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Abstract: This paper develops methodology and technique for pose tracking of an 
autonomous mobile robot (AMR) using a laser scanner. A low-complexity and accurate 
pose-tracking EKF-based algorithm is proposed using a simple rectangular model and a 
2-D laser scanner. By continuously updating the robot’s pose and matching the laser data 
with the environmental model, we find that the outliers can be filtered out effectively by 
validation gate. Moreover, a Range-Weighted Hough Transform (RWHT) is used to 
extract the modeled lines from the clutter data. Numerous simulations and experimental 
results are provided to verify the feasibility and effectiveness of the proposed 
pose-tracking method.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
This paper is concerned with the problem of 
developing methodologies and techniques for 
pose-tracking of an autonomous mobile robot (AMR) 
using a 2-D laser scanner. AMR, a kind of 
free-ranging guided vehicle, has already found 
successful applications in structured environments 
such as automatic factories, offices, and hospitals. It 
has also been utilized to perform some special 
missions in unstructured dangerous or complex 
environments for relieving dangerous risks of natural 
disasters, battlefields, and so on. 
 
The pose-tracking ability is necessary for reactive, 
planned, or hybrid navigation of the AMR. Generally 
speaking, the localization problem can be divided 
into three subproblems: pose-tracking, pose 
initialization, and map acquisition. When the AMR is 
moving in the environment and the initial pose of the 
robot is known, the process of keeping track of the 
pose of the robot is referred to as pose-tracking. 
Pose-tracking can be used if the initial estimate of 
the pose is given. However, in some situations, the 
initial pose of AMR is unknown. Therefore, the 
process of finding the starting pose of the robot with 
no prior pose information is called pose initialization 
or global localization. In addition, the map 
acquisition problem is referred as the simultaneously 
localization and map building (SLAM), where a 
robot starts in an unknown location in an unknown 
environment and then incrementally builds a map 
present in this environment while simultaneously 
using this map to compute the pose of robot. 

However, this paper only focuses on addressing the 
pose-tracking problems. 
 
The dead-reckoning method based on the encoded or 
odometric information from the driving wheels has 
been extensively utilized to calculate the current pose 
of the AMR. However, this method suffers from the 
accumulation errors by wheel slippage, or by 
mechanical tolerances and surface roughness. Hence, 
the robot may fail to keep track of its true pose over 
long distances. To overcome the shortcoming, some 
external sensors, such as laser, ultrasonics and visual 
sensors, have been adopted and incorporated with the 
sensor fusion techniques to improve the accuracy and 
reliability of the localization system. Hence, this 
paper develops a novel pose-tracking system and 
method using the laser scanner measurements. 
 
The laser scanner system has been considered as a 
powerful and accurate alternative for self-localization 
of the robot. For mobile robot navigation, laser 
sensors can be divided into two technical 
methodologies: one is the angle-measuring laser 
scanner with artificial reflector landmarks detection; 
the other is the most popular range-measuring 
time-of-flight (TOF) laser. Only a few studies have 
been focused on the angle-measuring laser scanner 
Decker et al.(1992) and Chang et al.(2003), but 
plenty of studies have been done regarding to the 
applications of a laser range finder to localization 
problem (Jensfelt and Christensen (1999); Forsberg 
et al.(1993)). In the pose-tracking problem, the type 
of laser range finder has been studied by Forsberg et 
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Fig. 1 Physical configuration of the autonomous 

mobile robot 
 

 
Fig. 2 A photograph of the proposed mobile robot 

system 
 
al.(1995). Kim (1993) proposed a hierarchical 
navigation system and the use of laser range finder 
for the localization of a mobile robot. Jensfelt et al. 
(2001) presented a Kalman filter-based approach 
utilizing 2-D laser scanner for pose-tracking of a 
mobile robot. In this paper, we will propose an 
extended Kalman filter approach utilizing a 
rectangular environmental model for pose-tracking 
of an AMR. 
 
The remaining parts of this paper are organized as 
follows. A complete description of the proposed 
autonomous mobile robot system is presented in 
Section 2. Section 3 presents the pose-tracking 
algorithm based on the EKF approach. Section 4 
shows the experimental results for the pose-tracking 
approach. Section 5 states the conclusions. 

