E,H),

where τwuc(τsouc) denotes the topology of weak
convergence (convergence in strong operator topol-
ogy) uniformly on compacts.

(A2): there exists a pair of sequence of real num-
bers {αn, βn > 0}, possibly αn, βn → ∞ as
n →∞, so that both Fn, Gn are Lipschitz having
linear growth with coefficients αn, βn respectively.



We note that under the very relaxed assump-
tions used here, nonlinearities having polynomial
growth are also admissible.

Following result generalizes our previous result
(Ahmed,99b,Theorem 3.2).

Theorem 3.3 Suppose A is the infinitesimal
generator of a C0-semigroup in H and the maps
F : H −→ H, G : H −→ L(E, H) are continuous,
and bounded on bounded subsets of H, satisfying
the approximation properties (A1) and (A2); and
M is the vector measure satisfying (M1) and
(M2). Then, for every x0 for which P{ω ∈ Ω :
|x0|H < ∞} = 1, the evolution equation (4) has
at least one measure valued solution

λ0 ∈ Mw
∞,2(I × Ω, Σrba(H+))

in the sense of Definition 3.1. Further, λ0 ∈
Mw
∞,2(I × Ω, Πrba(H+)). Proof. Detailed proof

will appear elsewhere.

Remark 3.4 In view of the above result, F, G
are required to be merely continuous and bounded
on bounded sets and hence they may have poly-
nomial growth (Ahmed, 1999b). In contrast, for
standard mild solutions it is usually assumed that
F, G are locally Lipschitz having at most linear
growth (Prato and Zabczyk, 1992).

The following corollary is an immediate conse-
quence of Theorem 3.3.

Corollary 3.5 Consider the forward Kolmogorov
equation,

dϑt = A∗ϑtπ(dt) + B∗ϑtdt, ϑ(0) = ν0, (7)

where A∗, B∗ are the duals of the operators
A, B respectively (see equation 3) with F, G
satisfying the assumptions of Theorem 3.3. Then,
for every ν0 ∈ Πrba(H), equation (7) has at
least one weak solution ν ∈ Lw

∞(I, Πrba(H+)) ⊂
Lw
∞(I, Σrba(H+)) in the sense that for each φ ∈

D(A) ∩ D(B) and t ∈ I, the following equality
holds

νt(φ) = ν0(φ) +

t∫

0

νs(Aφ) π(ds)

+

t∫

0

νs(Bφ)ds. (8)

Proof. Detailed proof will appear elsewhere.

Remark 3.6 Note that Corollary 3.5 proves exis-
tence of (measure) solutions of Kolmogorov equa-
tion (7) with unbounded coefficients generalizing
similar results of (Cerrai, 1995)(Cerrai,1995) for
parabolic and elliptic equations on finite dimen-
sional spaces.

Corollary 3.7 asserts uniqueness. Corollary 3.7.
(Uniqeness) Suppose the assumptions of Corollary
3.5 hold. Then the solution (weak solution) of the
evolution equation (7) is unique.

Proof. Detailed proof will appear elsewhere.

Remark 3.8. Using this result we can prove the
uniqueness of mild and hence weak solution of the
stochastic measure equation (6).

4. EXTENSION TO MEASURABLE
VECTOR FIELDS

In many applications, F, G and Γ may not be
even continuous. However, assuming that they are
bounded Borel measurable, it is possible to prove
existence results similar to those of deterministic
evolutions (Ahmed,2004b).

Consider the control system

dx(t) = Ax(t)dt + F (x(t))dt + Γ(x(t)) u(t, x) dt

+ G(x(t−))M(dt)

x(0) = x0, (9)

where Γ : H −→ L(Ξ,H) is a bounded Borel
measurable map with Ξ being another separable
Hilbert space and u : I × H −→ Ξ is any
bounded Borel measurable function representing
the control. Let BM(I×H, Ξ) denote the class of
bounded Borel measurable functions from I ×H
to Ξ. Furnished with the uniform norm topology,

‖ u ‖≡ sup{|u(t, x)|Ξ, (t, x) ∈ I ×H},
it is a Banach space. We present here a result
analogous to that of theorem 3.3 with the major
exception that in the present case the measure
solutions are no longer regular. They are bounded
finitely additive measure valued processes.

