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Abstract: This paper focuses on the design of an error feedback sliding mode regulator 

able to achieve the asymptotic tracking of a reference trajectory for linear systems. It is 

assumed that the reference trajectory is generated by means of neutrally stable unforced 

systems. The solution conditions are derived for linear systems presented in general, 

Regular and Block controllable forms.  Copyright © 2005 IFAC 
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1. INTRODUCTION

1
 

 
The regulator problem, in the classical setup 

(Francis, 1977), consists of designing a continuous 

state or error feedback controller such that the output 

of a system tracks a reference signal possibly in the 

presence of a disturbance signal. An alternative 

approach to deal with this problem is the use of the 

sliding mode technique to decompose and simplify 

the regulator design procedure and impose 

robustness properties (Utkin and Young, 1978).  
 

The underlying idea is to design a sliding surface on 

which the dynamics of the system are constrained to 

evolve by means of a discontinuous control law, 

instead of designing a continuous stabilizing 

feedback, as in the case of the classical regulator 

problem. The sliding manifold contains the steady-

state surface, and the dynamics  of the systems tend 
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asymptotically, along the sliding manifold to the 

steady-state behavior. 
 

In the case of static state feedback sliding mode, a 

regulator design has been investigated in (Loukianov, 

et al., 1999a) and (Utkin V.A., 2001). To overcome 

the limiting requirement of full information 

knowledge, a dynamic discontinuous error feedback 

strategy has been designed for linear systems in 

general case in (Edwards and Spurgeon, 1996) and 

for Regular form in (Loukianov, et al., 1999b). 

However, the design of the error feedback sliding 

mode Regulator for linear systems in the Block 

Controllable form (Drakunov, et al., 1990) is an open 

problem. 
 

In this paper, the stability condition of the sliding 

mode error feedback regulator is reformulated. 

Instead of a closed loop asymptotic stability 

condition of the equilibrium point as presented in 

(Loukianov, et al., 1999b), two stability conditions 

are introduced: a sliding mode stability condition that 

requires finite time convergence to the proposed 



     

sliding manifold and an asymptotic stability 

condition of the sliding mode dynamics of the 

equilibrium point. With these issues in mind, the 

error feedback sliding mode regulator for linear 

systems in the general case and in the so-called 

Regular form are reformulated and for the Block 

Controllable form for linear systems is designed.  

To formalize the ideas, the basic facts on regulation 

theory are briefly recalled. Consider a linear system 
 

  x Ax Bu Dw= + +ɺ                           (1) 

  y Cx=                                                 (2) 
 

where nx R∈ , mu R∈  and py R∈ . The output 

tracking error is defined as 
 

  e Cx Qw= −                                       (3) 

 

where the reference signal, refy Qw= , is generated 

by a given external system described by 
 

  w Sw=ɺ                                                (4) 
 

 with state Sw R∈ . This system is characterized by 

the following assumption: 

 

  H1). The matrix S has all eigenvalues on the 

imaginary axis. 

 

It is assumed also that only the components of the 

error e are available for measurement. It has been 

shown that the control action to (1) can be provided 

by an error feedback dynamic system (Francis, 

1977): 

  F Geξ ξ= +ɺ                                       (5) 

  [ ( )]u K K ξ= Γ − Π                          (6) 

and the solvability of the Error Feedback Regulator 

Problem (EFRP) under assumption H1, can be stated 

in terms of the existence of a pair of matrices Π  and 
Γ  that solve the Sylvester matrix equation 
 

  A B D SΠ + Γ + = Π                         (7) 

  0C QΠ − =                                        (8) 
 

In fact, the conditions (7) and (8) are added by the 

following trivially necessary conditions: 

 

  H2). The pair {A,B} is stabilizable and 

  H3). The pair ,
0

A D
C Q

S

                  
 is detectable. 

 

In the following the regulator problem from a sliding 

mode viewpoint is presented. We define the problem 

and give the conditions for the existence of a 

solution. 
 
