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Abstract: This paper considers a sliding mode control of multivariable nonlinear
systems with time-varying delay. In our previous work, a sliding mode control
design method combining with the finite spectrum assignment has been developed.
In the design method, the sliding surface is constructed by using a coordinates
transformation containing past values of the state variables. In most practical
systems, however, it is difficult to identify exactly the length of time-delay. In
this paper, we discuss the effect of uncertainties in time-delay and parameters
on system’s behaviour in the sliding mode and derive a sufficient condition to
guarantee asymptotic stability for the systems by using Lyapunov-Razumikhin
function approach. Effectiveness of the proposed method is tested by a numerical
simulation of continuous stirred-tank reactor system. Copyright c©2005 IFAC
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1. INTRODUCTION

Recently, time-delay systems have attracted a lot
of attention from theoretical and practical view-
points. Time-delay exists in not only the engi-
neering but also biological systems and econom-
ical systems. The existence of time-delay usually
degrades the control performance and sometimes
makes the stabilization of the closed loop system
difficult. On the other hand, sliding Mode Control
(SMC) (Utkin, 1992; Slotine and Li, 1996) is one
of the well-known robust control design methods.
The most advantage of the sliding mode control is
its inherent insensitivity to uncertainties and dis-
turbances which satisfy a certain structural con-
dition, so called a matching condition. The funda-
mental idea of sliding mode control is to constrain

the system trajectory on a predesigned hyperplane
by a switching input. A great deal of SMC con-
troller design methods (Young and Özgüner, 1999;
Sira-Ramirez, 1988; Sira-Ramirez, 1989; Perru-
quetti and Barbot, 2002) for finite dimensional
systems have been proposed, and several approach
have been developed for time-delay linear or non-
linear systems (Cheres et al., 1989; Choi, 1999; El-
Khazaly, 1998; Gouaisbaut et al., 2002; Luo and
la Sen, 1993; Shyu and Yan, 1993; Bonnet et al.,
1999; Li and Yurkovich, 1999). As a SMC design
method for retarded nonlinear systems, Oguchi et
al. (Oguchi et al., 2002) have proposed a controller
design method based upon the finite spectrum
assignment(FSA). In the proposed SMC design
procedure, the sliding surface is constructed by us-



ing a variable transformation introduced into the
FSA. Therefore the sliding surface which contains
the past values of the state variables and has non-
linearity can be designed as a linear hyperplane
with a finite number of dimension, and the system
governed on the sliding hyperplane is reduced to
a lower dimensional linear system. Most practical
systems, however, contain uncertainties in a time-
delay and the model parameters.

In this paper, we consider a sliding mode control
of uncertain retarded nonlinear systems and dis-
cuss the effect of uncertainty in the time-delay.
In addition, we derive a sufficient condition to
guarantee asymptotic stability for the systems in
the sliding mode by using Lyapunov-Razumikhin
function approach.

This paper is organized as follows: Section 2
is devoted to give a brief review of the sliding
mode controller design method based on the finite
spectrum assignment. In Section 3, we discuss the
effect of time-delay uncertainty. An illustrative
example to verify our result is given in §4. Finally,
concluding remarks follow in §5.

2. PRELIMINARY

2.1 Sliding Mode Control via FSA Approach

At the beginning, we briefly introduce a sliding
mode control by using the finite spectrum assign-
ment approach. We consider the following multi-
variable nonlinear systems with constant delays in
the state.

ẋ(t) =f(x(t), x(t− �f1), · · · , x(t− �fp))

+
m∑

i=1

gi(x(t), x(t− �g1), . . . , x(t− �gq))ui

x(t) =ψ(t), −�max ≤ t ≤ 0 (1)

where x ∈ R
n, ui ∈ R, f and gi are smooth vector

fields with f(0) = 0 and gi(0) �= 0, respectively,
and ψ(t) : [−�max, 0] → R

n is a given continuous
function. Moreover �fj (t) for j = 1, . . . , p and �gj

j = 1, . . . , q are constant delays.

By applying the pure delay operator σ∗ : λ(t) →
λ(t − �∗), system (1) can be rewritten by the
following equation.

ẋ(t) =f̄(x,σ) +
m∑

i=1

ḡi(x,σ)ui(t)

�f̄(x,σ) + Ḡ(x,σ)u(t) (2)

where Ḡ : C([−�max, 0],Rn) → R
n is defined by

Ḡ(x,σ) = (ḡ1(x,σ), · · · , ḡm(x,σ)), ḡi(x,σ) =
gi(x(t), . . . , x(t−�gq )·1(t) and u = (u1, · · · , um)T .