 
 

2. DESCRIPTION OF THE AUTONOMOUS 
MOBILE ROBOT AND CONTROL SYSTEM 

 
Fig.1 shows the control architecture of the 
autonomous mobile robot and control system whose 
mobile platform is based on the basic structure of a 
wheeled vehicle system. There are two motors 
mounted on the right and left wheels, thereby giving 
rise to differential driving motion. The robot can 
move on both even and uneven terrains. The length 
of the robot is 90cm, the width 70cm, the height 
40cm, and the weight 55 kgw. 
 
Fig. 2 depicts a photograph of the experimental 
mobile robot. The robot comprises four parts : a     
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Fig. 3 Block diagram of the feature-based 

pose-tracking algorithm 
 
power management module, an IPC-based 
computational unit, the motion control system and 
the laser scanning system. The main function of the 
motion control system is to provide precise velocity 
control for the two DC 24V motors. The main 
closed-loop control laws of the two DC motors with 
encoders are the conventional PI (Proportion- 
Integration) control laws implemented by two 
low-cost single-chip digital signal processors, DSP 
TMS320C240, from Texas Instrument Co. Two 
optical encoders mounted on the motor shafts are 
used to obtain the speed and traveling distance of the 
vehicle. Two quadrature pulses,  Aφ and  Bφ , are 
further processed by a PIC-based counter and then 
sent out the motor’s velocities and rotation directions 
to the industrial IPC via an 8255 digital interfacing 
card. The industrial PC uses the dead-reckoning 
method to find the current position and orientation of 
the robot. 
 
The vehicle driver system requires a DC 24V power, 
offered by two serial DC 12V batteries, delivering 
sufficient power to drive the two motors. The 24V 
power supply outputs a maximum DC current up to 
10 Amps. This computation unit with a CPU speed of 
800MHZ is powered by a power supply of DC 24V. 
The power supply for the IPC comes from an extra 
power source, in order to make the vehicle light and 
easy to move. 
 
The Laser Measurement System (LMS) is a 
non-contact measuring system, which scans its 
two-dimensional surroundings. The LMS is based on 
a time-of-flight measurement principle. A single laser 
pulse is emitted and reflected by an object surface 
within the range of the sensor. The elapsed time 
between emission and reception of the laser pulse 
serves to calculate the distance between any object 
and the LMS. The laser scanner does not need any 
reflectors to function as a scanning system. The laser 
pulses sweep a radial range in front of the LMS 
platform via an integrated rotating mirror. 
 
 

3. POSE-TRACKING ALGORITHM 
 

This section describes how to construct a 
pose-tracking algorithm using the well-known 
extended Kalman filter (EKF); especially, special 
efforts will be paid to study how the measurement 



     

model is established and how the wall features are 
represented and extracted. For tracking the pose of 
the robot, we have two measurements from the 
odometer and the laser scanner. The odometer can be 
used for pose-tracking of the robot over short 
traveled distances, and the laser scanner is adopted to 
attain distance information between the vehicle and 
its surrounding; these two measurements together 
with the environmental model will be used to find 
the absolute pose of the mobile robot. Fig. 3 displays 
a block diagram of the proposed feature-based 
pose-tracking algorithm. 

 
3.1 Environmental Model 
 
In order to develop a low-complexity pose-tracking 
system, we here use a simple rectangular model as 
the environmental model. The rectangular model is a 
simple case of a line-based model. The main 
advantage of using the rectangular model is very 
likely to develop a robust pose-tracking method. Fig. 
3 depicts the model, where M denotes the 
environmental model composed of a set of walls, im , 
i.e. 

{ }NimM i ,....,1, ==  
where im is denoted by ( , , ),m m m

i i ilρ α m
iρ is the 

distance to the  ith  modeled wall with respect to 
the world frame,  m

iα is the corresponding angle, m
il is 

the length of the wall. Fig.4 shows the parameters 
defined for the environmental model, where 
superscript (W) and (R) represent the world 
coordinate system and robot coordinate system 
respectively. 
 
3.2 Measurement Model 
 
A line segment can in principle constrain all three 
degrees of freedom of a mobile robot. To describe 
the walls associated with the rectangular model 
extracted from laser range data, we use the 
3-tuple  ( , , ),lρ α where ρ is the perpendicular 
distance from robot to the line, α is the orientation 
of the line, and  l is the length of the line. The length 
of the line is employed to reduce the risk of making 
errors in data association. Fig. 4 shows the 
parameters definition of a wall. 
 
