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Abstract: In the paper a Nonlinear Set Membership (NSM) prediction method is
applied to forecast tropospheric pollution. The NSM method does not require the
choice of the functional form of the model used for prediction but only assumes
a regularity condition on the regression function defining the model. In this way,
the complexity/accuracy problems deriving from the proper choice of a suitable
parametrization are circumvented. Here the NSM method is used to forecast the
tropospheric ozone concentration in Brescia, a highly populated and industrialized
area in Northern Italy. Purpose of this application is to aid local Authorities in
decision-making policies for secondary pollution control and prevention. The NSM
method is compared to other modelling approaches such as Neural Network, Neuro-
Fuzzy, ciclostationary autoregressive and k-nearest neighbor classification. Model
performances are assessed through comparison of indices and statistical indicators
suggested by the European Environment Agency. Copyright c©2005 IFAC
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1. INTRODUCTION

Most of forecast methods in the literature are
essentially based on the identification of a model
of the mechanism generating the data and on the
use of it for forecast (see e.g. (Box and Jenk-
ins, 1976; Ljung, 1999; Modha and Masry, 1998)).
When possible, the basic laws (e.g. physical, chem-
ical, economical, biological,. . .) of involved phe-
nomena are used to derive the model structure.
This is the case of state space equations, where the
functional forms of nonlinear functions are known
and depend on some parameters whose values are
tuned using measured data.

1 This work was mainly supported by Ministero
dell’Università e della Ricerca Scientifica e Tecnologica
under the Project “Robustness techniques for control of
uncertain systems” and by Università di Brescia under the
Project “Photochemical pollution forecast model” (Fondo
Giovani Ricercatori).

However, in many practical applications, the re-
quired laws are too complex or not well known
and input-output (black-box) regression models
are used.

The black-box forecast model identification prob-
lem can be formalized as follows. Consider a non-
linear dynamic system of the form:

yt+1 = fo (ϕt) (1)

where: ϕt =
[yt ... yt−ny+1 u1

t ... u1
t−n1+1 ... um ... um

t−nm+1],
yt ∈ R is the variable to forecast, u1

t , ..., u
m
t ∈ R

are exogenous variables, fo : Rn → R, n = ny +∑m
i=1 ni.

Consider that a set of noise corrupted measure-
ments ỹt and ϕ̃t of yt and ϕt generated by (1)
is available. Then, the number m of exogenous
variables u and the lag values ny, n1, .., nm have
to be chosen and an estimate f̂ of fo giving small,



possibly minimal, identification error fo − f̂ has
to be found.

With regard to the choice of m,ny, n1, .., nm,
several methods have been proposed (Box and
Jenkins, 1976; Ljung, 1999; Grassberger et al.,
1991; Abarbanel et al., 1993; He and Asada, 1993;
Granger, 1980).

With regard to the search of f̂ , the usual ap-
proach is to consider that fo belongs to a finitely
parametrized set of functions, e.g. fo ∈ F(θ) .=
{f (ϕ, θ) =

∑r
i=1 αiσi (ϕ, βi) , βi ∈ Rq} where

θ = [α, β] and the σi’s are given functions. Then,
measured data are used to derive an estimate
θ̂ of θ. Fundamental to this approach is the
proper choice of the parametric family of func-
tions f (ϕ, θ), typically realized by some search on
different functional forms, e.g. linear, polynomial,
wavelet, neural networks, neuro-fuzzy networks,
etc. ((Sjöberg et al., 1995), for ozone forecast
models see also (Nunnari et al., 1998; Finzi et
al., 2002; Schlink et al., 2003)). This search may
be quite time consuming, and leads to approxi-
mate model structures only. The evaluation of the
effects of such an approximation on identification
errors is still an open problem.

Another critical point is that the estimate θ̂ of θ
is usually obtained by a prediction error method,
which requires the minimization of a quadratic
error function. In several cases, such as neural and
neuro-fuzzy networks, the minimization problem
is non-convex. This gives rise to possible deterio-
rations in approximation due to trapping in local
minima.

An alternative approach, not requiring the choice
of the functional form of fo, is the Nonlinear
Set Membership (NSM) (Milanese and Novara,
2004). NSM method only uses assumptions on fo

regularity, given by bounds on its gradient, whose
reliability can be tested by suitable validation
analysis. In this way, the complexity/accuracy
problems (Haber and Unbehauen, 1990; Sjöberg
et al., 1995) posed by the proper choice of the
suitable parametrization of fo are circumvented.
Moreover, NSM approach does not require to solve
minimization problems, thus avoiding the issue of
local minima.