 

2. ERROR FEEDBACK SLIDING MODE 

CONTROL PROBLEM 
 
Analogously to EFRP, the Error Feedback Sliding 

Mode Regulation Problem (EFSMRP) is defined as 

the problem of finding a sliding manifold 
 

  ( ) 0, mRσ ξ σ= ∈               (9) 

and a discontinuous controller 
 

 ( , , )u eξ η ξ=ɺ                            (10) 

( ) ( ) 0
1,...,

( ) ( ) 0

ii

i
i i

u
u i m

u

ξ σ ξ

ξ σ ξ

+

−

 >= =
 <

  (11) 

 

where ( )iu ξ+ , ( )iu ξ−  and ( )iσ ξ , 1,...,i m=  are 

chosen so that the following conditions hold: 
 

• (SMS). (Sliding Mode Stability). The state 

of the closed-loop system formed from 

closing the loop in the system (1)-(2), with 

the controller (9)-(11) converges to the 

manifold (9) in a finite time. 

• (SS). The equilibrium point 0x =  of the 

sliding mode dynamics  
 

       eqx Ax Bu Dw= + +ɺ , ( ) 0σ ξ =         (12) 

              ( , , )equ eξ η ξ=ɺ                                        (13) 

 

is asymptotically stable, where equ  is the 

equivalent control defined as a solution of 

0σ =ɺ  (Utkin and Young, 1978). 

•  (SR). The output tracking error goes 

asymptotically to zero, i.e. 
 

  lim ( ) 0
t

e t
→∞

= .                          (14) 

 

Note, that the conditions for sliding motion to occur 

on ( ) 0iσ ξ =  may be stated in numerous ways. We 

need 
0

lim 0
i

i
σ

σ
+→

<ɺ  and 
0

lim 0
i

i
σ

σ
−→

>ɺ  in the 

neighborhood ( ) 0iσ ξ = , 1,...,i m= , (Utkin and 

Young, 1978). In the following, a solution for this 

problem will be presented. 
 
 

3. SOLVABILITY CONDITIONS 
 
Analogously to EFRP, in this section, the EFSMRP 
solvability conditions will be derived for linear 

systems in the general form. Considering the linear 

system (1) - (3), the steady-state error is defined as 

z x w= − Π  where Π is a matrix to be defined later 

and thus rewrite the original equations as 
 

  A Buζ ζ= +ɺ                         (15) 

  e Cζ=                                    (16) 

 

with , ,
00

z A A S D B
A B

w S
ζ

Π − Π +          = = =           

( )( )C C C Q= Π − , rankB m= . Then the 

system (10) can be designed in this case as an 

observer for ζ . For asymptotic stabilization of the 

closed-loop system via error feedback the following 

assumption is introduced: 
 

  H4. The pair {C, A} is detectable. 
 



     

Under this assumption, the system (10) with state 

ˆˆ( , )Tz wξ =  is designed as the observer: 

 

 ˆ( ),A Bu L e e e Cξ ξ ξ= + + − =ɺ            (17) 

 

where ξ is the estimate of ( , )Tz wζ = , and the 

matrix ( )1 2,
TL L L=  is chosen to stabilize the error 

dynamics: 

  ( )A LCε ε= −ɺ                     (18) 

 

with 1 2( , )Tε ξ ζ ε ε= − = . Once the observer is 

designed, a sliding manifold ˆ( ) 0σ ξ =  has to be 

chosen to satisfy the stability conditions. To this end, 

the sliding manifold is chosen as 
 

 ( )ˆ ˆ( ) 0 0zσ ξ ξ= Σ = Σ =                         (19) 

 

where an appropriately chosen design matrix Σ will 

determine the dynamic response of the system on 

(19). To investigate the stability on this sliding 

manifold, the following lemma is first proved: 

 

Lemma 1. Let the operator P be defined as 
1[ ( ) ]nP I B B −= − Σ Σ . Then the relation 

 

  ( ) 0P A S DΠ − Π + =          (20) 

 

is true if and only if there are matrices Π and Λ, such 

that 

  A S D BΠ − Π + = Λ            (21) 
 

Proof of Lemma1. The operator P is a projection 

operator along the space of the rank of B over the Σ 

null space, i.e., 1[ ( ) ] 0nPB I B B B−= − Σ Σ = , 

, { 0}nPz z z z R z= ∀ ∈ Ν Ν = ∈ Σ = . 