For the pose estimate in an extended Kalman filter 
framework, we need to predict the parameters of the 
walls to be extracted from the current state of the 
robot and the environmental model. Therefore two 
parameters  ρ and  α are considered to be 
measurements in the EKF framework. A wall 
measurement equation can be modeled as 

( ) )()()( kvkxhkz +=                 (1) 
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Fig. 4 The parameters defining a wall 

 
where iv is the measurement noise, M denote the 
model of the walls and subscript i  represents the 
ith walls. The measurement function ( ),ih X M can 

be expressed by 
 

 ( ) ( )2 2 cos
,  

m m
i i

i m
i

x y
h X M

ρ α β

α θ

⎡ ⎤− + −
⎢ ⎥=
⎢ ⎥−⎣ ⎦

  (3) 

where m
iρ is the distance to the  ith modeled wall 

with respect to the world coordinate system and m
iα  

is the corresponding angle. Fig. 4 shows an 
illustration of the parameters defining a wall, where 
( ),  e ex y and ( ),s sx y are the starting and end point 
of the wall, l is the length of the wall, r is the 
distance between the current poses of the robot and 
the origin of the world coordinate system, and β is 
the corresponding angle. 
 
The measurement function can be expressed as the 
following linear term: 

 i i iz H X m= +                     (4) 
where the Jacobian matrix iH with respect to the 
state X is given by 

11 12

ˆ ( / 1)

0
0 0 1i

X X k k

H HhH
X = −

⎡ ⎤∂
= = ⎢ ⎥−∂ ⎣ ⎦

       (5) 

where the elements of iH are given by 

( ) ( )11 cos sin  m m
i i

x yH
r r

α β α β= − − − −    (6) 

( ) ( )12 cos sin  m m
i i

y xH
r r

α β α β= − − + −     (7) 
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x
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3.3 EKF-Based Pose-Tracking Algorithm 
 
As the mobile robot moves in the rectangular model, 
the initial pose of the robot is assumed to be known. 
By using the priori pose information and the 
environmental model, an EKF-based pose-tracking 
algorithm is proposed to update the robot pose 
estimate. The state equation describing the 
kinematics of the mobile robot can be expressed by 

 
( 1) ( ( )) ( ) X k f X k W k+ = +            (8) 
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where ,cT wθ∆ = ∆ ⋅ ,cd T v∆ = ∆ ⋅ T∆ is the 
sampling interval, cv and   cw is the linear and 
angular velocities of the robot, respectively. The 
process noises ( ), ( ) x yw k w k and ( ) w kθ denote the 
uncertainties due to the wheel slippage, surface 
roughness, etc.; they are modeled as uncorrelated 
zero-mean white Gaussian processes with covariance 
matrix 2 2 2( ) { , , }.wx wy wQ k diag θσ σ σ= In order to obtain 
the best pose estimate of the mobile robot, a 
discrete-time extended Kalman filter algorithm is 
briefly proposed as follows: 
Step1: At the time 0 ,k = select a good 

estimate ˆ (0 0) X and an initial error 

covariance matrix (0 0) ,P  where 

)00(ˆ)}00({ XXE =  

)00(~)0(ˆ)0()0(ˆ)0( PXXXXE
T

=
⎭⎬
⎫

⎩⎨
⎧ −⋅−

 
Step2: Let the optimal estimate of ( ) X k at time k  

be ˆ ( / ) X k k and its error covariance matrix 

be ( / ) P k k . Use Eqs. (10) and (11) to 
calculate the best prediction, ( 1/ ) X k k+ and 

its propagation error covariance ( 1/ ).P k k+  
ˆ ( 1/ )X k k+ = ˆ( ( / )) f X k k               (10) 

ˆ( 1/ ) ( ( / ))P k k F X k k+ = ˆ( / ) ( ( / ))TP k k F X k k⋅ ⋅  
( ) Q k+                  (11) 

where 

ˆ ( / )
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 ( ( ))ˆ( ( / )) 0 1 cos
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0 0 1

X k k

d
f X kF X k k d
X k

θ
θ

−∆⎡ ⎤
∂ ⎢ ⎥= = ∆⎢ ⎥∂

⎢ ⎥⎣ ⎦

 