In this paper, NSM method is applied to forecast
tropospheric ozone concentrations. NSM method
is compared to different modelling approaches
such as Neural Network, Neuro-Fuzzy, ciclosta-
tionary autoregressive and k-nearest neighbor
classification. The models are tested on the one-
day ahead forecast of daily maximum ozone con-
centration in Brescia, a highly populated and
industrialized area in the Po Valley (Northern
Italy). Model performances are assessed process-
ing both measured and forecasted data, and eval-
uating indices and statistical indicators suggested
by the European Environment Agency (Van Aalst
and de Leeuw, 1998).

Forecasts of ozone concentrations are important
information for local Authorities in charge of
pollution control and prevention. The anthropic
emissions (mainly road traffic and combustion
processes), the frequent stagnating meteorologi-
cal conditions and the high solar radiation cause
high tropospheric ozone concentrations, especially
during summer months. Studies in the literature
have described the nonlinear relationships gov-
erning the tropospheric ozone levels (Kleinman
et al., 1997; Sillman, 1999; Jenkin and Clemit-
shaw, 2000). They suggest that simple cause-effect
functions cannot forecast the link between pre-
cursor emissions (NOx and V OC), meteorological
conditions and ozone concentrations.

2. NONLINEAR SET MEMBERSHIP
METHOD

In this section the main concepts and results of the
Nonlinear Set Membership (NSM) identification
method (Milanese and Novara, 2004) are briefly
recalled.

Consider that a set of noise corrupted data ỸT =
[ỹt+1, t = 1, .., T ] and Φ̃T = [ϕ̃t, t = 1, .., T ]
generated by (1) is available. Then:

ỹt+1 = fo(ϕ̃t) + dt, t = 1, .., T (2)

where the term dt accounts for the fact yt+1 and
ϕt are not exactly known.

The aim is to derive an estimate f̂ of fo

from available measurements (ỸT , Φ̃T ), i.e. f̂ =
φ(ỸT , Φ̃T ). The operator φ, called identification
algorithm, should be chosen to give small (possi-
bly minimal) Lp error ||fo − f̂ ||p, where ||f ||p .=[∫

Φ
|f (ϕ)|p dw

] 1
p , p ∈ [1,∞] and Φ is a given

bounded set in <n.

Whatever algorithm φ is chosen, no information
on the identification error can be derived, unless
some assumptions are made on the function fo

and the noise d. In the literature, the typical ap-
proach is to assume a finitely parametrized func-
tional form for fo (linear, bilinear, neural network,
etc.) and statistical models on the noise (Haber
and Unbehauen, 1990; Sjöberg et al., 1995; Naren-
dra and Mukhopadhyay, 1997). In the NSM ap-
proach, different and somewhat weaker assump-
tions are taken, which do not require the selec-
tion of a parametric form for fo but are related
to its rate of variation. Moreover, the noise se-
quence DT = [d1, d2, ..., dT ] is only supposed to
be bounded.

Prior assumptions on fo:

fo ∈ K
.=

{
f ∈ C1(Φ) : ‖f ′(ϕ)‖ ≤ γ, ∀ϕ ∈ Φ

}

Prior assumptions on noise:

DT ∈ D .= {[d1, ..., dT ] : |dt| ≤ εt, t = 1, 2, ..., T}



Here, f ′(ϕ) denotes the gradient of f(ϕ) and
‖x‖ .=

√∑n
i=1 x2

i is the Euclidean norm.

A key role in this Set Membership framework is
played by the Feasible Systems Set, often called
“unfalsified systems set”, i.e. the set of all systems
consistent with prior information and measured
data.

Definition 2.1. Feasible Systems Set
The Feasible Systems Set FSST is:

FSST
.= {f ∈K : |ỹt+1 − f (ϕ̃t)| ≤ εt,

t = 1, 2, ..., T} (3)

The Feasible Systems Set FSST summarizes all
the information on the mechanism generating the
data available up to time T . If prior assumptions
are “true”, then fo ∈ FSST , an important prop-
erty for evaluating identification accuracy.

Typically, in identification theory the problem of
checking the validity of prior assumptions arises.
The only possibility is to check if prior assump-
tions are invalidated by the data, i.e. if there exists
no system consistent with data and assumptions;
in other words, if FSST is empty. It is common
to introduce the concept of prior assumption val-
idation as follows.