Thus, if condition (21) holds, then it follows that 

( ) 0P A S D PBΠ − Π + = Σ = . Conversely, if 

condition (20) is satisfied, then (AΠ-ΠS+D) must be 

in the image of B, i.e., A S D BΠ − Π + = Λ  for 
some matrix Λ. From this result, a condition for a 

solution of the discontinuous regulator problem can 

be deduced. 
 

Proposition 1. Suppose that assumptions H1, H2 and 

H4 hold, and there exists a matrix Π which solves 

the linear equations 
 

  A S D BΠ − Π + = Λ            (22) 
  0C QΠ − =                            (23) 
 

for some matrix Λ. Then the EFSMRP for linear 

system is solvable. 
 

Proof of proposition 1 . Choose the control u as 
 

1 ˆ( ) ( )

ˆ ,̂ 0

u k B sign

z k

σ

σ

−= Σ

= Σ >
.                   (24) 

Using the Lyapunov function 
1
ˆ ˆ
2

TV σ σ= , from the 

derivative of V taken along the trajectories of (17) 

and (24) the condition ( ) eqk B u> Σ  is obtained, 

that guarantees the (SMS) condition. The equivalent 

control equ  is calculated from ˆ 0σ =ɺ  as 

 

1

1 1

1 1
1

1 2

ˆˆ ( )
( )

( )

( )
( ) .

(( )

( ))

eq

Az A S D w
u B

LC

Az A S D w

A LC
B

A S D

L C Q

ε

ε

ε

−

−

 + Π − Π + 
 = − Σ Σ  +  
 + Π − Π + 
 
 − − 

= − Σ Σ  
 − Π − Π +
 
 − Π −  

  (25) 

 

The reduced order sliding mode dynamics on 

1ˆ 0σ σ ε= −Σ =  are obtained by substituting (25) 

in (15), to yield: 
 

 1, ( ) 0A E zζ ζ ε ε= + Σ − =ɶɺ                     (26) 

 ( )A LCε ε= −ɺ                                           (27) 

 ( )( )e C C Q ζ= Π −                                  (28) 

 

where 

11 12( ) ( )
, ,

0 0 0

n nPA R I P E I P E
A E

S

   − −     = =        

ɶ  

( )

11 1 12
1

( ),
( )

A S D
E A LC E

L C Q

Π − Π +  = − =  − Π −  
, with 

P already defined in Lemma 1, and 

( )R P A S D= Π − Π + . Using condition (22) and 

Lemma 1 it yields that R=0. Then, assuming that the 

observer estimation error decays rapidly by 

appropriate choice of 1L  and 2L  (under assumption 

H4), equation (26) reduces to 
 

  0zz PAz Σ ==ɺ                         (29) 

 

Since the matrix Σ in (29) by assumption H2 can be 

chosen such that (ΣB) is invertible, and the (n-m) 

eigenvalues of PA are arbitrarily placed in C−  

(Chesawi, et al., 1983), then ( ) 0z t →  as t → ∞ , 

satisfying condition (SS). Now, if the tracking error 

equation (28) satisfies condition (23), then, ( ) 0e t →  

as t → ∞ , satisfying condition (SR). Comparing the 

conditions (7) and (22), the steady state matrices Π 

and Γ for the state x and control u, respectively, in 

equation (7) have to be calculated. On the contrary, 

in the second case (22) only the matrix Π needs to be 

calculated such that the perturbation satisfies the 

matching condition (Dragenovic, 1969). The 

structure of equation (22) can be put in evidence 

using the decomposition of a linear system to 

Regular form. 
 