  (12) 
Step3: At time 1k + , the location system reads the 

measurement data ( 1) Z k + and then uses 
Eqs. (13) and (14) to obtain the updating 
estimate ˆ ( 1/ 1) X k k+ + and the error 

covariance matrix ( 1/ 1)P k k+ + . 
ˆ ( 1/ 1)X k k+ + = ˆ ( 1/ )X k k+ +  

( )ˆ        ( 1) ( 1) ( 1/ ),K k Z k h X k k M⎡ ⎤+ ⋅ + − +⎣ ⎦    (13)     

[ ]( 1/ 1) ( 1) ( 1/ ) i iP k k I K k H P k k+ + = − + ⋅ ⋅ + (14) 

( 1) ( 1/ )K k P k k+ = + ⋅                    
1

( 1/ ) ( 1)T T
i i iH H P k k H R k

−
⎡ ⎤⋅ + ⋅ + +⎣ ⎦  (15) 
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Step 4: Repeat Step 2 to Step 3. 
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Fig. 5 Block diagram of line extraction algorithm 
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Fig. 6 Validation gate 

 
3.4 Line Extraction 

 
In a rectangular room, the walls constitute the 
features that we want to track. Lines are used to 
describe the walls because the description of a line is 
very simple. By using three well-defined parameters: 
ρ , the perpendicular distance from robot to the line, 
α , the orientation of the normal, l , the length, which 
are the parameter vector of a line. We express  
a line equation with the two parameters  ρ and α as 

cos sinx yρ α α= +             (17) 
Assuming that the estimate of the robot pose is 
known, the pose of a modeled wall can be predicted. 
We propose a one-step approach to extract a wall 
model from the cluttered laser data. The design goal 
is twofold: 1) classify each data point as belonging to 
a particular model wall or as an outlier and 2) 
estimate the parameters of the model walls. For this 
task, we propose to use a line extraction algorithm. 
The algorithm includes a range-weighted Hough 
transform together with a validation gate. Fig. 5 
depicts the block diagram of the line extraction 
algorithm according to the feature-based 
pose-tracking. 
 
3.4.1 Validation Gate 

 
In the target tracking literature, the issue of data 
association has always been in focus. The use of 
validation gates is a common method to manage such 
a problem. A validation gate defines a region around 
some predicted value in which a measurement will be 
accepted as associated with the corresponding feature. 
The purpose of using validation gate is to filter out 
data points that are likely to be associated with the 
corresponding walls. Then, we can extract the 
parametric description of these walls in the form of 



     

lines. Due to the clutter, the walls might be difficult 
to extract without prefiltering. 
 
We define the location of the gates be functions of 
the estimated robot pose and the local room model. 
The size of the gates will depend on the quality of 
the laser data and the uncertainty in the 
environmental model. If the uncertainty in the pose 
grows or the laser data is very noisy, the gates will be 
opened up and let more data through the gates. Let 
the validation gate region be described by the 
four-tuple 

( )γδαρ ,,ˆ,ˆ=G  
where ˆ  ρ and ˆ  α define the pose of the gate, δ and 

 γ define the size of the gate. The illustration of the 
parameters that define the size and location of the 
validation gate is shown in Fig. 6. We observe in Fig. 
6 that ˆ  ρ is the predicted distance to the wall and 
ˆ  α is the predicted angle of the normal to the wall, 
 δ is the smallest width of the gate and γ is the 

opening angle. 
 
3.4.2 Range-Weighted Hough Transform 

 
The Hough Transform (HT), due to Hough (1959), is 
one of the most often used algorithms in image 
analysis and computer vision. The algorithm is 
known as a popular and powerful technique for 
detecting and estimating the parameters of multiple 
lines that are present in a noisy range measurement. 
In this paper, a modified Hough transform is used, 
which is called Range-Weighted Hough Transform 
(RWHT). This version of RWHT is aimed at 
extracting the orientations, α , and distances ρ to 
the walls of the environmental model. The RWHT is 
a robust parameter estimator, but it is 
computationally expensive. It could still be sensitive 
to spurious range measurements. 
 