Definition 2.2. Validation of prior assumptions

Prior assumptions are considered validated if:

FSST 6= ∅

Necessary and sufficient condition for checking the
assumptions validity are given by the following
result. Let us define the functions:

f (ϕ) .= min
t=1,...,T

(
ht + γ ‖ϕ− ϕ̃t‖

)

f (ϕ) .= max
t=1,...,T

(ht − γ ‖ϕ− ϕ̃t‖)
(4)

where ht
.= ỹt+1 + εt and ht

.= ỹt+1 − εt.

Theorem 2.3. (Milanese and Novara, 2004)

i) f (ϕ̃t) ≥ ht, t = 1, 2, ..., T, is necessary condition
for prior assumptions to be validated.
ii) f (ϕ̃t) > ht, t = 1, 2, ..., T, is sufficient condi-
tion for prior assumptions to be validated.

The validation theorem 2.3 and prior information
on the system can be jointly used to assess the
values of the constants γ and εt appearing in
the assumptions on function fo and on noise dt,
such that sufficient condition holds (Milanese and
Novara, 2004).

For a given estimate, φ(FSST ) = f̂ , the related
Lp error ||fo − f̂ ||p cannot be exactly computed,
but its tightest bound is given by ||fo − f̂ ||p ≤
supf∈FSST

||f− f̂ ||p. This motivates the following
definition of the identification error, often indi-
cated as guaranteed error.

Definition 2.4. Identification error

The identification error of f̂ = φ (FSST ) is:

E [φ (FSST )] = E(f̂) .= sup
f∈FSST

∥∥∥f − f̂
∥∥∥

p

The search for algorithms that minimize the iden-
tification error leads to the following optimality
concepts.

Definition 2.5. Optimal algorithm
An algorithm φ∗ is called optimal if:

E [φ∗ (FSST )] = inf
ϕ

E [φ (FSST )]

The next result shows that the algorithm:

φc(FSST ) = fc
.=

1
2

(
f + f

)
(5)

is optimal for any Lp norm and that the cor-
responding minimal identification error can be
actually computed.

Theorem 2.6. (Milanese and Novara, 2004)

For any Lp(Φ) norm, with p ∈ [1,∞]:
i) The identification algorithm φc (FSST ) = fc is
optimal
ii) E (fc) = 1

2

∥∥f − f
∥∥

p
= infφ E [φ (FSST )]

3. CASE STUDY

The city of Brescia is located in the Po Valley
in Northern Italy. It is characterized by high
industrial, urban and road traffic emissions and
continental climate.

The examined data records consist of O3, CO,
NO and NO2 hourly concentrations measured
by the urban air quality monitoring station. Lo-
cal temperature monitored and forecasted data
are available from the meteorological office. Data
were collected during the summer season, from
May to September. Prediction models have been
identified using the record subset of the period
1995-1998; the best performing models have been
selected evaluating their prediction performance
on the 1999 data set and then validated on the
2000-2001 data set. The data set corresponding
to years 1995-1998 is called identification set, the
1999 data set is called first validation set, the
2000-01 data set is called second validation set.

4. PERFORMANCE INDEXES

In order to test the ability of predictors to fore-
see if the O3 concentration will exceed an as-
signed threshold, European Environment Agency
(Van Aalst and de Leeuw, 1998) has defined the
following standard contingency table,



Table 1. Contingency table

Alarms Observed

Forecasted Yes No Total

Yes a f − a f

No m− a N + a−m− f N − f

Total m N −m N

where: N is the total number of data points; f
is the total number of forecasted exceedances; m
is the total number of observed exceedances; a is
the number of correctly forecasted exceedances.
Using these definitions, four skill parameters can
be defined:

• SP =
(

a
m

)
100% is the fraction of correct

forecast smog events (range from 0 to 100
with a best value of 100). The fraction of
unexpected events is given by (100− SP )%;

• SR =
(

a
f

)
100% is the fraction of realized

forecast smog events (range from 0 to 100
with a best value of 100); the fraction of false
alarms is given by (100− SR)%;

• assuming an equal weight for the correct
forecast of smog events and non-smog events,
the scoring parameters SP and SR can be
combined to give the success index SI =(

a
f + N+a−m−f

N−m − 1
)
100%, ranging from -100

to 100 with a best value of 100;

• S = 100
{

1 −
∑

(ŷt+1−yt+1)
2∑

(yt−yt+1)2

}
represents the

so-called skill score. In this expression ŷt+1

and yt+1 represents the predicted and mea-
sured value at time (t + 1), respectively. The
main aim of this parameter is to evaluate
the extent to which a given prediction model
is globally superior to the persistent model.
As easily understood, the skill score of a
persistent model is zero. Therefore if a given
prediction model exhibits S > 0, it is glob-
ally better that the corresponding persistent
model.