 

4. REGULAR FORM 
 
In order to show the explicit form of condition (22) 

and sliding dynamics (29), the linear system (1) is 

first converted into Regular form (Utkin and Young, 

1978): 



     

 

1 11 12 1 1

22 2 221 22

0x A A x D
u w

xx B DA A

               = + +                  

ɺ

ɺ
     (30) 

1 1 2 2e C x C x Qw= + −                                       (31) 
 

where 1 2,
n m mx R x R−∈ ∈ , and 2rankB m= . 

See (Utkin and Young, 1978) for details of matrices 

appearing in (30) and (31). Defining 

1 1 1z x w= − Π  and 2 2 2z x w= − Π  with 1Π and 

2Π constant matrices of proper dimension, the 

system (30) in the new variables 1z  and 2z  obeys 

the following dynamics: 
 

1 11 12 1 1

22 2 221 22

0z A A z R
u w

zz B RA A

               = + +                  

ɺ

ɺ
     (32) 

1 1 2 2 1 1 2 2( )e C z C z C C Q w= + + Π + Π −        (33) 

 

with 1 11 1 12 2 1 1R A A S D= Π + Π − Π +  and 

2 21 1 22 2 2 2R A A S D= Π + Π − Π + . Now, the state 

in system (10) is chosen as 1 1 ˆˆ ˆ( , )Tz z wξ = , 

therefore, system (10) takes the following form: 
 

 ˆ ˆ( ),A B u L e e e Cξ ξ ξ′ ′ ′ ′= + + − =ɺ        (34) 

 

where 

11 12 1

21 22 2

0 0

A A R

A A A R

S

     ′ =      

, 2

0

0

B B

    ′ =      

,

1

2

3

L

L L

L

     ′ =      

, ξ 

is the estimate of 1 2( , , )Tz z wζ = , and 

( )1 2 1 1 2 2( )C C C C C Q= Π + Π − . The 

observer gain matrix L′ is chosen to stabilize the 

observer error state 1 2 3( , , )Tε ξ ζ ε ε ε= − = , a 

dynamics of which are governed by 
 

  ( )A L Cε ε′ ′ ′= −ɺ .                  (35) 

 

The following assumption is thus necessary to 

guarantee the stability of the system (35): 

 

  H5). The pair {C′,A′} is detectable. 
 

Proposition 2. Suppose that assumptions H1, H2 and 

H5 hold, and there exist matrices 1Π  and 2Π  which 

solve the linear equations 
 

 11 1 12 2 1 1 0A A S DΠ + Π − Π + =               (36) 

 1 1 2 2 0C C QΠ + Π − = .                             (37) 
 

Then the EFSMRP for linear system in the Regular 

form is solvable. 
 

Proof of proposition 2. We first specify the sliding 

manifold (19) in terms of the estimated states as 

2 1 1 2 1 1 2 1 1ˆ ˆ ˆ ( ) 0z z z zσ ε ε= − Σ = −Σ − − Σ =  

where ( )
1

m n mR × −Σ ∈ . The proposed sliding control 

law is given as 1
2 ˆ( ) ( ), 0u k B sign kσ−= > . Then 

the requirement (SMS) is fulfilled if 2 eqk B u> , 

where equ  is calculated from ˆ 0σ =ɺ  and has the 

following form: 

11 1 12 2 1

1
1

1
2

21 1 22 2 2

2

11 1 12 2 1

1
1 1

1
2

21 1 22 2 2

2 2

ˆˆ ˆ

( )
ˆˆ ˆ

( )
( )

( )

eq

A z A z R w

LC
u B

A z A z R w

L C

A z A z R w

LC G
B

A z A z R w

L C G

ε

ε

ε

ε

−

−

+ +   −Σ  ′+   
 = −
 + +  +   ′+    

+ +  −Σ  ′+ −  
= −

+ +  + ′+ − 

 
 
 
 
 
 
 

   

 

with ( )1 11 12 1G A A R=  and 

( )2 21 22 2G A A R= . By condition (36) it follows 

that 1 0R =  in (32), therefore, the reduced order 

sliding mode equation can be obtained as 
 

1 11 1 12 2 2 1 1 2 1 1, ( )z A z A z z z ε ε= + = Σ + − Σɺ  (38) 

w Sw=ɺ ,   ( )A L Cε ε′ ′ ′= −ɺ  

1 2 1 1 1 1 2 2( ) ( )e C C z C C Q w= − Σ + Π + Π −     (39) 