For such a system, we use the following derivative
instead of the Lie derivative.

Definition 1. delayed state derivative (Oguchi
et al., 1999) Let f̄(x,σ) ≡ f(x(t), . . . , x(t − �fk

))
be an n-vector whose components are functions
of x(t) and x(t − �fi), 1 ≤ i ≤ k, φ̄(x,σ) ≡
φ(x(t), . . . , x(t − �φm)), 1 ≤ i ≤ m, a real-valued
function of x(t) and x(t− �φi), 1 ≤ i ≤ m, and �fi

and �φi positive time delays. Then the derivative
of φ̄(x,σ) along f̄(x,σ) is defined by

Lf̄ φ̄(x,σ) def=
∂φ̄

∂x(t)
f̄ +

m∑
i=1

∂φ̄

∂σφix
σφi f̄(x,σ),

where σfi : x(t) �→ x(t − �fi) and σφi : x(t) �→
x(t− �φi) be the pure delay operators.

Note that the argument (x,σ) of Lf̄ φ̄(x,σ) de-
notes that Lf̄ φ̄(x,σ) is a function of x(t) and
σx. For γ ≥ 2, the general form of higher or-
der derivatives can be denoted by Lγ+1

f̄
φ̄(x,σ) =

Lf̄L
γ

f̄
φ̄(x,σ).

If � = 0, the delayed state derivative coincides
with the conventional Lie derivative. Throughout
this paper, we use notation Lf̄ φ̄ as the delayed
state derivative.

Now, we assume that there exist m functions
φ̄i(x,σ) and m positive integers ki ∈ N for i =
1, . . . ,m satisfying the following conditions.

(i) k1 + · · · + km = n
(ii) For any x, σx ∈ R

n, LḡsL
j

f̄
φ̄i(x,σ) = 0

where 0 ≤ j ≤ ki − 2 and 1 ≤ i, s ≤ m.
(iii) For x, σx ∈ R

n,

∂Lki−1
f̄

φ̄i(x,σ)

∂σfj1
· · ·σfjki−2

x
ḡs(σfj1

· · ·σfjki−2
x) = 0

where 1 ≤ j1 ≤ p, 0 ≤ j2, . . . ,
∀ jki−2 ≤ p,

i, s = 1, . . . ,m and σf0 : x(t) �→ x(t).
(iv) The following matrix P is nonsingular for

any x and σx ∈ R
n.

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂Lk1−1
f̄

φ̄1

∂x(t)
ḡ1 · · ·

∂Lk1−1
f̄

φ̄1

∂x(t)
ḡm

... · · · ...
∂Lkm−1

f̄
φ̄m

∂x(t)
ḡ1 · · ·

∂Lkm−1
f̄

φ̄m

∂x(t)
ḡm

⎞
⎟⎟⎟⎟⎟⎟⎠

Then, by applying a variable transformation
z(t) = Φ(x,σ):

z = Φ(x,σ) �

⎛
⎜⎝

Φ1(x,σ)
...

Φm(x,σ)

⎞
⎟⎠ (3)

where

Φi(x,σ) =

⎛
⎜⎝

φ̄i(x,σ)
...

Lki−1
f̄

φ̄i(x,σ)

⎞
⎟⎠ ∈ R

ki for i = 1, . . . ,m

and a feedback:



⎛
⎜⎝
u1

...
um

⎞
⎟⎠ = −P−1

{⎛
⎜⎜⎝
Lk1

f̄
φ̄1(x,σ)

...
Lkm

f̄
φ̄m(x,σ)

⎞
⎟⎟⎠ −

⎛
⎜⎝
v1
...
vm

⎞
⎟⎠

}
,

(4)
the system (2) is transformed into the following
Burnovskii canonical form.

ż = diag(A1, · · · , Am)z + diag(b1, · · · , bm)v (5)

where

Ai =

⎛
⎜⎜⎜⎝

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

⎞
⎟⎟⎟⎠ ∈ R

ki×ki , bi =

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠ ∈ R

ki .

As a result, system (2) can be decoupled into
m linear subsystems with infinite number of di-
mension. This control method is called a “finite
spectrum assignment for retarded nonlinear sys-
tems” (Oguchi and Watanabe, 2000), and it is
regarded as an extension of the exact linearization
of finite dimensional nonlinear systems (Isidori,
1995; Nijmeijer and van der Schaft, 1990) and the
finite spectrum assignment for retarded linear sys-
tems which are controllable over the polynomial
ring (Morse, 1976; Sontag, 1976).