5. THE MODELS

The forecast models process chemical and mete-
orological data collected during day-time until 8
pm, and forecast the maximum expected hourly
concentration value of the following day. In gen-
eral, models are of the form:

yt+1 = f (ϕt)

ϕt = [yt u1
t u2

t u3
t u4

t ]
(6)

where:

• Time step: one day.
• yt : maximum ozone concentration [O3] until

8 pm at day t.
• u1

t : mean nitrogen dioxide concentration
[NO2] from 4 pm to 8 pm at day t.

• u2
t : mean ozone concentration [O3] from 4

pm to 8 pm at day t.

• u3
t : maximum temperature T until 8 pm at

day t.
• u4

t : estimate of maximum temperature until
8 pm at day t + 1.

The input u4
t , i.e. the estimate of maximum tem-

perature until 8 pm at day t+1, has been obtained
using a linear auto-regression model.

The model inputs and the lag values have been
chosen and handled by means of statistical tech-
niques (analysis of ozone and precursor typi-
cal day and causality issue between ozone and
chemical-meteorological parameters (Granger, 1980)).

Nonlinear Set Membership model NSM

The NSM model is of the form (6), with:

f(ϕ) = fc(νϕ)

where fc is defined by (5). The regressor ϕ has
been scaled by the vector ν in order to adapt to
data. The used scaling vector is ν = [0.49 0.12 0.2
1.04 0.097]. The values γ = 10.6 and εt = 40,∀t
have been chosen for fo gradient norm bound and
noise bound on the base of the validation analysis
of (Milanese and Novara, 2004).

Neural Network model NN

The structure considered in this work is the one
hidden layer neural network (see e.g. (Hertz et
al., 1991) and (Vapnik, 1995)), i.e. a function fNN

of the form:

fNN (ϕ) =
r∑

l=1

αlσ (βlϕ− λl) + ζ (7)

where r is the number of neurons, αl, λl, ζ ∈ R,
βl ∈ Rn, are parameters and σ (x) = 2/(1 +
e−2x)−1 is a sigmoidal function. Neural networks
learn on a training data set, tuning parameters α,
λ, ζ, β by means of a back-propagation algorithm.

The NN model is of the form (6), with f = fNN .
Several neural networks of the form (7), with
different values of r, have been trained on the
identification set. A neural network with r = 8,
showing the best prediction performances on the
first validation set, has been chosen for the model
NN.

Neuro-Fuzzy model NF

In neuro-fuzzy systems ((Shing and Jang, 1993),
(Babuška and Verbruggen, 2003)), neural net-
works are used to tune the membership functions
of the fuzzy system and to automatically extract
fuzzy rules from numerical data. In this work, a
four-layer neuro-fuzzy network has been assumed.

The nodes of the first layer (layer A) represent
the regressor ϕ. The activation functions of the
second layer nodes act as membership functions.
Each neuron of the third layer acts as a rule node
so that this layer provides the fuzzy rule base. The
output of this layer determines the activation level
at the output memberships. When ϕi is the i− th
node in layer A, oL

j is the j− th output of generic



layer L and φL
ij is the weight of the link between

j − th neuron at layer L + 1 and i − th neuron
at layer L, each layer output can be described as
follows:

Layer B: oB
j = oB

(
ϕi, φ

Ap
ij , φAl

ij

)

Layer C: oC
j = mini

(
φB

ij · oB
i

)

Layer D: oD
j =

∑
i
(φC

ij ·oC
i )∑

i
oC

i

The output of the network is a scalar variable, i.e.
oD

j = oD ∈ R. The four-layer neuro-fuzzy network
is then a function fNF of the form:

fNF (ϕ) = oD
(
oC

(
oB (ϕ)

))
(8)

As ordinary neural nets, the neuro-fuzzy net
learns on a training data set, tuning member-
ship functions and rules by means of a back-
propagation algorithm.

