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Abstract: In this paper, we present new RHNHC (Receding Horizon Neural H∞
Control) for nonlinear unknown systems. First, we propose LMI (Linear Matrix
Inequality) condition on the terminal weighting matrix for stabilizing RHNHC.
Under this condition, noninceasing monotonicity of the saddle point value of the
finite horizon dynamic game is shown to be guaranteed. Then, we propose RHNHC
for nonlinear unknown systems which guarantees the infinite horizon H∞ norm
bound and the internal stability of the closed-loop systems. Since RHNHC can
deal with input and state constraints in optimization problem effectively, it does
not cause an instability problem or give a poor performance in contrast to the
existing neural H∞ control schemes. Copyright c©2005 IFAC
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1. INTRODUCTION

Receding horizon control (RHC) has been widely
investigated as a successful feedback strategy
(Kwon and Pearson, 1977; Kwon and Pearson,
1978; Kwon et al., 1983; Lee et al., 1998; Kwon
and Kim, 2000). For the closed-loop stability of
the RHC, one approach is to impose infinite ter-
minal weighting which is equivalent to setting a
zero terminal weighting matrix for the inverse
Riccati equation (Kwon and Pearson, 1977; Kwon
and Pearson, 1978). This is referred to as the
terminal equality condition. Since imposing infi-
nite terminal weighting is demanding, use of finite
terminal weighting matrices has been investigated
(Kwon et al., 1983; Lee et al., 1998; Kwon and
Kim, 2000).

1 This work was supported by the SNU BK21-IT Program.

Multilayer neural networks have some attractive
properties, such as the universal approximation
capability and the possibility for on- and off-line
learning, which motivates their use for control ap-
plications (Gupta and Rao, 1994). In spite of these
successful neural control application, there are not
many stability analysis in neural control (Chen
and Liu, 1994; Feng and Michel, 1999; Poznyak
et al., 1998; Suykens et al., 2000). Recently, sta-
bility conditions for a multilayer neural system,
which is regarded as a linear differential inclusion
(LDI) system, have been derived in (Limanond
and Si, 1998) and (Tanaka, 1996). However, they
had not analyzed the stability of neural control
systems by considering modeling errors result-
ing from approximation of a plant with neural
networks. With regard to H∞ control by neural
networks, there has been little work published
(Suykens et al., 1996; Suykens et al., 1999). In
(Lin and Lin, 2001; Lin and Lin, 2002a; Lin and



Lin, 2002b), the linear state-feedback controller
based on the LDI representation was designed.
Since the neural networks approximation is per-
formed by using input and state data in local
compact sets and linear controller of the form
u = Kx employed in neural H∞ control may not
satisfy input and state constraints, the existing
neural H∞ controller (Lin and Lin, 2001; Lin and
Lin, 2002a; Lin and Lin, 2002b) may cause the
instability problem or give a poor performance.

In this paper, we propose new RHNHC scheme
based on the LDI representation of neural net-
works in order to overcome the violation problem
for input and state constraints. Since the pro-
posed RHNHC scheme can deal with input and
state constraints in optimization problem very
effectively, some problems such as the instability
and the poor performance due to the violation of
input and state constraints can be removed by
RHNHC. In addition, the LMI condition on the
finite terminal weighting matrix for guaranteeing
the internal stability and the infinite horizon H∞
performance of RHNHC is proposed.

In Section 2, we give a LDI description of neural
networks and formulate the problem. In Section
3, the main results such as cost monotonicity
condition, RHNHC are presented. Section 4 pro-
vides the numerical example to demonstrate the
proposed RHNHC. In Section 5, the conclusion is
given.

2. NEURAL NETWORKS DESCRIPTION
AND PROBLEM FORMULATION

Consider the unknown nonlinear systems of the
form

ẋ(t) = Ax(t) + Bu(t) + f(x(t)) + g(u(t)) + d(t) (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
control input, f(·) is continuous function but not
assumed a prior known with zero initial condition,
g(·) is continuous function but not assumed a
prior known with zero initial condition. A and B

are constant matrices of appropriate dimensions.
d(t) ∈ W is the external disturbance or unmodeled
dynamics which satisfies the following assumption

W = {d ∈ Ln
2 [0,∞) : dT Dd ≤ 1} (2)

for some D > 0.