The basic idea of this technique is to transform 
between the Cartesian space ( , ) r φ and a parameter 
space ( , )ρ α in which a wall can be defined. The 
RWHT ( , ) C ρ α can be defined as the following 
function: 

   ( )( , )   cos( )    i i i
i

C w r rρ α φ α ρ= − −∑   (18) 

where ( )w x be a unit rectangular window function of 
width a. Moreover, ( )w x can be defined as 

1      ,  
( )  

0      ,  

x a
w x

x a

⎧ ≤
⎪= ⎨
⎪ >⎩

             (19) 

The argument in w is equal to the shortest distance 
between the range measurements ( , ) i ir φ and the wall 
( , )ρ α . The parameters are described in Fig. 7. As 
shown in Fig. 8, the RWHT ( , ) i iC ρ α is defined as 
the number of measurements inside the strip with 
width a centered around the wall ( , )ρ α . This 
algorithm computes an accumulator array that holds     
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Fig. 7 Observations ( , ) i ir φ with robot orientation θ  
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Fig. 8 Parameter space 

 
the evidence for a feature for each set of parameters. 
The RWHT proceeds with each range measurement 
in Cartesian space being transformed to a region in 
parameter space. When the region intersects one of 
the strips, the corresponding accumulator is increased. 
Moreover, the RWHT ( , ) C ρ α can be transformed 
into a histogram. The highest peak in the RWHT 
histogram means that its accumulator has the most 
votes. Each peak in the histogram gives an estimate 
of the distance ρ and the corresponding orientation 
α of the wall. To extract the walls reliably, the 
method for obtaining the parameters ( , )ρ α of the 
wall is performed as follows: 
Step 1: Search the single highest peak in the RWHT 

histogram. 
Step 2: Remove the measurements associated with 

this peak from the RWHT. 
Step 3: Repeat Step 1 until all major peaks have been 

found. 
 
 

4. EXPERIMENTAL RESULTS AND 
DISCUSSION 

 
This section is devoted to conducting two 
experiments for showing the feasibility and 
efficiency of the proposed pose-tracking scheme. To 
do so, let the mobile robot move in a straight-line 
manner within the environment model. The total 
distance traveled in each experiment was 200cm; the 
constant linear velocity was 1 /cv cm s= . These 
experiments were conducted in the rectangular model 
which is approximately 236cm  × 420cm with respect 
to the world model. The four parameters of 
environment model are 1 1( , ) (20.86, 10 ),m mρ α = −  

2 2( , ) (54.45,80 ),m mρ α = 3 3( , ) (256.86, 10 ),m mρ α = −

4 4( , ) (474.45,80 ).m mρ α =  Assume that the initial 
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Fig. 9(a) Time history of the robot pose estimates 
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Fig. 9(b) Robot heading estimates 
    (c) The x-y robot trajectory 
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Fig. 10(a) Time history of the robot pose estimates 
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         (b)                    (c) 

Fig. 10(b) Robot heading estimates  
     (c) The x-y robot trajectory 

 
estimate was ˆ (0 / 0) [30,   50,  30 ]TX = ; the size of 
the validation gate,  2 cmδ = ,  2γ = ; the distance 
and angle resolution of RWHT are 2.5 cm and 2.5 .  
The matrices  {0.0000025, 0.0000025}R diag=  and 

{0.001, 0.001, 0.001}Q diag=  were considered for 
initializing the error covariance matrices. 
 
Experiment 1: The robot started at the position 
(114,171) with the vehicle heading angle of 50 
degrees and stopped at the position (243,324) with 
respect to the world model. The x-y trajectory of the 
robot’s pose estimate is shown in Fig. 9(a). Fig. 9(b) 
depicts the heading estimates. Fig. 9(c) displays the 
actual measurements of the robot with respect to the 
world model. 
 
Experiment 2: The robot started at the position 
(141,315) with a vehicle heading of 290 degrees and 
stopped at the position (209,127) with respect to the 
world model. Fig. 10(a) presents the time history of 
the robot’s pose estimate, and Fig. 10(b) depicts the 

heading estimates. Fig.10(c) displays the actual 
measurements of the robot with respect to the world 
model.  
 
Through the experimental results, the proposed 
pose-tracking algorithm has been proven capable of 
giving a satisfactory performance to continuously 
track the robot posture in the environment. 
 

5. CONCLUSIONS 
 

This paper has presented a robust, low-complexity, 
and accurate pose-tracking algorithm based on a 
rectangular model and a 2-D LMS. The rectangular 
model provides robustness using only the large-scale 
features. Such features are very simple and robust. 
With the EKF algorithm, the pose-tracking scheme 
fuses the measurements from odometer and laser 
scanner to obtain the optimal orientation and location 
estimate of the robot corresponding to the world 
frame. Several experimental results have shown that 
the proposed pose-tracking scheme performs well in 
the situations under consideration. 
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