Now, we show a sliding mode controller design
method by using the above-mentioned finite spec-
trum assignment procedure. Assume that the sys-
tem (1) can be accomplished a finite spectrum
assignment by a static feedback. Then by applying
the finite spectrum assignment procedure, system
(1) can be decoupled intom subsystems as follows.

żi = Aiz
i(t) + bivi(t), i = 1, . . . ,m (6)

Now we design the following switching surface for
each subsystem.

Si(z) ≡ (si1, · · · , siki−1, 1)zi = 0 (7)

where zi = (zi
1, . . . , z

i
ki

)T � Φi(x,σ) and sij are
coefficients of Hurwitz polynomial

λki−1 + siki−1λ
ki−2 + · · · + si2λ+ si1.

Note that this switching surface consists of not
only the current value of x but also the past
values of x in x-coordinates. This means that the
design problem of infinite dimensional nonlinear
manifold can be reduced to a design problem of a
linear hyperplane in a finite dimensional space by
using this design method.

According to a well known switching condition:
Si

dSi

dt < 0, a switching control law is derived as
follows. For some Mi ≥ 0,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vi(t) ≤ −
ki−1∑
j=1

sijz
i
j+1 −Mi, if Si > 0

vi(t) ≥ −
ki−1∑
j=1

sijz
i
j+1 +Mi, if Si < 0

(8)

By applying the above switching law, z reaches
the sliding surface (7) and Si(z(t)) = Ṡi(z(t)) = 0
holds in the sliding mode. The behaviour of the
system on the sliding surface is governed by the
following n−m-th order linear system.

˙̃z(t) = diag(Ã1, · · · , Ãm)z̃(t) (9)

where z̃ � Φ̃(x,σ) = (Φ̃T
1 , · · · , Φ̃T

m)T ∈ R
n−m,

Φ̃i(x,σ) � (φ̄i, Lf̄ φ̄i, · · · , Lki−2
f̄

φ̄i)T ∈ R
ki−1

and Ãi ∈ R
(ki−1)×(ki−1) is defined by

Ãi �

⎛
⎜⎜⎜⎝

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−si1 −si2 · · · −siki−1

⎞
⎟⎟⎟⎠ .

Since sij are coefficients of Hurwitz polynomial
λki−1 +siki−1λ

ki−2 + · · ·+si2λ+si1, we can show
that limt→∞ z̃i(t) = 0 holds. As a result, z(t)
converges to zero in z-coordinates. Moreover it is
proved that there exists unique inverse mapping
x(t) = Ψ(z,σ) of the coordinate transformation
z(t) = Φ(x,σ) in the similar way as the case
of single input systems (Oguchi et al., 2002).
Therefore it is guaranteed that x(t) also converges
to zero in x-coordinates.

3. TIME-VARYING DELAY SYSTEMS

Since it is difficult to identify exactly the length of
a time-delay, we have to consider the effect of the
mismatch of time-delay between real plant and
the nominal model. In this section, we consider
a sliding mode control of nonlinear systems with
time-varying delay in the state. The following re-
tarded nonlinear system with time-varying delay
in the state is considered.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẋ(t) = f(x(t), · · · , x(t− τfp(t)))

+
m∑

i=1

gi(x(t), . . . , x(t− �gq ))ui

x(t) = ψ(t), −�max ≤ t ≤ 0

(10)

where τfj (t) for j = 1, . . . , p are bounded time-
varying delays, and τfj (t) ∈ [�j,min, �j,max] but
τfj (t) themselves are unknown.

Let σ̃fj denote a formal time-varying delay opera-
tor such that σ̃fjλ(t) = λ(t−τfj (t)). Then system
(10) can be rewritten as

ẋ(t) =f̄(x, σ̃) + Ḡ(x,σ)u. (11)

By using system (1) as the nominal model of (10),
system (11) can be described by

ẋ(t) =f̄(x,σ) + Ḡ(x,σ)u + f̄(x, σ̃) − f̄(x,σ)

�f̄(x,σ) + Ḡ(x,σ)u + p(t) (12)

where p(t) = f̄(x, σ̃) − f̄(x,σ). Then p(t) can
be regarded as a perturbation which is added to



the nominal system (1). Now we assume that the
given nominal model satisfies the condition (i)-
(iv). Then by applying variable transformation (3)
and feedback (4) into system (12), system (11) is
transformed into

ż =diag(A1, · · · , Am)z + diag(b1, · · · , bm)v

+
(∂Φ
∂x

+
∂Φ
∂σx

σ
)
p|x=Ψ(z,σ).