Let the L-layered neural networks NNf (x(t), W1, W2,

..., WL) and NNg(u(t), V1, V2, ..., VL) where Wi(i =

1, ..., L) ∈ R
nx

i
×nx

i−1 and Vi(i = 1, ..., L) ∈ R
nu

i
×nu

i−1 de-
notes the weight matrices from the (i−1)− th layer
to the i−th respectively, be trained to approximate
the unknown structure f(x(t)) and g(u(t)) respec-
tively. The description of neural networks is given
as

NNf (x(t), W1, W2, ..., WL)

= ΨL[WL...Ψ2[W2Ψ1[W1x(t)]]...] (3)
NNg(u(t), V1, V2, ..., VL)

= Ψ̃L[VL...Ψ̃2[V2Ψ̃1[V1u(t)]]...] (4)

where the activation function vector Ψ[·] : Rn 7→
Rn and Ψ̃[·] : Rn 7→ Rn are defined as Ψ[z] =

[ψ1(z1)...ψn(zn)]T and Ψ̃[z] = [ψ̃1(z1)...ψ̃n(zn)]T , re-
spectively which can be determined via a learning
algorithm such as the backpropagation. This pa-
per assumes the sigmoid type activation functions
ψ(·) ∈ Fx in the hidden layers and ψ(·) ∈ Fu in the
output layer where

Fx =

{
ψ(·) : R 7→ R|ψ(z) = λ

(
2

1 + exp(− z

q
)
− 1

)}

Fu = {ψ(·) : R 7→ R|ψ(z) = λz; λ > 0}

for λ > 0 and q > 0. For the approximation
accuracy ε1 and ε2 over the compact sets Sx ∈ Rn

and Su ∈ Rm, it can be shown that the optimal
constant approximation weights W ∗ = {W ∗

1 , ..., W ∗
L}

and V ∗ = {V ∗1 , ..., V ∗
L } exist, defined by

W ∗ = arg min
W∈ΩW

max
x(t)∈Sx

||f(x(t))−NNx(x(t), W1, ..., WL)||
(5)

V ∗ = arg min
V∈ΩV

max
u(t)∈Su

||g(u(t))−NNu(u(t), V1, ..., VL)||
(6)

where ΩW and ΩV are constant sets for W and V ,
respectively, such that

||f(x(t))−NNx(x(t), W ∗
1 , ..., W ∗

L)||
≤ ε1||x(t)||, ∀x(t) ∈ Sx, (7)

||g(u(t))−NNu(u(t), V ∗
1 , ..., V ∗L )||

≤ ε2||u(t)||, ∀u(t) ∈ Su. (8)

Using the LDI representation of the neural net-
works can be found in (Limanond and Si, 1998;
Tanaka, 1996; Lin and Lin, 2001; Lin and Lin,
2002a; Lin and Lin, 2002b), (3) can be represented
by

NNf (x(t), W ∗) =
∑

ω∈⊕L
i=1

Υnx
i

µ(ω)Aω(ω, Ψ, W ∗)x(t) (9)

where nx
L = n and Aω(ω, Ψ, W ∗) = diag[ξLi(ωLi, ψLi)]W ∗

L

· · ·W ∗
2 diag[ξ1i(ω1i, ψ1i)]W ∗

1 . In a similar ways, NNu

are represented by the following LDI form:

NNg(u(t), V ∗) =
∑

η∈⊕L
i=1

Υnu
i

µ(η)Bη(η, Ψ̃, V ∗)u(t) (10)

where nu
L = n and Bη(η, Ψ̃, V ∗) = diag[ξLi(ηLi, ψ̃Li)]V ∗L

· · ·V ∗2 diag[ξ1i(η1i, ψ̃1i)]V ∗1 . Note that the following
property holds

∑

ω∈⊕L
i=1

Υnx
i

µ(ω) =
∑

η∈⊕L
i=1

Υnu
i

µ(η) = 1 (11)

with µ(ω) = µ(ωij , Ψi, W ∗
i ) = hLnx

L
(iLnx

L
) · · ·hL1(iL1)

· · ·h2n2 (i2nx
2
) · · ·h21(i21)h1nx

1
(i1nx

1
) · · ·h11(i11) ≥ 0,∀ωij

and µ(η) = µ(ηij , Ψ̃i, V ∗
i ) = hLnu

L
(iLnu

L
) · · ·hL1(iL1)

· · ·h2n2 (i2nu
2
) · · ·h21(i21)h1nu

1
(i1nu

1
) · · ·h11(i11) ≥ 0, ∀ηij.