 

It is known (Utkin and Young, 1978) that if the pair 

{A, B} is stabilizable then the pair 11 12{ , }A A  is 

stabilizable as well. Therefore there exists a matrix 

1Σ  such that the matrix 11 12 1( )A A+ Σ  in (38) is 

stable and hence 1( )z t  asymptotically tends to zero, 

satisfying condition (SS). In consequence, thanks to 

condition (37) the output tracking error e(t) in (39) 

tends to zero too and condition (SR) is satisfied. Note 

that the conditions (22) and (23) are modified as (36) 

and (37), respectively. On the other hand, the 

equation (36) as well as the system (38) can be 

further decomposed if the system (1) or (30) is 

represented in BC-form. 
 
 

5. BLOCK CONTROLLABLE FORM 
 
In this section a discontinuous regulator is proposed 

using the Block Control technique (Drakunov, et al., 

1990). The underlying idea is first to reduce system 

(1) to a Block Controllable form (BC-form) in the 

presence of perturbations by means of a non singular 

transformation, then, using the BC-technique, to 

design a sliding surface on which the unperturbed 

part of the dynamics of the system is stable. Finally, 

the condition for the solution of the corresponding 

EFSMRP is derived. The essential feature of the 

proposed method is the transformation of (1) into 

BC-form consisting of r blocks of the form: 
 

1 11 1 1 1

1
1

1

, 2,..., 1
i

i ij j i i i

j

r

r rj j r r

j

x A x B x D w

x A x B x Dw i r

x A x B u D w

+
=

=

= + +

= + + = −

= + +

∑

∑

ɺ

ɺ

ɺ

 (40) 



     

1

r

k k

k

e M x Qw
=

= −∑                                             (41) 

 

where the transformed vector x  is decomposed as 

1( ,..., )
T

rx x x= , and in
ix R∈ , 1,...,i r= . The 

integers 1( ,..., )rn n  characterize the structure of the 

system (40) by the condition 

1 2( )rn n n m≤ ≤ ≤ ≤⋯  with 
1

r

i

i

n n
=

=∑ . See 

(Drakunov, et al., 1990) for details of matrices 

appearing in (40) and (41). It was shown that a 

necessary condition to transform the system (1) into 

BC-form (40), is that the pair {A,B} must be 

controllable (Drakunov, et al., 1990). 

Introducing the steady-state iwΓ  for the state 

vectors xi the steady-state error zi  is defined as 
 

 , 1,...,i i iz x w i r= − Γ =                          (42) 

 

Then, the states in (42) are obtained from the 

evolution of (40) of the following form: 
 

1 11 1 1 2 1

1
1

1

, 2,..., 1
i

i ij j i i i

j

r

r rj j r r

j

z A z B z R w

z A z B z Rw i r

z A z B u R w

+
=

=

= + +

= + + = −

= + +

∑

∑

ɺ

ɺ

ɺ

 (43) 

 

with  
1 1

r r

k k k k

k k

e M z M Q w
= =

 = + Γ −   
∑ ∑ , where 

1 11 1 12 2 1 1R A A D S= Γ + Γ + − Γ , 

1
1

, 2,...,
i

i ij j i i i i

j

R A B D S i r+
=

= Γ + Γ + −Γ =∑  (44) 

 

The system (10) with state 1 ˆˆ ˆ( ,..., , )Trz z wξ =  is 

designed as follows: 
 

1 11 1 1 2 1

1
1

1

1

ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆ( ), 2,..., 1

ˆˆ ˆ ˆ( )