Theorem 4.1 Consider the system (9). Suppose
{A,M} satisfy the assumptions of theorem 3.3,
F : H −→ H, G : H −→ L(E, H) and Γ : H −→
L(Ξ,H) are Borel measurable maps bounded on
bounded sets. Then, for every x0 for which P{ω ∈
Ω : |x0|H < ∞} = 1, statistically independent of
M, and u ∈ BM(I×H, Ξ), the evolution equation
(9) has a unique measure solution

λ0 ∈ Mw
∞,2(I × Ω,Πba(H+)).

Proof Detailed proof will appear elsewhere.

5. OPTIMAL FEEDBACK CONTROLS

Consider the control system (9). For admissible
controls, we use a weaker topology and introduce



the following class of functions. Let U be a closed
bounded (possibly convex) subset of Ξ and

U ≡ {
u ∈ BM(I ×H, Ξ) : u(t, x) ∈ U ∀ (t, x)

}
.

On BM(I × H,Ξ), we introduce the topology
of weak convergence in Ξ uniformly on compact
subsets of I×H and denote this topology by τwu.
In other words, a sequence {un} ⊂ BM(I ×H, Ξ)
is said to converge to u0 ∈ BM(I ×H, Ξ) in the
topology τwu if, for every v ∈ Ξ,

(un(t, x), v)Ξ −→ (u0(t, x), v)Ξ
uniformly in (t, x) on compact subsets of I × H.
We assume that U has been furnished with the
relative τwu topology and Uad any τwu compact
(possibly) convex subset of U and choose this set
for admissible controls.

We consider the Lagrange problem P1 : Find
uo ∈ Uad that minimizes the cost functional

J(u) ≡ E
T∫

0

`(t, x(t))dt, (10)

where ` is any real valued Borel measurable func-
tion on I ×H which is bounded on bounded sets.
Since, under the general assumptions of Theorem
3.3 and Theorem 4.1, the control system (9) has
only measure solutions, the control problem as
stated above must be reformulated in terms of
measure solutions. For this purpose we introduce
the operator Bu associated with the control u as
follows. Define, for (t, ξ) ∈ I ×H,

(Buφ)(t, ξ) ≡ (u(t, ξ), Γ∗(ξ)Dφ(ξ))Ξ,

where Γ∗(ξ) ∈ L(H, Ξ) is the adjoint of the oper-
ator Γ(ξ). Clearly the operator Bu is well defined
on D(A)∩D(B). Then the correct formulation of
the original control problem is given by (P1) : find
uo ∈ Uad that minimizes the functional

J(u) ≡ E
T∫

0

∫

H

`(t, ξ)λu
t (dξ)dt (11)

where λu is the (weak) solution of equation

dλt = A∗λtπ(dt) + B∗λtdt + B∗uλtdt

+ < C∗λt−, M(dt) >E , λ0 = δx0 .(12)

Note that the initial measure need not be a Dirac
measure, it suffices if λ0 = π0 ∈ Πba(H).

For convenience of reference we identify this prob-
lem as P1. We need the following result on con-
tinuous dependence of solutions on control.

Lemma 5.1 Consider the system (12) with ad-
missible controls Uad as defined above, and sup-
pose the assumptions of Theorem 4.1 hold and

that Γ : H −→ L(Ξ, H) is a bounded Borel mea-
surable map. Then, for every u ∈ Uad, the system
(12) has a unique weak solution λu ∈ Mw

∞,2(I ×
Ω, Πba(H+)) and further, the control to solution
map u −→ λu from Uad to Mw

∞,2(I×Ω, Σba(H+))
is (sequentially) continuous with respect to the
topologies τwu on Uad and weak star topology on
Mw
∞,2(I × Ω, Σba(H+)).

Proof. Detailed proof will appear elsewhere.

Now we consider the control problem P1. The-
orem 5.2 Consider the system (12) and the La-
grange problem (11) with admissible controls Uad.
Suppose the assumptions of Lemma 5.1 hold and
that ` is a Borel measurable real valued function
defined on I × H and bounded on bounded sets
and that there exists a function `0 ∈ L1(I) such
that `(t, ξ) ≥ `0(t) ∀ ξ ∈ H. Then there exists an
optimal control for the problem P1.