Then, the nonlinear systems (1) can be repre-
sented by the LDI form with error bounds:

ẋ(t) = Ax(t) + Bu(t) + ΨL[W ∗
L...Ψ2[W

∗
2 Ψ1[W

∗
1 x(t)]]...]

+ Ψ̃L[V ∗L ...Ψ̃2[V
∗
2 Ψ̃1[V

∗
1 u(t)]]...] + vf (t) + vg(t) + d(t)

(12)

=

(
A +

∑
ω

µ(ω)Aω

)
x(t) +

(
B +

∑
η

µ(η)Bη

)
u(t)

+ vf (t) + vg(t) + d(t) (13)

where Aω = Aω(ω, Ψ, W ∗), Bη = Bη(η, Ψ̃, V ∗),
vf (t) = f(x(t))−∑

ω
µ(ω)Aω(ω, Ψ, W ∗)x(t), and vg(t) =

g(u(t))−∑
η

µ(η)Bη(η, Ψ̃, V ∗)u(t) with ||vf (t)|| ≤ ε1||x(t)||
and ||vg(t)|| ≤ ε2||u(t)||. It should be noted that we
need not know the the exact values of µω and µη

since they are not used in RHNHC design actually.
In order to obtain the finite terminal weighting
matrix for the stabilizing RHNHC, we only need
know the values of Aω and Bη in (13).

For the stabilizing RHNHC, the following finite
horizon cost is associated with the system (12):

J(x(t0), t0, t1) =

∫ t1

t0

[xT (s)Qx(s) + uT (s)Ru(s)

− γ2d(s)T d(s)]ds + xT (t1)Qf x(t1) (14)

where t0 ≥ 0 is an initial time, t1 is a final time, Q =

CT C ≥ 0, R > 0, and Qf > 0, γ > 0 is the disturbance
attenuation level. The state and control variables
are restricted to fulfill the following constraints:

x(t) ∈ Sx, u(t) ∈ Su, ∀t ≥ 0. (15)

where

Sx = {x(t)| x− ≤ x(t) ≤ x+ }, (16)
Su = {u(t)| u− ≤ u(t) ≤ u+ }, (17)

x−, x+ ∈ Rn and u−, u+ ∈ Rm are constant vectors.

The finite horizon optimal differential game con-
sists of the minimization with respect to u(s), (t1 ≤
s ≤ t0), and the maximization with respect to
d(s), (t1 ≤ s ≤ t0) of the cost function (14). The
minimization and the maximization of (14) must
performed under the following three conditions:

1. the neural networks dynamics, s ∈ [t0, t1]

ẋ(s) = Ax(s) + Bu(s) + ΨL[W ∗
L...Ψ2[W

∗
2 Ψ1[W

∗
1 x(s)]]...]

+ Ψ̃L[V ∗L ...Ψ̃2[V
∗
2 Ψ̃1[V

∗
1 u(s)]]...] + d(s), (18)

2. the constraints (15), s ∈ [t0, t1]

x(s) ∈ Sx, u(s) ∈ Su, (19)

3. the terminal state constraint x(t1) ∈ S where the
terminal constraint set is defined by

S = {x ∈ Rn|xT Qf x ≤ α} (20)

for some α > 0.

If a feedback saddle-point solution for the finite
horizon optimal differential game exists, we de-
note the solution as u∗(s), (t0 ≤ s ≤ t1) and as
d∗(s), (t0 ≤ s ≤ t1), respectively. In the following,

the optimal value of the finite horizon optimal
differential game will be denoted by J∗(x(t0), t0, t1).
RHNHC is then obtained by solving the finite
horizon optimal differential game of cost (14) with
the initial time t0 and the terminal time t1 replaced
by the current time t and t+T , respectively, where
T > 0 is constant. The stability of the proposed
RHNHC depends on the choice of the finite termi-
nal weighting matrix Qf . The purpose of this pa-
per is to show that the finite horizon RHNHC with
the cost in (14) guarantees the infinite horizon H∞
performance for nonlinear unknown systems (1)
under certain conditions on Qf .