ˆ ˆ ˆ( )

i

i ij j i i i

j

r

r rj j r r r

j

r

z A z B z L e e

z A z B z L e e i r

z A z B u R w L e e

w Sw L e e

+
=

=

+

= + + −

= + + − = −

= + + + −

= + −

∑

∑

ɺ

ɺ

ɺ

ɺ

                                                                               (45) 
 

with 
1 1

ˆˆ ˆ
r r

k k k k

k k

e M z M Q w
= =

 = + Γ −   
∑ ∑ , where 

1 ˆˆ ˆ( ,..., , )Trz z wξ =  is the estimate of 

1( ,..., , )
T

rz z wζ = , and 1 1( ,..., , )Tr rL L L L +=ɶ  is 

the observer gains matrix. Assuming that 

0, 1,..., 1iR i r= = − , (44), then the observer 

error state 1 1( ,..., , )Tr rε ε ε ε +=  obeys the following 

dynamics: 

( )A LCε ε= −ɶ ɶ ɶɺ                       (46) 

with 

11 1

21 22 2

1 2 3

0 0 0

0 0

0 0 0 0

r r r rr r

A B

A A B

A

A A A A R

S

        =          

⋯

⋯

ɶ ⋮ ⋮

⋯

⋯

, 

( )( )1 1

r

r k kk
C M M M Q

=
= Γ −∑ɶ ⋯ . 

Similar to the previous case it is assumed that: 
 

  H6). The pair { , }C Aɶɶ  is detectable. 

 

Proposition 3. Suppose that assumptions H2 and H6 

hold, and there exist matrices , 1,...,i i rΓ =  that 

solve the linear equations 
 

 11 1 1 2 1 1A B D SΓ + Γ + = Γ ,                        (47) 

1
1

, 2,..., 1
i

ij j i i i i

j

A B D S i r+
=

Γ + Γ + = Γ = −∑    (48) 

 
1

0
r

k k

k

M Q
=

Γ − =∑                                       (49) 

 

Then the EFSMRP for a linear system in the BC- 

form is solvable. 
 

Proof of proposition 3. Note first that if conditions 

(47)-(48) met, then, 0, 1,..., 1iR i r= = −  in (43), 

yielding to the same observer error dynamics 

founded in (46), which under assumption H6, can be 

stabilized by a proper choice ofLɶ . 
 

A sliding manifold will be designed based on the 

system (45) considering the state 1îz + , 

1,..., 1i r= −  as a fictitious control vector in the 
thi  block of (45), and the term ˆ( )iL e e−  as the 

perturbation. This procedure is outlined as follows. 

We start by defining a new variable 1 1̂zχ = . Taking 

the derivative of 1χ  along (45) yields 

 

 1 11 1 1 2 1ˆ ˆ ˆ( )A z B z L e eχ = + + −ɺ                   (50) 

 

As mentioned above, 2̂z  is considered as a quasi-

control in (50), and must force the desired dynamics, 

1 1K χ  with design stable matrix 1K  for this block by 

the anticipation of its dynamics of the following 

form: 

 

1 11 1 1 2 1 1 1ˆ ˆ ˆ( )A z B z L e e Kχ χ= + + − =ɺ            (51) 

 

Now, 2̂z  is calculated from (51) as a desired state 

named 2̂
dz . This desired state has the following form: 

2 11 1 1 1 11ˆ ˆ ˆ( ( ) )dz B A z L e e K χ+= − + − − , where 

1
1 1 11 ( )T TB B B B+ −=  denotes the right pseudo-

inverse matrix of 1B . Proceeding in the same way, a 

second new variable 2χ  is defined as 2 2 2ˆ ˆdz zχ = − . 

Taking the derivative of 2χ  and anticipating its 

dynamics, the next block is obtained 
 



     

2 21 1 22 2 2 3 2 2

2 2

ˆ ˆ ˆ ˆ ˆ( ) dA z A z B z L e e z

K

χ

χ

= + + + − −

=

ɺɺ
 (52) 

 

The desired state of 3̂z  is calculated from (52) as 

21 1 22 2 3

3 2
2 2 2 2

ˆ ˆ ˆ
ˆ

ˆ ˆ( )
d

d

A z A z z
z B

L e e z K χ

+
+ +  = −   + − − −  

ɺ
, with 

1
2 2 22 ( )T TB B B B+ −= , and 2K  is a Hurwitz matrix. 