In addition, by applying a switching control law
with Mi satisfying

Mi ≥ sup
p

∣∣∣∣∣∣
ki−1∑
j=1

sijLpL
j−1

f̄
φ̄i + LpL

ki−1
f̄

φ̄i

∣∣∣∣∣∣ . (13)

system (12) can be governed on the sliding surface.

The behaviour of system (12) in the sliding mode
is described by the following reduced system.

˙̃z = diag(Ã1, · · · , Ãm)z̃ + Δz(z̃,σ) (14)

where Δz(z̃,σ) � Δ(x,σ)|x=Ψ(z,σ),S=0 and

Δ(x,σ) �
(∂Φ̃
∂x

+
∂Φ̃
∂σx

σ
)
p

= col(Lpφ̄1, · · · , LpL
k1−2
¯̄f φ1, · · · ,

Lpφ̄m, · · · , LpL
km−2
f̄

φ̄m).

This equation means that if all LpL
j

f̄
φi (0 ≤ j ≤

ki − 2,1 ≤ i ≤ m) vanish, the behaviour of the
system on the sliding surface is invariant with
respect to p(t). While, if there exists some integer
j (j = 0, . . . , ki − 2) and/or i (i = 1, . . . ,m) such
that LpL

j

f̄
φi �= 0, the reduced system on sliding

surface is affected by the term p(t). Concerning
the stability of the system affected by the model
error p(t), we obtain the following theorem.

Theorem 2. If the following conditions hold, the
zero solution of system (12) is asymptotically
stable.

a) There exists a positive constant k satisfying

‖Δ(x,σ)‖ ≤ k sup
θ∈[−�̄,0]

‖Φ̃(x(t+ θ),σ)‖

where ‖ · ‖ denotes the Euclidean norm.
b) There exist a symmetric positive definite-

matrix P and a positive-definite matrix Q such
that

0 < k <
λm(Q)
2λM (P )

√
λm(P )
λM (P )

(15)

PA+ATP = −Q (16)

where A � diag(Ã1, . . . , Ãm), and λM (P ) and
λm(P ) denote the maximum eigenvalue and
the minimum eigenvalue of matrix P , respec-
tively.

PROOF. Since A is Hurwitz matrix, equation
(16) has a unique solution for P corresponding
to each positive-definite matrix Q. Let choose a
Razumikhin function as

V (z̃(t)) = z̃T (t)P z̃(t). (17)

From the positiveness of matrix P , the following
inequality holds.

λm(P )‖z̃(t)‖2 ≤ V (z̃(t)) ≤ λM (P )‖z̃(t)‖2 (18)

This inequality can be rewritten by

λm(P )‖z̃(t+ θ)‖2 ≤ z̃T (t+ θ)P z̃(t+ θ) (19)
≤ λM (P )‖z̃(t+ θ)‖2.

Now, we introduce a continuous and non-decreasing
function η(s) as η(s) � ηs, (η > 1) and consider
z̃t � z̃(t+ θ) satisfying

z̃T (t+ θ)P z̃(t+ θ) < ηz̃T (t)P z̃(t), ∀θ ∈ [−�̄z, 0]
(20)

Since η > 1 and (18), it follows that

ηz̃T (t)P z̃(t) ≤ ηλM (P )‖z̃(t)‖2. (21)

From (19),(20) and (21), we obtain

sup
θ∈[−�̄z,0]

‖z̃(t+ θ)‖ <
√
η
λM (P )
λm(P )

‖z̃(t)‖.

While, condition a) can be rewritten in z-coordinates
as follows.

‖Δz(z̃,σ)‖ ≤ k sup
θ∈[−�̄z,0]

‖z̃(t+ θ)‖

Simple computations lead to the following:

V̇ (z̃(t)) = z̃T (t)(PA+ATP )z̃(t) + 2z̃T (t)PΔz(z̃,σ)

≤−λm(Q)‖z̃(t)‖2

+2λM (P )‖z̃(t)‖ · ‖Δz(z̃,σ)‖
≤−λm(Q)‖z̃(t)‖2

+2λM (P )‖z̃(t)‖ · k sup
θ∈[−�̄z,0]

‖z̃(t+ θ)‖

<

{
2λM (P ) · k

√
η
λM (P )
λm(P )

− λm(Q)