3. MAIN RESULTS

3.1 The monotonicity of the saddle point value
function

We obtain the condition of the finite terminal
weighting matrix Qf under which the nonincreas-
ing monotonicity of the saddle point value func-
tion is guaranteed.

Theorem 1. For given γ > 0, assume that there
exist X = XT > 0 and Y such that




(1, 1) X X Y T Y T I

X −Q−1 0 0 0 0

X 0 − 1

ε21
I 0 0 0

Y 0 0 −R−1 0 0

Y 0 0 0 − 1

ε22
I 0

I 0 0 0 0 − γ2

2γ2 + 1
I




≤ 0,

(21)
∀σ ∈ ⊕L

i=1Υnx
i
, ∀η ∈ ⊕L

i=1Υnu
i

where

(1, 1) = (A + Aσ)X + (B + Bη)Y + [(A + Aσ)X + (B + Bη)Y ]T .

Then the optimal cost J∗(x(τ), τ, σ) satisfies the
following relation:

∂J∗(x(τ), τ, σ)

∂σ
≤ 0, τ ≤ σ. (22)

Proof: Due to the page limitation, we omit the
proof. Refer to (Ahn et al., 2004) for the detailed
proof.

Remark 2. Recently, numerous useful algorithms
to solve linear matrix inequality (LMI) problems
have been developed. That is why we can obtain
Qf very easily by solving the feasibiliy problem
of LMI with the existing convex optimization
softwares such as MATLAB LMI Toolbox.

In the following theorem, it will be shown that if
the monotonicity of the optimal cost holds once,
it holds for all subsequent times.



Theorem 3. If ∂J∗(x(τ′),τ′,σ)
∂σ

≤ 0 for some τ ′, then
∂J∗(x(τ′′),τ′′,σ)

∂σ
≤ 0 where τ ′ ≤ τ ′′ ≤ σ.

Proof: Refer to (Ahn et al., 2004).

3.2 RHNHC(Receding Horizon Neural H∞ Control)

In this section, RHNHC scheme is proposed for
unknown nonlinear systems under the external
disturbance. Let the saddle point value func-
tion be V (x(t0), T ) , J∗(x(t0), x∗(t0), d∗(t0), T ) ,
J∗(x(t0), t0, t1) where T = t1 − t0 is the horizon size.
Under this notation, ∂J∗(x(τ),τ,σ)

∂σ
≤ 0 of Theorem 1

is equivalent to ∂V (x(τ),T )
∂T

≤ 0. RHNHC is obtained
by replacing t0 by t, t1 by t + T , and x(t0) by x(t).

The next two results are used later to show
that RHNHC scheme can guarantee the infinite
horizon H∞ performance.

Lemma 1. The saddle point value of the finite
horizon optimal differential game satisfies

V (x(t), T ) ≥ 0 (23)

for all nonnegative constant T.

Proof: Given d∗(s) = 0, s ∈ [t, t+T ], for every x∗(s),
we have J(x(t), x∗(t), 0, T ) ≥ 0 and then

V (x(t), T ) = J(x(t), x(t)∗, d(t)∗, N)

≥ J(x(t), x(t)∗, 0, T ) ≥ 0 (24)

This completes the proof.

Lemma 2. Under the monotonicity condition of
the saddle point value (21), the saddle point value
satisfies

V (0, T ) = 0 (25)

for all nonnegative constant T.

Proof: If x(0) = 0, because of Theorem 1 and
Lemma 1,

0 ≤ V (0, T ) ≤ V (0, T − δ) ≤ V (0, T − 2δ)

≤ · · · ≤ V (0, T −Nδ) = V (0, 0) = 0 (26)

where δ = T

N
> 0 and N is a positive integer. This

completes the proof.

Next, we introduce the definition of the robust el-
lipsoid invariance set for selection of the auxiliary
control gain K at the terminal time t + T .

Definition 1. A set in Rn is said to be robust in-
variant if all the trajectories starting from within
it will remain in it regardless of w ∈ W. An ellip-
soid set (20) can be called as a robust ellipsoid
invariant set if d

dt
(xT Qf x) ≤ 0 for all d(t) ∈ W and

all x ∈ ∂S, the boundary of S.

Based on this definition, we present the following
lemma for the robust invariance of the neural
networks (12) subject to the constraints (16)-(17)
and the disturbance (2) with a state feedback
controller.