Proof. Since ` is bounded from below by an
integrable function `0, we have J(u) > −∞, ∀ u ∈
Uad. Clearly if J(u) = +∞ for all u ∈ Uad,
there is nothing to prove. So suppose the con-
trary. Define inf{J(u), u ∈ Uad} = m, and let
{un} ⊂ Uad be a minimizing sequence. Since Uad is
τwu compact, there exists a generalized sequence
(subnet), relabeled as the original sequence, and
a control uo ∈ Uad such that un τwu−→ uo. Then
by virtue of Lemma 5.1, along a further subnet
if necessary, we have λun w∗−→ λuo

. Note that
the functional (11) is linear in λu and bounded
(since {un} is a minimizing sequence) and hence
continuous along the minimizing sequence {λun}.
Thus limn→∞ J(un) = J(uo) = m and uo is the
optimal control. •

Next we consider the control problem P2 :

J(u) ≡ E
∫

I×H

{
`(t, ξ) + ρ(ξ)|u(t, ξ)|Ξ

}
λu

t (dξ)dt

−→ inf, (13)

where ρ is a nonnegative bounded Borel measur-
able function on H with compact support and
λu is the weak solution of the stochastic evo-
lution equation (12) corresponding to control u.
Theorem 5.3 Consider the Lagrange problem
P2 with the objective functional (13) subject to
the dynamics of the measure system (12) with
admissible controls Uad. Suppose ` satisfies the
conditions as in Theorem 5.2, and ρ is any non-
negative bounded Borel measurable function on
H having compact support. Then there exists an
optimal control for the problem P2.

Proof. Again by virtue of the assumption on `, we
have J(u) > −∞. If J(u) ≡ +∞ for all u ∈ Uad

there is nothing to prove. So we may assume the



contrary. Let {un} = be a minimizing sequence so
that =

lim
n→∞

J(un) = inf{J(u), u ∈ Uad} ≡ m̃.

= We show that the second term of the objective
functional (13), denoted by J2, is τwu lower semi
continuous on Uad. Since Uad is τwu compact, the
sequence {un} = contains a generalized subse-
quence, relabeled as the original sequence, which
converges in τwu topology to an element uo ∈ Uad.
Consider the value of J2 at uo,

J2(uo) ≡ E
∫

I×H

ρ(ξ)|uo(t, ξ)|Ξλuo

t (dξ)dt. (14)

Since uo(t, ξ) is a Ξ valued bounded Borel mea-
surable function, by Riesz theorem there exists a
B1(Ξ) valued bounded measurable function ηo on
I ×H such that

|uo(t, ξ)|Ξ = (uo(t, ξ), ηo(t, ξ))Ξ, ∀(t, ξ) ∈ I ×H.

In fact one can take ηo(t, ξ) = uo(t, ξ)/|uo(t, ξ)|Ξ.
Using Lemma 5.1 and some functional analytic
arguments one can verify that

J2(uo) ≤ lim inf
n→∞

J2(un). (15)

Thus J2 is τwu lower semicontinuous and it follows
from continuity of the first term that J is τwu

lower semicontinuous. The existence now follows
from τwu compactness of Uad. •

Another interesting control problem, identified as
P3, consists of maximizing the functional:

J(u) = f(Eλu
t1(ϕ1), · · · , Eλu

td
(ϕd))} → sup

where f : Rd −→ R is a function, and {ϕi} ∈
B(H) is a finite set of bounded real valued Borel
measurable functions on H.

Theorem 5.4 Consider the system (12) with
admissible controls Uad as defined earlier and
suppose the assumptions of Lemma 5.1 hold.
Further, suppose the stochastic vector measure
M is nonatomic and the associated quadratic
variation measure π is absolutely continuous with
respect to the Lebesgue measure and the function
f is upper semicontinuous from Rd to R and
{ϕi} ∈ B(H) are real valued bounded Borel
measurable functions. Then the Problem P3 has
a solution.

Proof. For lack of space proof is omitted.•
A fourth interesting problem, identified as P4, can
be stated as follows. Let Ψ ∈ B(H) and g ∈ Cb(R)
be given. The problem is to find a control that
minimizes (maximizes) the functional

J(u) ≡ Eg(λu
T (Ψ)). (16)

Theorem 5.5 Consider the system (12) with
admissible controls Uad and suppose the assump-
tions of Lemma 5.1 hold. Further, suppose {M,π}
satisfy the assumptions of Theorem 5.4 and g ∈
Cb(R) and Ψ ∈ B(H). Then the Problem P4 has
a solution.

Proof. Omitted.

Reamrk. Necessary and sufficient conditions for
optimality remain as open problems.
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