}
‖z̃(t)‖2

Here, if 0 < a < b and q satisfies 1 < q <
(

b
a

)2
,

0 < a < 1√
q b also holds. Therefore if (15) holds,

there exists η > 1 satisfying

0 < k <
λm(Q)
2λM (P )

√
λm(P )
ηλM (P )

and then V̇ (t) < 0 holds. By applying the
Lyapunov-Razumikhin theorem (Niculescu, 2001),
we can conclude that the zero solution of system
(12) is uniformly asymptotically stable. �



4. AN EXAMPLE

We consider a control of a two-stages continuous
stirred-tank reactor (CSTR) system (Figure 1).
The mathematical model of the system is de-

Fig. 1. 2 stages CSTR

scribed by the following equations.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −(1 − Δ1(t))x1 −R1 + a

ẋ2 = −2x2 +R1 − a+ Δ2(t) − (x2 + a2)u1

ẋ3 = −x3 + (1 + Δ3(t))x1(t− τ(t)) −R2 + a2

ẋ4 = −2x4 + x2(t− τ(t)) +R2 + Δ4(t) − a2

−(x4 + a2)u2

where x1 and x3 are normalized concentration
variables in tank 1 and 2, respectively, and x2

and x4 are respectively normalized temperature
variables in tank 1 and 2. The reaction rate term
R1 and R2 in tank 1 and tank 2 are given by

R1 � (x1 + a) e(
25x2
x2+2 ), R2 �

(
x3 + a2

)
e(

25x4
x4+2 ),

and a = 1/2. Moreover Δi(i = 1, . . . , 4) denote
perturbations satisfying |Δi(t)| < di, i = 1, . . . , 4,
and τ(t) is a time-varying delay whose bound is
given by [0, 0.5]. For the system, we consider the
following nominal model (Oh and Luus, 1976).⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ1 = −x1 −R1 + a

ẋ2 = −2x2 +R1 − a− (x2 + a2)u1

ẋ3 = −x3 + x1(t− �) −R2 + a2

ẋ4 = −2x4 + x2(t− �) +R2 − a2 − (x4 + a2)u2

(22)

where � is a constant delay. Then according to
(12), the perturbation vector p(t) is given by

p(t) =

⎛
⎜⎜⎝

Δ1(t)x1

Δ2(t)
(Δ3(t) + 1)σ̃x1 − σx1

Δ4(t) + σ̃x2 − σx2

⎞
⎟⎟⎠

where σ̃ : λ(t) → λ(t − τ(t)) and σ : λ(t) →
λ(t − �). For the nominal model (22), there exist
φ̄1(x) and φ̄2(x) satisfying condition (i)-(iv) for
x2, x4 > −a2. Therefore, by applying a variable
transformation z(t) = Φ(x,σ) as

z(t) =

⎛
⎜⎜⎝

x1

−x1 −R1 + a
x3

−x3 + σx1 −R2 + a2

⎞
⎟⎟⎠ (23)

and feedback (4), we obtain

d

dt

(
zi
1

zi
2

)
=

(
0 1
0 0

) (
zi
1

zi
2

)
+

(
0
1

)
vi + pi

m + pi
um

for i = 1, 2, where pi
m � col(0, LpLf̄ φ̄i) and

pi
um � col(Lpφ̄i, 0). Now, by choosing a sliding

surface as Si(zi) = si1z
i
1+zi

2 for i = 1, 2, a control
law is decided by

{
vi(t) < −si1z

i
2 −Mi, if Si(zi) > 0

vi(t) > −si1z
i
2 +Mi, if Si(zi) < 0

(24)

where Mi ≥ supp

∣∣si1Lpφ̄i(x,σ) + LpLf̄ φ̄i(x,σ)
∣∣.

By applying a switching input satisfying (24), the
system arrives at the sliding surface, the dynamics
of the system in the sliding mode is described by
the following equation.

d

dt

(
z1
1

z1
2

)
=

(−s11 0
0 −s21

) (
z1
1

z2
1

)
+ Δ(t) (25)

where

Δ(t) �
(
Lpφ̄1

Lpφ̄2

)
=

(
Δ1(t) · x1

Δ3(t) · σx1

)
.

Here Δ(t) satisfies the following inequality.