Lemma 3. Suppose that X > 0 and Y satisfying
(21) also satisfy the following LMIs for some
symmetric matrices Z and P with X = Q−1

f and
Y = KX:




1

α
Z Y

Y T X


 ≥ 0, with Zjj ≤ u2

j , j = 1, ..., m (27)




1

α
P I

I X


 ≥ 0, with Pjj ≤ x2

j , j = 1, ..., n (28)




(1, 1) X Y T I

X −Q−1 0 0

Y 0 −R−1 0

I 0 0 −γ2I



≤ 0 (29)

where

(1, 1) = −X − 1

α
D−1.

Also, uj and xj are defined by uj = min(−u−j , u+
j )

and xj = min(−x−j , x+
j ). u−j , u+

j , x−j , and x+
j are the

j-th elements of u−, u+, x−, and x+, respectively,
and Zjj and Pjj are (j, j) elements of the matrices
Z and P , respectively. Then, the state-feedback
controller u(t) = Kx(t) guarantees the robust in-
variance of the systems under the external distur-
bance d(t) ∈ W for all initial states x(0) ∈ S while
satisfying the constraints (16)-(17). The resultant
state trajectory x(t) always remains in the region
S regardless of d(t) ∈ W.

Proof: Refer to (Ahn et al., 2004).

The following result shows that RHNHC scheme
can guarantee the infinite horizon H∞ perfor-
mance.

Theorem 4. Assume that the finite terminal weight-
ing matrix Qf satisfies LMI conditions (21) ,(27),
(28), and (29), the unknown nonlinear system
(1) controlled by RHNHC scheme guarantees the
infinite horizon H∞ performance.

Proof: Due to the page limitation, we omit the
proof. Refer to (Ahn et al., 2004) for the detailed
proof.

3.3 Internal Stability of RHNHC

In this subsection, without the external distur-
bance (d(t) = 0), we investigate the internal stabil-
ity property of the proposed RHNHC which can
be stated as the following theorem.



Theorem 5. Without the external disturbance, if
∂J∗(x(t),t,σ)

∂σ

∣∣∣∣
σ=t+T

≤ 0, the unknown nonlinear sys-

tems (1) with RHNHC is asymptotically stable.

Proof:

J∗(x(t), t, t + T ) =

∫ t+µ

t

[x∗T (s)Qx∗(s) + u∗T (s)Ru∗(s)]ds

+ J∗(x(t + µ), t + µ, t + T )

According to Theorem 2, ∂J∗(x(t),t,σ)
∂σ

∣∣∣∣
σ=t+T

≤ 0

implies ∂J∗(x(t+µ),t+µ,σ)
∂σ

∣∣∣∣
σ=t+T

≤ 0 for any 0 < µ < T .

Hence,

J∗(x(t), t, t + T ) ≥
∫ t+µ

t

[x∗T (s)Qx∗(s) + u∗T (s)Ru∗(s)]ds

+ J∗(x(t + µ), t + µ, t + T + µ)

which means that J∗(x(t), t, t + T ) is strictly de-
creasing. Therefore, J∗(x(t), t, t + T ) → c > 0 as
t → ∞. Furthermore, form (30), it is clear that∫ t+µ

t
[x∗T (t)Qx∗(t) + u∗T (t)Ru∗(t)]dt → 0 as t → ∞.

Finally, x(t) → 0 and u(t) → 0 as t → ∞. This
completes the proof.

This theorem states that the nonincreasing mono-
tonicity of the optimal cost is a sufficient condition
for the stability of RHNHC without disturbance.
Using the result of Theorem 5, we obtain the
following corollary on the internal stability of
RHNHC with the finite terminal weighting ma-
trix.

Corollary 6. Without the external disturbance,
assume that the finite terminal weighting matrix
Qf satisfies the conditions of Theorem 1. Then,
the unknown nonlinear system (1) with RHNHC
is asymptotically stable.

Proof: Since the existence of Qf satisfying the
conditions of Theorem 4 guarantees ∂J∗(x(t),t,σ)

∂σ

∣∣∣∣
σ=t+T

≤

0, the stability result follows form Theorem 5.