This procedure may be performed iteratively 

defining the thi  new state as ˆ ˆdi i iz zχ = − , and the 

thi  block as follows: 

11
ˆ ˆ ˆ ˆ( )

i d
i ij j i i i i i ij

A z B z L e e z Kχ χ+=
= + + − − =∑ ɺɺ

, 3,..., 1i r= − , and the desired state as 

( )1 1
ˆ ˆ ˆ ˆ( )

id d
i ij j i i i ii j
z B A z L e e z K χ+
+ =
= − + − − −∑ ɺ

where, again, 1( )T T
i i iiB B B B+ −= , and iK  is a 

Hurwitz matrix. In the final step, ˆdrz  is known, and 

defining the last new variable ˆ ˆdr r rz zχ = − , the 

thr  block is transformed as follows: 

1
ˆ ˆ ˆ( )

r d
r rj j r r rj

A z B u L e e zχ
=

= + + − −∑ ɺɺ . It 

should be noted that the new state 1( ,..., )
T

rχ χ χ=  

is derived by the nonsingular transformation: 
 

1 1̂zχ = , ˆ ˆdi i iz zχ = − , 2,...,i r=                   (53) 

 

This transformation simplifies system (45) to the 

following form: 
 

1 1 1 1 2

1, 2,..., 1i i i i i

K B

K B i r

χ χ χ

χ χ χ +

= +

= + = −

ɺ

ɺ
               (54) 

1
ˆˆ ˆ ˆ( ) .

r d
r rj j r r i rj

A z B u R w L e e zχ
=

= + + + − −∑ ɺɺ  

 

A natural choice of the switching function for system 

(54) is rσ χ= . In order to generate a sliding mode 

in (54), the control is chosen as 

( ), 0ru kB sign kσ+= > , 1( )T T
r r r rB B B B+ −= . If 

r eqk B u> , the condition (SMS) is guaranteed, 

and equ  is calculated from 0σ =ɺ  as 

( )1
ˆˆ ˆ ˆ( )

r d
eq r rj j r r rj

u B A z R w L e e z+
=

= − + + − −∑ ɺ . 

The sliding mode motion on 0rσ χ= =  is 

described by the reduced order system 
 

1 1 1 1 2

1

1 1 1

, 2,..., 2i i i i i

r r r

K B

K B i r

K

χ χ χ

χ χ χ

χ χ

+

− − −

= +

= + = −

=

ɺ

ɺ

ɺ

               (55)              

w Sw=ɺ                                                                 
(56) 

( )A LCε ε= −ɶ ɶ ɶɺ                                                    (57) 

1 1

r r

k k k k

k k

e M z M Q w
= =

 = + Γ −   
∑ ∑ .                  (58) 

 

Since the diagonal matrices iK , 1,..., 1i r= −  in 

(55) are Hurwitz, then the states of (55) tend 

asymptotically to zero, i.e. lim ( ) 0i
t

tχ
→∞

= , 

1,..., 1i r= − . Hence, by transformation (53) 

ˆlim ( ) 0i
t

z t
→∞

= , 1,...,i r= . Now, by assumption H6 

there is a matrix Lɶ  in (57) such that lim ( ) 0
t

tε
→∞

= , 

therefore lim ( ) 0i
t

z t
→∞

= , 1,...,i r= , satisfying 

condition (SS). In consequence, thanks to condition 

(49) the output tracking error e(t) (58) tends 

asymptotically to zero, satisfying condition (SR). 

Note that the Regular form conditions (36) and (37) 

are represented for the BC-form as (47)-(48) and 

(49), respectively. 
 
 

6. CONCLUSIONS 
 
The EFSMRP has been reformulated. Solution 

conditions are derived for linear systems presented in 

the Regular and BC forms. In particular, the 

combination of Sliding Mode and BC-techniques 

allows straightforward solutions to be obtained, 

especially when compared to the classical solutions 

of the error feedback regulator problem. Additionally 

the sliding mode based controller achieves robustness 

with respect to the uncertainty. 
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