‖Δ(t)‖ =
√

Δ2
1x

2
1 + Δ2

3 · σx2
1

≤
√
d2
1 + d2

3 sup
θ∈[−�,0]

|x1(t+ θ)|

≤
√
d2
1 + d2

3 sup
θ∈[−�,0]

∥∥∥∥
(
φ̄1(t+ θ)
φ̄2(t+ θ)

)∥∥∥∥
Therefore if we choose s11 and s21 satisfying
si >

√
d2
1 + (d3 + 2)2, z converges to zero and in

turn x also converges to zero. Figure 2, 3 and 4
show the behaviour of the state variables z(t) and
x(t) and the inputs u1 and u2, respectively. In
the simulation, the time-varying delay was given
by τ(t) = 0.5 sin 10πt and the bounds of the
perturbations were by d1 = d3 = 0.5, d2 = 0.02
and d4 = 0.04. Then s11 and s21 were selected as
s11 = s21 = 2.6.

5. CONCLUSION

In this paper, we have derived a sufficient con-
dition to guarantee robust stability for uncertain
retarded nonlinear systems with time-varying de-
lay by using the Lyapunov-Razumikhin approach.
By using the derived criterion, we can success-
fully design a sliding mode controller to stabilize
retarded nonlinear systems with uncertainties and
time-varying delay.
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Fig. 2. Behaviour of z(t)
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REFERENCES

Bonnet, C., J. Partington and M. Sorine (1999).
Robust control and tracking of a delay sys-
tem with discontinuous non-linearity in the
feedback. Int. J. Control 72(15), 1354–1364.

Cheres, E., S. Gutman and Z. Palmor (1989).
Stabilization of uncertain dynamic systems
including state delay. IEEE Trans. Automat.
Contr. 34(11), 1199–1203.

Choi, H. (1999). An LMI approach to sliding mode
control design for a class of uncertain time
delay systems. In: Proc. of European Control
Conference. Karlsruhe, Germany.

El-Khazaly, R. (1998). Variable structure robust
control of uncertain time-delay systems. Au-
tomatica 34(3), 327–332.

Gouaisbaut, F., M. Dambrine and J.-P. Richard
(2002). Robust control of delay systems: A
sliding mode control design via LMIs. System
& Control Letters 46, 219–230.

Isidori, A. (1995). Nonlinear Control Systems - An
Introduction. 3rd ed.. Springer-Verlag.

Li, X. and S. Yurkovich (1999). Sliding Mode
Control of Systems with Delayed State and
Controls. Vol. 247. Springer-Verlag.

Luo, N. and M. De la Sen (1993). State feed-
back sliding mode control of a class of un-
certain time-delay systems. IEE proceedings-
D 140(4), 261–274.

Morse, A. S. (1976). Ring models for delay-
differential systems. Automatica 12, 529–531.

Niculescu, S. I. (2001). Delay effects on stability -
A Robust Control Approach. Springer.

Nijmeijer, H. and A. van der Schaft (1990). Non-
linear Dynamical Control Systems. Springer-
Verlag.

Oguchi, T., A. Watanabe and T. Nakamizo
(1999). Finite spectrum assignment for non-
linear systems with non-commensurate de-
lays. In: Proc. of 14th IFAC World Congress.
Vol. C. pp. 85–90.

Oguchi, T. and A. Watanabe (2000). Finite spec-
trum assignment for multivariable retarded
nonlinear systems. In: Proc. CD of the 14th
MTNS. pp. 999–1004.

Oguchi, T., S. Kawata and J.-P. Richard (2002).
Sliding mode control of retarded nonlinear
systems via finite spectrum assignment ap-
proach. In: Proc. of the 41st IEEE Conference
on Decision and Control. Las Vegas. pp. 999–
1004.

Oh, S. H. and R. Luus (1976). Optimal feedback
control of time-daly systems. AIChE Journal
22(1), 140–147.

Perruquetti, W. and J. Barbot (2002). Sliding
Mode Control for Engineers. Marcel Dekker.

Shyu, K. and J. Yan (1993). Robust stability of
uncertain time-delay systems and its stabi-
lization by variable structure control. Int. J.
Control 57, 237–246.

Sira-Ramirez, H. (1988). Differential geomet-
ric methods in variable-structure control.
Int. J. Control 48(4), 1359–1390.

Sira-Ramirez, H. (1989). Nonlinear variable sys-
tems in sliding mode: The general case. IEEE
Trans. Automat. Contr. 34(11), 1186–1188.

Slotine, J.E. and W. Li (1996). Nonlinear Systems.
2nd ed.. Prentice-Hall.

Sontag, E. D. (1976). Linear systems over commu-
tative rings: A survey. Ricerche di Automatica
7(1), 1–34.

Utkin, V. (1992). Sliding Modes in Control Opti-
mization. Springer-Verlag.
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