4. NUMERICAL EXAMPLE

Consider the following nonlinear systems
[

ẋ1

ẋ2

]
=

[
−1 1

0.25 1

] [
x1

x2

]
+

[
2

2

]
u

+

[
exp(−(x1 + x2)) cos(x1 + x2)− 1

1.5 cos2(u) sin2(u)

]
+

[
d1

d2

]

where d1 and d2 are the external disturbance with
random entries, chosen from a normal distribution
with mean zero and variance one. A 2-layer neural
network with 3 hidden nodes and 1 output node
was used to approximate exp(−(x1 + x2)) cos(x1 +

x2) − 1. And another 2-layer neural network with
2 hidden nodes and 1 output node was chosen

to approximate 1.5 cos2(u) sin2(u). The set of index
vector Υnx

i
Υnu

i
can be stated as follows

Υnx
1

=








0

0

0


 ,




0

0

1


 ,




0

1

0


 ,




0

1

1


 ,




1

0

0


 ,




1

0

1


 ,




1

1

0


 ,




1

1

1








,

Υnx
2

= {0, 1},

Υnu
1

=

{[
0

0

]
,

[
0

1

]
,

[
1

0

]
,

[
1

1

]}
,

Υnu
2

= {0, 1}.

The weights of the neural networks were trained
in

Sx =

{
x(t)

∣∣∣∣∣

[
−1

−1

]
≤ x(t) ≤

[
1

1

]}
, (30)

Su = {u(t)| − 1 ≤ u(t) ≤ 1} (31)

with uniformly distributed random numbers. Re-
fer to (Ahn et al., 2004) for the detailed infor-
mation on some variables in simulation. Applying
Theorem 4, we obtain

Qf =

[
0.0096 0.0133

0.0133 0.1957

]
, K =

[
−0.2851 −2.8417

]

with α = 0.0218. Using the results of (Lin and Lin,
2001; Lin and Lin, 2002a; Lin and Lin, 2002b), we
obtain the following neural H∞ controller (NHC):

u(t) =
[
−1.4614 −14.2538

]
x(t).

Now, we compare the results of RHNHC and NHC
when the initial state x(0) is in Sx and not in Sx,
respectively. For the case of x(0) = (−0.4, 0.2) ∈ Sx,
Figure 1 shows that the proposed RHNHC guar-
antees the faster convergence around the origin
than the existing NHC. For the case of x(0) =

(−1.2, 1.3) 6∈ Sx, Figure 2 shows that the proposed
RHNHC achieves the good convergence property
around the origin. But, the existing NHC scheme
fails to achieve the desired control objective. Next,
we compare the H∞ cost of RHNHC and NHC
for the cases of x(0) = (−0.4, 0.2) ∈ Sx and x(0) =

(−1.2, 1.3) 6∈ Sx, respectively. From Table 1, in case
of x(0) = (−0.4, 0.2) ∈ Sx, the H∞ performance of
the proposed scheme is better than that of the
NHC scheme. In addition, it is shown that the
proposed RHNHC satisfies the desirable H∞ norm
bound (γ2 = 0.0484), even with the initial state
which is not in Sx. But, the existing NHC does
not guarantee the H∞ norm bound (γ2 = 0.0484)
for the case 2. Therefore, though the initial state
is not in Sx, it can be seen that the suggested
RHNHC scheme has the potential to obtain the
desirable H∞ performance.

RHNHC NHC

Case 1: x(0) = (−0.4, 0.2) ∈ Sx 0.0027 0.0081

Case 2: x(0) = (−1.2, 1.3) 6∈ Sx 0.0483 0.9803

Table 1. H∞ costs of RHNHC and NHC
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Fig. 1. Phase plot for x(0) = (−0.4, 0.3)
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Fig. 2. Phase plot for x(0) = (−1.2, 1.3)

5. CONCLUSION

In this paper, we propose the new RHNHC scheme
for a class of unknown nonlinear systems. The
LMI condition on the terminal weighting matrix
for nonincreasing monotonicity of the saddle point
value is proposed. Under this condition, RHNHC
guarantees the infinite horizon H∞ performance
and the internal stability for nonlinear unknown
systems. Through the simulation result, RHNHC
guarantees the better performance than the exist-
ing neural H∞ control schemes and removes some
problems of them. This result can be regarded as
the first result on receding horizon control prob-
lem for nonlinear unknown systems.
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