The Neuro-Fuzzy model has been identified as-
suming Gaussian membership functions and sum-
prod inference mechanism.

The NF model is of the form (6), with f = fNF .

Auto Regressive Ciclostationary with
eXogenous inputs model ARCX

ARCX grey box stochastic models are extended
ARX models which take into account the non-
stationary and nonlinear behavior of the process
through parameters depending on time varying
classes.

The regression function is a linear function of
regressor ϕ, whose coefficients are variable in time:

f(ϕ) = θtϕ + bt (9)

In general, coefficients θt and bt depend on regres-
sor ϕ, exogenous variables v1

t , ..., vl
t ∈ R, and time

t: θt = θ(ϕ, v1
t , ..., vl

t, t), bt = b(ϕ, v1
t , ..., vl

t, t). The
coefficients θt and bt are estimated in such a way
that θtϕt + bt ' fo(ϕt) in a neighborhood of the
working point ϕt.

A particular kind of non-stationarity is cyclo-
stationarity, occurring whenever the process has
an underlying periodic component (for instance:
daily, weekly, yearly). In this case, the parameters
vary with time according to a periodic function.

The ARCX model is of the form (6) where f is
given by (9) and the coefficient vector θt are time-
varying with a weekly periodic component.

Nearest Neighbor Classification model NNC

The performance indices SP, SR and SI defined
in Section 4 measure the capability of a predictor
to foresee if the O3 concentration exceeds a given
threshold. Since the problem of forecasting if a
variable exceeds an assigned threshold can be
treated as a classification problem, a k-nearest
neighbor decision rule has been implemented. The
k-nearest neighbor rule classifies a vector ϕ to the

class most heavily represented among its k nearest
neighbors in the Φ space using Euclidean metrics.

Let Φk
t ⊆ Φ̃T be the set of the k points of Φ̃T that

are closest to ϕt. Let kt be the number of points
of Φk

t corresponding to an exceedance. Then, the
k-nearest neighbor decision rule is defined by:

yt+1 =

{
1 if kt ≤ k/2

2 if kt > k/2

where class 1 corresponds to values not exceeding
the threshold, and class 2 corresponds to values
exceeding the threshold.

Several k-nearest neighbor rules with k ranging
from 1 to 20 have been considered. The 13-nearest
neighbor rule, leading to the best performances
on the first validation set, has been chosen for the
NNC model.

Persistent model PER

The persistent model is often used in the forecast
literature for comparison. In particular, its fore-
cast performances can be considered as a lower
bound on the performances that a “good” model
should display. The persistent model PER is de-
fined by: yt+1 = yt.

6. PREDICTION RESULTS

Prediction performances of the identified models
have been evaluated on the basis of the perfor-
mance indices defined in section 4 for 130µg/m3

threshold. In Tables 2 and 3 the performance
indices obtained by the models on the first and
second validation set are shown.

Table 2. Prediction performances
on the first validation set (1999).

Model SP [%] SR [%] SI [%] S

NSM 72.4 73 52.3 27.4

NN 69.8 72.1 55.7 32.6

NF 63.5 74.1 51.8 27.8

ARCX 61.9 75 51.1 23.7

NNC 61.4 73.6 44.8 -

PER 65.1 66.1 47.6 0

Table 3. Prediction performances
on the second validation set (2000-01).

Model SP [%] SR [%] SI [%] S

NSM 71 54 62.3 5.8

NN 53.8 60.0 49.6 20.4

NF 66.7 55.3 60.2 22.1

ARCX 35.9 48.3 31.3 22.7

NNC 50 51.4 43.1 -

PER 41.5 42.5 34.4 0



7. CONCLUSIONS

In this paper a Nonlinear Set Membership (NSM)
prediction method is applied to a problem of
troposphere pollution forecast. The NSM method
does not require assumptions on the functional
form of involved nonlinearities, thus reducing the
effects of modelling errors. The issue of local min-
ima is avoided since no minimization problem
needs to be solved. Moreover, the method does
not use statistical assumptions such as station-
arity, uncorrelation, etc., whose validity is diffi-
cult to check and would be lost in the presence
of approximate modelling. On the basis of these
theoretical features, it is expected that forecasts
obtained by means of NSM method may show
good robustness versus imprecise knowledge of
involved nonlinearities and noise properties. These
theoretical expectations appear to be confirmed
by the numerical results, where the NSM model
exhibits interesting performances with respect to
other well-established methods.
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